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Abstract: Step length is a critical hallmark of health status. However, few studies have investi-
gated the modifiable factors that may affect step length. An exploratory, cross-sectional study was
performed to evaluate the surface electromyography (sEMG) and body impedance analysis (BIA)
parameters, combined with individual demographic data, to predict the individual step length using
the GAITRite® system. Healthy participants aged 40–80 years were prospectively recruited, and three
models were built to predict individual step length. The first model was the best-fit model (R2 = 0.244,
p < 0.001); the root mean square (RMS) values at maximal knee flexion and height were included as
significant variables. The second model used all candidate variables, except sEMG variables, and
revealed that age, height, and body fat mass (BFM) were significant variables for predicting the
average step length (R2 = 0.198, p < 0.001). The third model, which was used to predict step length
without sEMG and BIA, showed that only age and height remained significant (R2 = 0.158, p < 0.001).
This study revealed that the RMS value at maximal strength knee flexion, height, age, and BFM are
important predictors for individual step length, and possibly suggesting that strengthening knee
flexor function and reducing BFM may help improve step length.

Keywords: step length; surface electromyography; body impedance analysis

1. Introduction

Walking performance is an important hallmark of evaluating individual health sta-
tus [1–3]. The slow progressive decline in walking performance is associated not only with
neurodegenerative disorders (e.g., Alzheimer’s disease and Parkinson’s disease) [4–7], but
also with aging [8]. The commonly used parameters of walking performance include gait
speed, cadence, cycle time, and stride length [9,10]. Among these, step length, defined as
the distance between the initial contact point of one foot and the initial contact point of the
opposite foot, has been widely used for general gait analysis, sports training, and medical
rehabilitation [2,11,12]. In particular, shortened step length in the elderly is an indicator of
the risk of functional loss and falls [13]. However, the effects of modifiable factors in terms
of musculoskeletal function and the components of body weight on step length have not
yet been explored.

Among the leg muscles involved in gait performance, the thigh muscles have been the
primary focus. Site-specific sarcopenia was more frequently found in the thigh muscles
than in the calf muscles as part of the normal aging process [14,15], and age-related loss of
thigh muscle was related to difficult task performance (e.g., zig-zag walking) [14].

Various methods have been used previously to evaluate muscle function and quality.
These include surface electromyography (sEMG) and body impedance analysis (BIA),
which have been commonly used in clinics and in various fields of research [16,17]. sEMG is
a non-invasive approach that collects data reflecting muscle activity in dynamic conditions.
BIA is another method for measuring body composition; it has many merits (e.g., lower
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cost, no radioactivity) compared with dual-energy X-ray absorptiometry (DXA), which has
been considered a gold standard for body composition assessment.

Therefore, this study was performed to evaluate the value of various parameters for
predicting individual step length using sEMG (focused on the thigh muscles) and BIA
combined with individual demographic data.

2. Materials and Methods
2.1. Study Design and Participants

An exploratory cross-sectional study was performed to examine the relationship
among step length, sEMG parameters, and body composition. Healthy individuals aged
40–80 years were prospectively recruited. Participants were eligible when their medical re-
search council scale grade at the time of participation in the study was five in all extremities.
Participants with a history of any health problem that may cause muscle weakness and/or
gait difficulty within 3 months and any sequelae related to muscle weakness or gait-related
problems were excluded. This study was approved by our Institutional Review Board (IRB
number 2020AN0361), and informed consent was obtained from all participants.

2.2. Step Length Measurement

Step length was measured using the GAITRite® system (CIR Systems, Inc., Franklin,
NJ, USA), a commercially available 4.27 m long electronic walkway comprising multiple
sensor pads inserted in a grid formation between layers [18–20]. The sensors were activated
by mechanical pressure, and the signals (sampling rate of 80 Hz) were transferred to the
computer and stored. The participants were instructed to walk at their most comfortable
and regular gait speed on the walkway. The average step length (cm) was measured as
the line of progression from the heel center of the current footprint to the heel center of
the previous footprint of the opposite foot. Next, the average value of every step length
measured from each step (right and left sides) was used for statistical analysis.

2.3. sEMG Measurement

sEMG signal data from the participants’ lower extremities were obtained using the
Nicolet EDX system (Natus Neurology Inc., Middleton, WI, USA) and Synergy (Synergy
Healthcare Solutions, Maryville, TN, USA). The sEMG signals were amplified and band-
pass filtered at 100–500 Hz at a sampling rate of 48 kHz, and raw sEMG signals were
full-wave rectified. Three recording electrodes (diameter: 20 mm, Natus Neurology Inc.,
Middleton, WI, USA) were linearly (perpendicular to the axis of the lower extremity)
attached to each muscle belly of the rectus femoris (representing the extensor muscle)
and biceps femoris (representing the flexor muscles of the knee joint). Six electrodes were
attached to the thigh to minimize factors affecting signal acquisition (e.g., diameter, position,
and depth of the muscle fiber) with a 10 mm interelectrode distance. A reference electrode
was placed on the lateral prominence of the patella during knee flexion and extension, and
a ground electrode was placed close to the recording electrodes. Next, the participant was
asked to lie down in a prone position and to maximally flex and extend his/her knee joint
against the examiner’s resistance to monitor continuous maximal voluntary contraction
using the manual muscle tester 01165 (Lafayette Instrument Company, Lafayette, LA,
USA). After the test trials, participants were required to flex or extend their legs at their
maximal effort for 3 s against the investigator’s resistance. The electrical activity of the
muscle from each electrode was selected (from the biceps femoris at flexion and rectus
femoris at extension), and was calculated by the root mean square (RMS) value over the
period of resistance (Figure S1). The average RMS value from the three electrodes on
the rectus femoris (during extension) and biceps femoris (during flexion) was used for
statistical analyses.
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2.4. BIA

Body fat mass (BFM, kg) and appendicular skeletal muscle mass (ASM, kg) were
measured using a multifrequency 80-electrode body impedance analyzer (Inbody770®

system, InBody Corp, Seoul, Korea). The Inbody770® system has been commonly used in
previous research for measuring individual body components [21–23] and the validation
of its use has been described previously [24–28]. Thirty impedance measurements were
obtained at six different frequencies (1, 5, 50, 250, 500, and 1000 kHz) for five body segments
(both arms and legs and trunk). The measurements were performed at least 3 h after a
meal, and participants were instructed not to exercise intensively before the examination
to minimize other factors that would affect the results. The ASM and BFM values were
calculated using the manufacturer’s algorithm [21]. The calculated ASM results were
divided by the squared height (m2) to adjust for the effect of height on ASM, and these
values were used for statistical analysis.

2.5. Statistical Analysis

Analysis of variance was used to compare the demographics and results of BIA and
sEMG measurements between each age group. The t-test was used to compare step length
differences by sex. Simple linear regression analysis was used to assess the associations
between the variables and identify more significant variables related to step length, and
scatter plots were obtained. Multivariable regression with stepwise selection was used to
obtain regression models, which were used to estimate the average step length. Statistically
significant variables from the simple linear regression analysis and t-test were included in
the multivariable regression analysis. The Shapiro–Wilk and Durbin–Watson tests were
performed to check the assumptions of normality and independence (Ps > 0.05). The
collinearity among multiple predictors was evaluated by variance inflation factors (VIF)
and tolerance levels. The VIFs were below 1.06 and tolerance levels were above 0.942 for
all variables. R squared (R2) and adjusted R2 were introduced to compare the results of
the regression analyses between the variables and models. All or some of the variables
were used for the three models based on the availability of BIA and sEMG. The first model
included all candidate variables for the analysis. The second model used all candidate
variables, except sEMG variables, with the assumption that the sEMG measurements were
not available. The third model used all candidate variables except for sEMG and BIA
variables. Statistical significance was set to p < 0.05. All statistical analyses were performed
using SAS software (version 9.4, SAS Institute, Inc., Cary, NC, USA). The step length
estimated by the models and the actual average step length measured by the GAITRite®

system from each individual were compared using linear regression.

3. Results

The baseline characteristics of the participants and a summary of the results are
presented in Table 1.

A total of 179 participants (82 men (45.8%) and 97 women (54.2%)) completed the
study. The participants’ demographics and differences in the variables based on the age
groups and sex are shown in Table 2 and Figure 1.
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Table 1. Participant demographics and the results of body impedance analysis and surface elec-
tromyography measurements.

Variables (n = 179) Mean ± SD Min Max Median

Age (years) 60.0 ± 11.1 41 79 60.5
Sex (M:F) 82:97 - - -

Height (cm) 162.7 ± 8.6 140 182 162.25
BMI (kg/m2) 24.6 ± 3.0 18.0 32.9 24.0

Average step length (cm) 62.8 ± 6.8 41.0 83.1 65.6
ASM (kg)/(height, m)2 7.1 ± 1.1 5.2 9.4 7.0

BFM (kg) 18.9 ± 5.9 5.8 38.3 18.2
Average RMS (µV)

Knee flexion 321.7 ± 128.8 84.4 789.2 310.8
Knee extension 233.0 ± 100.4 41.0 558.2 218.9

Data (except for sex) are presented as mean ± SD (standard deviation); Min, minimum; Max, maximum; BMI,
body mass index; ASM, appendicular skeletal muscle mass; BFM, body fat mass; RMS, root mean square.

Table 2. Participant demographics and results of body impedance analysis and surface electromyog-
raphy measurements by age group and sex.

Age Group 40s 50s 60s 70s

p-Value
between

Age
Groups

n 40 45 49 45
M

(n = 16)
W

(n = 24)
M

(n = 20)
W

(n = 25)
M

(n = 24)
W

(n = 25)
M

(n = 22)
W

(n = 23)

Age (years) 45.1 ± 2.6 54.1 ± 2.9 64.4 ± 3.0 74.1 ± 2.6 -
44.1 ± 2.7 45.7 ± 2.4 54.6 ± 3.0 53.7 ± 2.9 65.1 ± 2.6 63.6 ± 3.2 75.2 ± 2.7 73.0 ± 2.1

p-Value
between sexes NS NS NS 0.0043

Height (cm) 165.9 ± 7.8 164.1 ± 8.1 160.6 ± 9.1 161.0 ± 8.4 0.0093
173.1 ± 4.0 161.0 ± 5.5 171.4 ± 5.2 158.4 ± 4.5 167.5 ± 6.3 154.0 ± 5.7 166.6 ± 5.3 155.7 ± 7.5

p-Value
between sexes <0.0001 <0.0001 <0.0001 <0.0001

BMI (kg/m2)
24.2 ± 3.4 24.8 ± 3.4 25.2 ± 2.5 23.9 ± 2.6 NS

26.0 ± 3.0 23.0 ± 3.2 26.3 ± 2.3 23.6 ± 3.7 25.5 ± 2.2 24.9 ± 2.7 23.4 ± 2.8 24.5 ± 2.3
p-Value

between sexes 0.0053 0.0083 NS NS

Average step
length (cm)

64.4 ± 4.8 64.8 ± 5.6 62.0 ± 7.0 60.2 ± 8.3 0.0034
65.9 ± 4.2 63.4 ± 5.0 66.8 ± 6.0 63.3 ± 4.8 64.3 ± 7.3 59.7 ± 6.1 62.8 ± 8.4 57.8 ± 7.5

p-Value
between sexes NS 0.0343 0.0183 0.0412

ASM (kg/m2)
7.3 ± 1.1 7.3 ± 1.2 7.2 ± 1.1 6.9 ± 0.9 NS

8.4 ± 0.5 6.5 ± 0.6 8.4 ± 0.6 6.3 ± 0.6 8.0 ± 0.8 6.4 ± 0.7 7.5 ± 0.7 6.3 ± 0.5
p-Value

between sexes <0.0001 <0.0001 <0.0001 <0.0001

BFM (kg) 18.9 ± 6.4 19.3 ± 5.8 19.0 ± 5.4 18.4 ± 6.2 NS
19.2 ± 6.6 18.7 ± 6.4 18.9 ± 4.1 19.7 ± 6.8 18.0 ± 5.2 19.9 ± 5.4 15.6 ± 5.9 21.1 ± 5.3

p-Value
between sexes NS NS NS 0.0017

Average RMS:
knee flexion

(µV)

348.4 ± 165.1 334.2 ± 123.9 345.1 ± 112.4 260.2 ± 91.8 0.0024
409.6 ±

165.5
307.6 ±

155.0
356.0 ±

117.1
316.7 ±

128.8
386.6 ±

115.4
305.2 ±

95.6
310.7 ±

97.1
211.8 ±

53.3
p-Value

between sexes NS NS 0.0098 0.0001

Average RMS:
knee extension

(µV)

246.0 ± 99.8 265.2 ±105.4 227.9 ± 87.4 194.8 ± 98.9 0.0068
267.2 ±

112.0
231.9 ±

90.4
282.9 ±

103.8
251.1 ±

106.5
252.5 ±

102.9
204.3 ±

62.7
214.2 ±

120.1
176.3 ±

71.2
p-Value

between sexes NS NS NS NS

Data are presented as mean ± SD; 40s, age 40–49 years; 50s, age 50–59 years; 60s, age 60–69 years; 70s,
age 70–79 years; M, men; W, women; NS, not significant; BMI, body mass index; ASM, appendicular skele-
tal muscle mass; BFM, body fat mass; RMS, root mean square.
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Figure 1. The distributions of participant step length (A), height (B), RMS value at maximal knee
flexion (C), and RMS value at maximal knee extension (D) by age group (40s, age 40–49 years; 50s,
age 50–59 years; 60s, age 60–69 years; 70s, age 70–79 years). * p < 0.05, ** p < 0.01. ns, not significant;
RMS, root mean square.

There was a tendency for a decrease in height with increasing age among the groups.
The step length tended to decrease in the older age group. A tendency for a decrease in
RMS value with aging in both maximal knee flexion and extension was observed (Figure 1).
Other parameters, including sex, body mass index (BMI), ASM/(height, m)2, and BFM, did
not show any significant differences among the age groups.

Men were taller in all age groups. Although there was no significant difference in the
average step length based on sex in the 40s age group, men showed a longer average step
length in the other age groups. Whereas the ASM/(height, m)2 was higher in men across
all age groups, there was no difference in the BFM, except in the 70s age group. No sex
differences were found in the average RMS value at maximal knee extension across all age
groups. However, the average RMS value at maximal knee flexion was higher among men
in the 60s and 70s age groups (Table 2). Sex differences in the step length, height, average
RMS value at knee flexion, and BFM across all ages are shown in Table 3.

Table 3. Differences in the step length, height, and average RMS value at knee flexion between men
and women.

Men (n = 82) Women (n = 97) p-Value

Average step length (cm) 64.83 ± 1.52 61.09 ± 1.27 <0.001
Height (cm) 169.30 ± 1.29 157.26 ± 1.28 <0.001

average RMS: knee flexion (µV) 363.24 ± 27.67 286.62 ± 24.36 <0.001
BFM (kg) 17.79 ± 1.22 19.85 ± 1.21 NS

Data are presented as mean ± SD; RMS, root mean square; BFM, body fat mass; NS, not significant.
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Results of the simple linear regression analysis between the average step length and
the variables (age, height, BMI, ASM/(height, m)2, and RMS values) are shown in Figure S2.

Among the variables, height (p < 0.0001, R2 = 0.1282) and RMS value at maximal knee
flexion (p = 0.0001, R2 = 0.1632) showed the highest positive correlations with step length.
The average step length had a weak negative correlation with age (p = 0.007, R2 = 0.0672)
and BFM (p = 0.031, R2 = 0.0480), whereas the ASM/(height, m)2 (p = 0.0024, R2 = 0.0507)
and RMS value at maximal knee extension (p < 0.0001, R2 = 0.0854) had relatively low
positive correlations. BMI was not significantly correlated with step length. There was
a significant difference in the average step length by sex (men: 64.83 ± 6.91 cm, women:
61.07 ± 6.25 cm, p = 0.012).

Based on the results of the simple linear regression analysis, we assumed that height
and RMS value at maximal strength knee flexion were the major variables for estimating the
individual average step length. The developed step length estimation models are presented
in Table 4.

Table 4. The three-step length estimation models using age, height, BFM, and RMS value at maximal
strength knee flexion.

Model Variables R2 Adjusted R2 Cp AIC BIC Regression
Coefficient p-Value

RMS at maximal strength
knee flexion

0.244 0.235 7.28 642.18 644.14
0.018 <0.001

1 height 0.23 <0.001
(constant) 19.506 0.023

Age

0.198 0.185 3.26 654.80 657.02

−0.115 0.008
2 Height 0.238 <0.001

BFM −0.235 0.003
(constant) 35.435 <0.001

3 Age
0.158 0.148 4.43 661.61 663.66

−0.109 0.013
Height 0.251 <0.001

(constant) 28.444 0.005

RMS, root mean square; BFM, body fat mass; Cp, Mallows’ Cp; AIC, Akaike information criterion; BIC, Bayesian
information criterion.

Age, sex, height, BFM, ASM/(height, m)2, and RMS value at maximal knee flexion
and extension were selected as candidate variables for the multivariable regression analysis.
The first model was the best-fit model using all statistically significant variables (R2 = 0.244,
adjusted R2 = 0.235, p < 0.001). The RMS value at maximal knee flexion and height were
included in this model (p < 0.001). The second model revealed that age, height, and BFM
were significant variables for predicting the average step length (R2 = 0.198, adjusted
R2 = 0.185, p < 0.001). Finally, the third model that was intended to predict the step length
in the absence of sEMG and BIA showed that only age and height remained significant
(R2 = 0.158, adjusted R2 = 0.148, p < 0.001).

4. Discussion

In this study, we demonstrated that height, age, RMS value at maximal strength knee
flexion, and BFM are statistically significant factors that affect individual step length. The
discovery of the RMS value at maximal strength knee flexion and BFM as step length deter-
minants is meaningful because they are considered modifiable factors that may increase
step length. In other words, better knee flexor function and a lower BFM may help increase
individual step length.

Height, age, fat mass, and lower extremity muscle strength have been suggested
to affect individual gait performance and velocity [29–32]. However, the use of sEMG
parameters to predict individual step length has not been previously attempted. Our
results demonstrated that the sEMG RMS value of the biceps femoris at knee flexion with
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maximal strength and height had the greatest influence on step length (R2 = 0.244, adjusted
R2 = 0.235, p < 0.001).

As previous research has demonstrated the correlations between step length and step
frequency with lower limb muscle function [33], we intended to determine the correlations
between step length and the sEMG parameters during maximal strength knee joint flexion
and extension (Figure S2). Among the variables, step length, measured at individuals’
regular walking velocity, showed the highest correlation with the RMS value obtained from
the knee flexor during maximal flexion effort (R2 = 0.1632, p < 0.0001). These results were
plausible and consistent with previous reports, suggesting that knee flexion strength is an
important predictor of gait performance [34]. Consistent with this observation, Mañago
et al., discovered in their multivariable analysis that knee flexion strength remained a
significant variable for predicting gait speed, whereas knee extension did not [35]. They
explained that this phenomenon was possible because knee flexors are most active in
normal gait, and they may help prevent hyperextension in the standing position [35]. We
also observed that gait speed was highly correlated (positively) with step length (R2 = 0.686,
p < 0.001, Figure S3). Gait speed is known to be affected by lower extremity power [36].
Therefore, it is reasonable to assume that knee flexion strength is an important predictor of
step length.

sEMG is used to detect electrical signals generated by activated muscle fibers [37]. The
amplitude, time, and frequency domains of the sEMG signals are affected by the timing
and intensity of the muscle contraction [38]. The RMS value, calculated from the average
power of these signals, is used as a validated parameter from sEMG data in many types
of research [39–41]. Although the RMS value at maximal knee flexion strength tended to
positively correlate with measured strength, it did not show a very high correlation in our
study (R2 = 0.1549, p < 0.001, Figure S4). Whether there is a linear relationship between
muscle strength and sEMG signals remains unclear [42]. The sEMG signals may reflect the
electrical activity of the flexor or extensor muscles during voluntary contraction rather than
muscle strength, which involves more complex steps, including the electrical–contraction
coupling of muscles. Among the sEMG parameters, we used the RMS values because
they are widely used and reflect the intensity and duration of the sEMG signals during
muscle contraction [43]. Therefore, our results imply that sEMG, specifically the RMS value
at maximal strength knee flexion, can be a reliable functional marker for individual gait
performance, including step length.

BFM is also a reasonable predictor of step length. Studies have demonstrated that
BFM is negatively correlated with physical performance and balance, and limited lower
extremity performance and endurance in the elderly, indicating the detrimental effect of
high BFM on walking [44,45]. This is consistent with our results, which showed that a
shortened step length was associated with higher BFM.

Although a previous study suggested a sex difference in step length [46], and our data
also showed some differences, no significant difference was found in our models. The step
length was slightly longer in men than in women (men: 64.83 cm vs. women: 61.09 cm,
p < 0.001) in our data (Table 3). We assumed that the effect of sex was masked by height
(men: 169.30 cm vs. women: 157.22 cm, p < 0.001). The RMS values at knee flexion (men:
252.51 vs. women: 216.57, p < 0.001) and BFM (men: 17.79 vs. women: 19.85, p = 0.036)
variables were included in the final models.

Our comparison of the measured parameters between the age groups revealed that
RMS at maximal knee flexion abruptly decreased in the 70s age group, which may also
have effected the decreased step length in participants the age of 70. Moreover, the inter-
individual step length difference was the highest in the older age group (up to 13.7%).
Considering that individual step length may reflect the flexor muscle functional status, it is
presumable that strengthening flexor muscle function would be beneficial for improving
gait function, especially in the older population.

The beneficial effects of increasing step length on the health parameters, such as blood
pressure, exercise capacity, and quality of life, have been investigated in many previous
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studies [47]. Our results suggest the possibility that strengthening the thigh muscle, the
flexor muscles in particular, and reducing body fat mass may be helpful for increasing
step length.

Some limitations should be acknowledged. First, the R2 values found in our models
were relatively small, and the models were not aimed to measure ‘accurate step length’ for
each individual. However, the results are still sufficient to suggest that knee flexor function
and BFM may affect individual step length. We believe that further elaborated research,
such as joint angle measurements during the gait may advance our models [48]. Second,
sEMG data from the lower part of the leg (e.g., tibialis anterior and gastrocnemius) were not
included in this study. Third, this study included only the Korean population. Considering
the ethnic differences in body proportion (e.g., leg length and BMI), these models may
apply to other populations. However, considering the strong correlation between step
length and the consistency of our results with previous reports, we assume that the selected
variables in the models may remain significant factors for estimating step length. Lastly,
other methods such as DXA may better reflect more accurate skeletal muscle and fat mass,
although BIA and sEMG have their own merits in terms of cost-effectiveness (both BIA and
sEMG) and availability of measurement during actual function (sEMG).

5. Conclusions

This study revealed that the RMS value at maximal knee flexion strength, height, age,
and BFM are predictors of individual step length. Strengthening knee flexor function and
reducing BFM may help improve step length.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22155686/s1. Figure S1. The representative figures for
sEMG during the maximal effort knee flexion (A) and extension (B). Figure S2: Scatter plots and
results of the simple linear regression analysis between the average step length and variables: (A–G).
Figure S3: Linear regression between the average step length and gait velocity (R2 = 0.6860, p < 0.0001).
Figure S4: Linear regression between the maximal flexor strength and RMS at maximal knee flexion
(R2 = 0.1549, p < 0.0001).
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