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Abstract

In recent years Artificial Intelligence in the form of machine learning has been revolutionizing 

biology, biomedical sciences, and gene-based agricultural technology capabilities. Massive data 

generated in biological sciences by rapid and deep gene sequencing and protein or other 

molecular structure determination, on the one hand, requires data analysis capabilities using 

machine learning that are distinctly different from classical statistical methods; on the other, these 

large datasets are enabling the adoption of novel data-intensive machine learning algorithms for 

the solution of biological problems that until recently had relied on mechanistic model-based 

approaches that are computationally expensive. This review provides a bird’s eye view of the 

applications of machine learning in post-genomic biology. Attempt is also made to indicate as far 

as possible the areas of research that are poised to make further impacts in these areas, including 

the importance of explainable artificial intelligence (XAI) in human health. Further contributions 

of machine learning are expected to transform medicine, public health, agricultural technology, as 

well as to provide invaluable gene-based guidance for the management of complex environments 

in this age of global warming.

Graphical Abstract

Broad classification of machine learning methods and their well-known applications to 

postgenomic biology. Only a few selected example applications are listed. Emerging fields of 
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metagenomics and genomics-guided ecological engineering, not mentioned here, will increasingly 

see applications of machine learning in the future. Abbreviations: SOM, self-organized map; 

SVM, support vector machine; GBM, gradient boosting machine; ANN, artificial neural network; 

CNN, convolutional neural network.

1. Introduction

Since the advent of high speed computing and neural networks in the 1990s, artificial 

intelligence (AI) has found numerous inroads into genomics-inspired biological and medical 

sciences. A recent excitement in this field concerns the ab initio folding of a protein 

using deep learning, ushering a new era of computationally enabled molecular biology. 

In this review, we will briefly sketch the history of AI in genomics, followed by a more 

general review of various AI algorithms currently in use in molecular biology, genomics and 

medicine. Due to lack of expertise, the author will refrain from discussing the enormously 

successful applications of AI on biological and biomedical imaging. The impact of AI on 

biomedical applications that have not been directly influenced by genomics will also not be 

addressed in this review.

A few words of explanations are needed in the beginning. A genome is the collection of 

all gene sequences (in terms of, most frequently, DNA sequence, but sometimes also RNA 

sequence) of an organism. ‘Post-genomic’ refers to the world after the year 2000, when 

the entire human genome was sequenced twice over, and the new science of ‘genomics’—

the quantitative model instructed analysis of the effects of genes on organisms—was born. 

Genomics today encompasses problems and questions not just of those related to human 

beings but also of all organisms.

To the students of computer science AI and machine learning (ML) do not require 

definitions but for those readers who might be biologists or students of medicine we should 

emphasize a critical distinction between the two. AI is a general term that encapsulates 

the idea that algorithmic computation can analyze large datasets to determine multivariate 

relationships among data objects. ML on the other hand is a more specific discipline within 

AI that concerns itself to learning rules from previous data to predict future data. ML 

has two main approaches, unsupervised and supervised ML. The former is an approach to 

classify and/or cluster the data into distinct or overlapping groups based on similarities of 

patterns of variables within the data using arbitrary mathematical rules that are specified by 

a human operator. In the supervised approach, the data consist of a set of input variables 

and output variables (nominal or quantitative), where depending on the characteristics of the 

output variable it is a classification or regression problem. Supervised ML requires previous 

data and certain instances in which subsets of data points are preassigned to specific classes. 

The algorithm then trains an internal model; using the trained model, the algorithm predicts 

the assignment of new data to classes or predicts the values of the dependent variable 

given future data on the predictor variables. In general, this method iteratively refines the 

rules of classification or regression (see later). Deep learning is the special case of ML 

wherein neural networks of many layers are employed. A few example areas of application 
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of unsupervised and supervised ML in post-genomic biology are provided in Graphical 

Abstract.

In this brief review, we will define for the lay person the fundamental concepts of 

machine learning, their applications to a few well-defined biological problems that had been 

intractable until ML methods were applied, describe the biological basis of personalized 

medicine, and highlight those specific areas in post-genomic biomedical sciences where ML 

are likely to impact in the future. The importance of “explainable artificial intelligence” 

for post-genomic biology will be emphasized. This review is primarily directed at students—

not to present an exhaustive overview of the current literature but to attract their attention 

to future challenges in the biomedical sciences where ML should play an increasingly 

dominant role. For a health and biomedical discipline-specific review of ML applications, 

the reader is referred to an excellent recent review (Williams et al. 2018).

2. The need for ML in post-genomic biology

The paradigm of biology is that genes store information in an array (or arrays) of base pairs 

of nucleic acids (DNA or RNA), which are then “expressed” in terms of mRNA or protein 

sequences. Proteins (and sometimes RNA) embody the information in terms of their three 

dimensional structures. Structure determines the physical interaction of proteins with other 

proteins, RNA, DNA, or other molecules, such as small molecule chemicals (also called 

metabolites) as well as drugs or drug-like molecules and pathogenic organisms.

Insofar as basic biology is concerned, ML has been successfully applied to predicting the 

boundaries of genes and non-genic regions on seemingly monotonous tracks of DNA (or 

RNA) base sequences of the genome, to classify or group genes into families of related 

genes by dint of numerous properties, to assign function to novel genes, to classify and 

assign structural and functional domains to regions of RNA and protein sequences by 

similarities and physical properties, to predict interaction partners of proteins (in terms of 

other proteins or other molecules such as DNA or RNA or small molecules) (Fig. 1). ML has 

also been relatively successful in enabling numerous technological feats needed for genome 

centered biology, such as the assembly of complex genomes with many repeated sequences 

from long and short reads of DNA sequences, including de novo genome assemblies, ab 
initio protein folding prediction, and the prediction of interaction partners of proteins or 

other macromolecules. Emerging areas of application where ML will increasingly play 

important role are the elucidation of complex gene regulatory networks, the behavior of 

such networks under changing conditions, the prediction of disease phenotypes (intensity, 

onset time, and/or prognostic profile) of patients given their genetic profiles, and population 

level complex phenotypic prediction among communities of organisms (see additional recent 

reviews on these subjects: (Huang et al. 2018; Williams et al. 2018; Hessler and Baringhaus 

2018; Dey et al. 2019)). For deeper insights into the biological principles that drive these 

applications, the reader is referred to (Raval, Alpan and Ray, Animesh 2013).
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3. Machine Learning in Personalized Medicine

Humans have traveled the earth for the past ~250,000 years in waves of migration followed 

by geographical isolation and subsequent admixture of gene pools. Mutations spontaneously 

arise a frequency of ~10−9–10−8 per DNA nucleotide base per generation, as a result of 

which the haploid human genomic sequences of 3 × 109 base pairs suffer on average ~1 

mutation per generation, producing ~2 mutations per diploid individual. 6 billion humans 

currently inhabiting the earth therefore has about 12 × 109 new mutations in this generation 

alone. Since one can estimate at least 5,000–10,000 generations since the speciation of 

modern man, with an estimated cumulative total 1.17 × 1011 humans born on the earth, there 

have been the opportunity for ~2 × 1015 spontaneous DNA mutations. Many such mutations 

however were lethal or selectively disadvantageous, therefore were selected out; most were 

likely neutral and could have been lost due to genetic drift. Some would be extinguished 

naturally because the bearers of such mutations did not pass them on. Nonetheless, 

numerous genetic variants due to past mutational events are expected to occur in human 

populations; indeed, at the time of writing the database of single nucleotide variants (dbSNP: 

https://www.ncbi.nlm.nih.gov/snp/) for humans reports >9 × 108 unique variants. Many 

of the rarer variants are known to be associated with defined human disorders because 

of their large phenotypic effects, and some of these variants have disproportionately high 

representation in the current human gene pools (Keinan and Clark 2012). However, most 

have no or mild effects on human biology but it is thought that in combination these multiple 

variants, each with mild effect, may explain individual variations to disease propensity 

(Matullo et al. 2013). The effort to decipher individual patient’s disease susceptibility 

or response to treatment on the basis of DNA sequence variations is known as personal 

genomics (Rehm 2017) (Fig. 2). Since the advent of low-cost DNA sequencing, personal 

genomics has become a reality for the treatment of certain diseases such as cancer, where 

increasingly individualized treatments are designed by teams of physicians and scientists 

guided by DNA sequencing of tumor and healthy cells of the patients. The challenge is 

to decipher the matrix of gene-variant x disease-condition for an individual (the relations 

among input variables) and then to map the matrix to a course of treatment optimized to 

reduce disease outcomes—a large nonlinear optimization problem that takes incomplete 

and noisy input variables and their relations to produce a “fuzzy” output variable that 

tries to capture the treatment parameters. The problem is also difficult because historical 

population structures (e.g., population bottlenecks, migration) and natural selection leaves 

signatures in the genome in terms of the distortion of the frequencies of gene variations 

from those estimable from equilibrium populations structures. These signatures are difficult 

to distinguish from those based on association with diseases, as one relevant objective.

The science of personal genomics is in its infancy and is mostly at the stage of research 

except in rare special cases, because of incomplete knowledge and understanding as well as 

computational challenges of very large datasets with high noise (Dudley and Karczewski 

2013). Machine learning, especially deep learning, is thought to be ideally suited to 

accelerate the pace of progress in this field. And yet the field can make impact only if there 

is sufficient attention placed on “understanding” how the inputs and the outputs are causally 

related, which is often ignored in “black-box” paradigms of conventional machine-learning.
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4. Two principles of Machine Learning: Regression and Classification

In classical statistics, one is generally trying to determine as accurately as possible what the 

output variables are when given a specific model (or a function) and a set of observable data 

providing the values of input variables. In brief,

y f x

Where the function f( ) and the input variable or observation x are given, and one is asked to 

compute y or map x to y.

In ML the problem is reversed. Given a set of input observations or data dobs and a set of 

discriminatory variables v, the task is to infer a function or a model M( ), such that,

M v dobs

In this latter problem, the model M( ) or the mapping function, which is a mathematical 

abstraction or a logical relationship, is unknown, and therefore it needs to be inferred—this 

activity is termed ‘model selection’. Moreover, the set of discriminatory variables v also 

needs to be defined from a subset of the real number space—this latter task is called ‘feature 

selection’. The process of model inference is made more and more accurate, while avoiding 

model overfitting, through training or learning from a subset (the training set) of dobs. The 

trained model is then validated on another subset of dobs which were not used in training 

(the test set), to assess the sensitivity and the specificity of the fit and to estimate the extent 

of model overfitting. The model is then ready for applying to additional data that might not 

have existed before. Note that the model can be iteratively made more and more accurate as 

new observations are made.

It might be obvious to the insightful reader that what we have described above is 

a regression problem. In classical regression, a function is deduced using a chosen 

mathematical model (e.g., the principle of least square) to estimate the best parameters 

that fit the observed data. The concept holds for high-dimensional and nonlinear regression 

models too. All ML algorithms are fundamentally regression algorithms. Whereas in 

classical regression the specific algorithm is deliberately defined prior to parameter 

estimation, in ML the regression algorithm is not explicitly defined. Regression takes as 

input the variables in the real number space and produces outputs that are also in the real 

number space. This holds true for both continuous and discrete or categorical variables, as in 

logistic regression, where discrete variables are converted to continuous probabilities over a 

particular probability distribution.

Imagine, on the other hand, that the output variables are discrete. In this case the model M( ) 

is no longer a conventional regression model, but is a “classification” model. In other words, 

an ML classifier is a model that allows the partitioning of the observed data into two or 

more classes or groups, providing a grouping of the data with associated probability values 

for such a grouping. As a special case, however, a regression model can be constrained to 
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become a classification model in which the outputs are binned into discrete classes. Thus, all 

ML models can be thought of as regression models with or without constraints.

One of the most important problems in ML is the choice of the features or input 

variables (Guyon and Elisseeff 2003). A judicious selection of features vectors, and 

in many cases the engineering of feature vectors from high dimensional datasets, is 

considered fundamental to a successful model building. Feature selection has three main 

objectives: improving the performance of the predictor variables, providing faster and 

more cost-effective predictors from the large datasets, and providing a better understanding 

of the underlying process that generated the data (also a goal of “explainable AI”). 

Unlike in many data engineering applications, however, feature selection (such as choosing 

the important predictor variables and eliminating the noisy ones) rather than “feature 

engineering” has so far played a more important role in genomics because feature vectors 

are generally selected on the basis of prevailing biological or physical knowledge-base of 

the analysts. Feature engineering, such as vectors obtained from dimensionality reduction 

of input variables, or a nonlinear combination of multiple input variables, have generally 

been avoided in genomics applications because of difficulties with interpretability. Thus, 

interpretability takes precedence over the accuracy of prediction in genomics applications. 

Nonetheless, feature engineering, coupled with efforts to explain the variables, are likely to 

be increasingly important in future genomics research.

5. Unsupervised Machine Learning

Unsupervised ML (Graphical Abstract) is the class of ML classification methods that does 

not require previous examples of the classes, but constitute methods for exploring the data 

for the presence of similar groups of variables. Frequently used methods for data exploration 

to probe the presence of regularity or patterns in the data, such as Principal Component 

Analysis, will not be discussed here because these are not strictly ML methods. Some 

of the earliest uses of ML in biological research was in the form of unsupervised neural 

network and various clustering methods in grouping genes on the basis of similarities 

in their respective mRNA expression levels under different experimental or physiological 

conditions, when such highly parallel experimental measurements became feasible genome-

wide for the first time in the late 1990s. An early example is the application of Self 

Organized Map or SOM (Kohonen 1990) to classify large groups of genes by similarities of 

their expression patterns (Tamayo et al. 1999). The concept of SOM is interesting not only 

because of its historical importance in early post-genomic biology, it also helps succinctly 

illustrate the principles of unsupervised ML.

5.1 SOM

Here the specific biological problem to be solved is as follows. Large groups of genes (about 

a thousand in a bacterium, about five to ten thousand in a fungus, about 15–20 thousand 

in insects or other invertebrates, about 22,000 in human and related apes, and over 30,000 

in some plants) make messenger RNA (mRNA), which encode proteins, in response to 

different conditions that might change over time. The expression changes are changes in the 

amount or concentration (commonly referred to as ‘levels’ or ‘expression levels’) and values 
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are in the real number space. For a biologist, it is important to be able to identify groups 

of genes whose expression level changes vary together or are correlated in some ways. As 

always in biology, in the absence of direct observation we make a simplifying hypothesis—

here the hypothesis is that similarities in mRNA expression level changes are related to 

similarities in gene function—which may or may not be true. But the first objective is to 

classify groups of genes by similarities or differences in their expression level changes.

In SOM, we specify the number of clusters or groups arbitrarily (which is then varied for 

consistency), and also specify a topology—a 2-dimensional grid that provides a geometric 

relationship among the clusters (Tamayo et al. 1999). The algorithm learns from the data 

and finds the transformation rules that measures the optimal distances among the clusters—

which clusters are near of far from one another. The SOM algorithm then learns a mapping 

function from the high dimensional space of the data points into the 2-dimensional grid. 

There is one point for each cluster on the grid (Fig. 3). Suppose we have a m × n grid 

with each grid point associated with a cluster of gene expression changes of means, μ1,1 … 

μm,n. The SOM algorithm moves the cluster means around the high dimensions maintaining 

the topology specified by the 2-dimensional grid, and a data point is incorporated into the 

cluster with the closest mean. This process leads to the effect that nearby data points (i.e., 
genes with similar gene expression change values) tend to map to nearby grid points or 

clusters. While this is a rather geometrically visual way to classify datapoints, it is unclear 

what topologies in gene expression changes is an ideal descriptor of the biological reality—

why a 2-dimensional grid and not a 3-dimensional grid? Moreover, the number of specified 

clusters must be specified arbitrarily, often determined by the analyst’s intuition, which 

injects a degree of subjectivity into model evaluation. Moreover, the time complexity of 

SOM does not scale well: T = O(S2), where T is the computational time and S is the size of 

the sample (Roussinov and Chen 1998). Direct head-to-head comparison was held between a 

SOM classifier and a Support Vector Machine classifier (see later) in distinguishing between 

small molecules that are either inhibitors or decoys of a human signal-transduction receptor 

important in cancer (Epidermal Growth Factor Receptor or EGFR) using the same feature 

vectors (Kong et al. 2016). These results showed that the two classifiers performed nearly 

equally well, though SOM was surpassed slightly in prediction accuracy. Recently, SOM has 

been incorporated within deep learning algorithms for teaching human emotions to robots 

(Churamani et al. 2017); its applications to discovering intrinsic patterns within massive 

post-genomic data sets, and to imaging of single cell phenotypes during drug-screening, 

remain under-explored. This latter aspect of SOM will be examined in a section on Deep 

Learning.

5.2 Clustering

More frequently, standard methods of classification in genomics style of data analysis have 

been the K-means clustering and hierarchical clustering. In K-means clustering begins with 

an arbitrary number of k clusters, chosen intuitively; the algorithm then randomly assigns 

the data points to the clusters, calculates a centroid for each of the k clusters, calculates the 

distance (using a specified distance metric) of each data point to the k centroids followed by 

reassigning the data points to the closest centroid. The process is continued iteratively until 
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cluster assignments are stable. Finally, each data point is assigned to a unique cluster such 

that no two clusters have the same gene.

In hierarchical clustering (Fig. 4A), a similarity metric is computed for the objects to 

be clustered (here, say, the log-transformed expression level change of a gene G under 

condition i,Gi). For each gene A and B, observed over a series of n conditions, a similarity 

score is: S A, B = 1
n ∑i = 1, 2, 3 . . n (

Ai − A−

ΦA
)

Bi − B−

ΦB
, for mean observations on the genes, A

and B,

where ΦG = ∑
i = 1, 2, 3 . . n

(
(Gi − G−)2

ΦG
)

The hierarchical clustering algorithm computes a dendrogram that assembles all elements 

into a single tree. For any set of N genes, an upper-diagonal similarity matrix is computed 

by using the metric described above, which contains similarity scores for all pairs of genes. 

The matrix is then examined to choose the highest value, which represents the most similar 

pair of genes by the similarity score. An edge is applied between these two genes (or 

vertices), and a gene expression profile is computed for the vertex by averaging observation 

for the joined elements, the two joined elements being weighted by the number of genes 

they contain. The similarity matrix is updated with this new vertex replacing the two joined 

elements, and the process is repeated (N– 1) times until only a single element remains. Here 

also each object (here, gene) is assigned a unique cluster membership.

Both hierarchical and K-means clustering are the most widely used clustering method in 

genomics related biology because the outputs of these algorithms are intuitive groupings of 

the genes into subclasses that can be further analyzed for additional properties. Model based 

approaches to systematically choose cluster size is now routine, adopting, for example, 

the model and the number of clusters with the largest Bayesian Information Criteria or 

BIC = kln n − 2ln L , where k is the number of parameters estimated by the model M, 

L = p x θ, M , is the maximized value of the likelihood function of the model, θ are the 

parameter values that maximize the likelihood function, x is the observed data and n is 

the number of observations (i.e., the sample size). A limitation here is that BIC cannot 

handle a complex collection of models, as in variable selection or feature selection in high 

dimensions (Schwarz 1978).

5.3 Fuzzy Clustering

Since genes or other biological objects, such as proteins or regulatory RNAs have multiple 

functions, it is often the case that classification of these objects into unique clusters are 

inadequate to capture the full extent of their biological properties. This is particularly 

important in datasets on molecules that interact among one another, such that a biologist 

wishes to infer an unknown function of a biological molecule by inferring from the functions 

of other members of its clustered group—inference through “guilt-by-association”. As an 

example, 207 out 1628 proteins in a model organism (the baker’s yeast, Saccharomyces 
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cerevisiae) that were hand curated into specific molecular complexes, based on actual 

experimental observations, belonged to multiple molecular complexes. This is likely to 

be an underestimation. Experimental elucidation of protein function through determining 

molecular complexes is an expensive and time-consuming process. Therefore biologists have 

devised methods for determining pair-wise interaction partners of proteins. From graph 

models of such pairwise interaction, it should be possible to infer the best partitioning of 

groups of proteins through the clustering algorithm. However, clustering algorithms that 

classify each protein into unique clusters would miss many interesting properties. Therefore, 

so-called fuzzy clustering algorithms have been developed, which allows clustering of 

objects into multiple clusters simultaneously (Wu et al. 2014) (Fig. 4B-C). An interesting 

graph-based clustering algorithm, Clustering with Overlapping Neighborhood Expansion or 

ClusterONE (Nepusz et al. 2012), avoids this problem of non-overlapping clusters without 

having to impose arbitrary thresholds, and can also handle weighted edges.

ClusterONE starts with a single node (a gene or a protein), and uses a “cohesiveness” 

measure to estimate how likely is a group of nodes to form a cluster, V. For each 

vertex, f V = win V
win V + wbound V + p V

, where win(V) is the total weight of edges contained 

entirely by a group of proteins V, wbound(V) is the total weight of edge that connects the 

group with the rest of the network. The penalty factor p|V| models the uncertainty in the data 

and assumes undiscovered interactions in the network. The cohesiveness of protein i that is 

added to a node is then calculated as: f V t ∪ i =
win V t + wiin

win V t + wout V t + wiout + p V t + 1
.

The runtime of the ClusterONE algorithm depends on the exact structure of the network 

it is trying to cluster. While there might be artificially constructed graphs that could make 

ClusterONE run slowly, these graphs will most likely not be a representative of ‘real’ world 

datasets that the algorithm will be confronted with.

5.4 Network or graph-based clustering

Increasingly in modern biology there is a need to classify important communities of objects 

and their relations within large datasets of molecular interaction, such as the protein-protein 

interaction dataset described above, which are best represented by graphs or networks 

(Raval, Alpan and Ray, Animesh 2013; Charitou et al. 2016). For most standard clustering 

algorithms, such as K-means or hierarchical clustering, an underlying assumption is that the 

data (such as connectivity or distance relations) are from univariate Gaussian distributions, 

which is often not the case in most biological interaction networks (which generally follow a 

power-law distribution of their edge frequencies). Other more realistic methods of clustering 

are therefore needed. High-dimensional data can be simplified through graph representation 

that reduces the dimensionality using one of several algorithms first described as the 

“isometric feature mapping” or “Isomap” (Tenenbaum et al. 2000). In Isomap, a manifold, 

M, is chosen and the first step determines which datapoints are the nearest neighbors 

of M as measured by distances, di,j between pairs of points (i, j) in the input space X. 
These distances are represented as a weighted graph G over the data points, with edge 

weights dX(i, j) between each pair of neighboring points. In the second step, the algorithm 
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estimates the geodesic distances dM(i, j) between all pairs of points on the manifold M by 

computing their shortest path distances dG(i, j) in the graph G(V,E), were V and E are the 

nodes (vertices) and weighted edges (respectively). In the final step, classical dimensionality 

reduction is applied to the matrix of graph distances DG = {dG(i, j)}, thus constructing 

an embedding of the data in a d-dimensional Euclidean space Y that best preserves the 

manifold’s estimated intrinsic geometry. This last step minimizes a cost function that is the 

l2 norm of the difference between the inner product of the matrix of graph distances DG and 

that of the matrix of the embedded distances in Y (DY = {dY(i, j)}). The global minimum of 

this cost function is then obtained (Tenenbaum et al. 2000).

Graph based data clustering is frequently applied to genomic level association data (Liu and 

Barahona 2020). In a recent example, immediately upon the recognition of SARS-CoV-2 

as the causative agent behind COVID-19 pandemic, the collection of human proteins that 

physically interact with 29 proteins encoded by the virus were rapidly determined and the 

ensuing interaction data were represented as clustered networks of multipartite interactions 

among virus-encoded and host proteins, and drug-like chemical agents that are already 

known to interact with the human proteins in an effort to discover drugs to ward off acute 

virus effects (Gordon et al. 2020). This work, though so far unsuccessful in identifying 

an effective drug against COVID-19, enabled rapid progress in identifying the molecular 

processes unleashed by the virus in the host, and subsequently an equally rapid progress 

in managing the clinical manifestations of severe COVID-19 infections (e.g., (Laing et al. 

2020)). This instance exemplifies the need for efficient algorithms that can cluster objects on 

complex interaction networks.

A suite of algorithms well designed for clustering complex networks, as opposed to non-

network data points, has been described (Aldecoa and Marín 2010, 2013). Within this 

suite, UVCluster is quite useful. However, its runtime does not scale well with size of 

nodes (O(n3)) (Aldecoa and Marín 2010). It is therefore important to find more efficient 

network clustering algorithms for the analysis of complex biological interaction datasets at 

the genomic scale.

A head-to-head performance comparison of a number of clustering methods ranging from 

K-means and hierarchical clustering to several graph-based clustering approaches indicated 

that the graph based methods (Zhang et al. 2005) outperform other clustering algorithms 

in biological (genomics) type of classification tasks (Jay et al. 2012). Nonetheless, graph 

based clustering algorithms including those that produce “fuzzy clusters” (i.e., data points, 

genes or proteins that are included in more than one cluster) have not been in wide use 

in current biological research mainly because of prevailing traditions in which biologists 

favor an unambiguous and unique assignment for a gene or protein into a cluster. In this 

direction several recent publications make important algorithmic contributions (Zhao and 

Sayed 2015; Altilio et al. 2019), and students of computational biology will do well to 

find their applications into biological problems. Increased future use of “fuzzy clusters” 

should therefore be encouraged, which might lead to novel and more realistic insights into 

post-genomic biology questions, for example is examining the community structures of 

microbial associations in the human gut for human health (Schmidt et al. 2018) or in the 
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root-soil system of plants for a better management of global greenhouse gases (Philippot et 

al. 2013).

5.5 Decision Trees and Rule Mining

Decision trees are popular ML algorithms pioneered by Leo Brieman, Jerry Friedman and 

others are simple to understand and relatively easy to implement (Song and Lu 2015). The 

rational is to partition the data into every possible “cuts” and at each partition compute the 

residual error or the Gini coefficient or mutual entropy (Fig. 4D). This step is recursively 

repeated until the optimum partition that causes the maximum reduction in the residual error 

(or the Gini or mutual entropy) is obtained. Decision trees have the advantage of being 

fast as well as intuitive. However, unlike in regression analysis where the decision plane is 

smooth (but could be less accurate), in decision trees the decision plane is often complex 

and therefore introduces an increased propensity for model over-fitting. Therefore, decision 

trees with the simplest tree structure that causes the largest gain in residual error (or Gini or 

mutual entropy) reduction are favored over more complex decision trees.

Decision trees intuitively lend to the discovery of logical relationships within the data (Chen 

et al. 2011). Relational logic allows us to express complex data in meaningful ways. This is 

particularly important for genomics data, where high-dimensional data with deep structures 

are often presented to the investigator (Fürnkranz and Kliegr 2015). An important goal 

of unsupervised ML is to discover relational logical rules or rules of association that are 

embedded in the data. For example, an “if-then” (X ⟹ Z or, more generally, (X ∩ Y) 

⟹ Z) type of association rule in static data are important for inferring important biological 

processes. This can be translated to a biologically meaningful statement such as, “if two 

genes are co-expressed in a statistically significant number of different conditions than 

expected by chance, then the two genes are coregulated” (Fig. 5).

Yet another direct relevance to personal genomics could be a Boolean association rule of the 

type (A∨B∨C) ∧(¬D∨ ¬E ∨ ¬ F) etc. ⟹ p (Z), in which A–F represent genes with certain 

variant sequences, and p (Z) is the probability of, say, a disease outcome. A logical rule such 

as this could be a case of 3CNF-SAT (as framed here), or an even more important one if 

time-series data are available, such that a “causal inference” rule of the type, [RNA of gene 

X] ⟹ time-delay [RNA of gene Y] can be discovered from the data (see later).

To discover the rule X ⟹ Z, one needs two pieces of information: the support, 

defined by freq X, Z
N , and the confidence, defined by freq X, Z

freq X . The challenge is because 

the association rules are “fuzzy” or probabilistic, and scalability of the rule extraction 

algorithms is an important issue due to data complexity. The process is first reduced to the 

construction of a search tree listing all possible ‘frequent’ fuzzy events. Such trees are then 

searched for fuzzy association rules by either breadth-first (first constructed by Agarwal 

and Srikanth, see (Toivonen 2010)) or depth-first (Zaki 2000) searches on a decision tree 

and then computing the individual frequencies. Genetic algorithms have been used for 

faster and parallel implementation of the search and pruning steps (Alcala-Fdez et al. 

2011). Parallel discovery of multiple association rules have been successfully extracted from 

genomic DNA and protein sequences (Agapito et al., 2019; Guzzi et al., 2012), and the 
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techniques have been applied to discover gene-expression rules related to cancer outcomes 

in patients (Ma and Huang 2009). Extraction of association rules from time-series data on 

genome-scale gene expression experiments (Segura-Delgado et al. 2020) will be described 

in the section on ‘explainable AI’. A yet another approach to association rule discovery 

in an unknown species of organism by using the information of evolutionary conserved 

gene/protein sequences from another organism, in which more knowledge on association 

rules exists, using linear regression to penalize for dissimilarities in sequences (Lam et al. 

2016) (Fig. 5).

6. Supervised Machine Learning

Simply put, supervised ML requires prior examples upon which the machine is trained to 

make future predictions (Graphical Abstract). Supervised ML can be either a classifier, as 

are unsupervised MLs, or regression models, which provides a real number value associated 

with a predicted class. Before discussing the essential properties of a few supervised ML 

methods, let us motivate the discussion in the context of genome level biology with a rather 

fundamental biological problem.

Once a genome is sequenced, how does one find the boundaries of a gene within the 

monotonic strings of A, T, G and C on the genome? The formal start of a gene is that 

DNA base where RNA synthesis (or transcription) begins (Fig. 1). Whereas there are some 

commonalities in the sequence motifs near the transcription start sites, for many genes there 

is no obvious pattern. Beyond this point, there is a protein coding sequence that starts at 

a sequence of 5’ATG3’; as there are overwhelming instances of this sequence that are not 

the start codon, which ATG is the start codon? In eukaryotic organisms there are introns 

(strings within a gene that are not protein-coding), each of which is followed by another 

string of exon (i.e., the protein-coding Open Reading Frame or ORF) where the reading 

frame is re-initiated. Once the actual ORF is identified it is generally trivial to find the stop 

codon; however, RNA synthesis does not stop there but continues beyond the stop codon 

for some distance. Where does RNA synthesis terminate? There are many experimentally 

determined instances of each of these landmarks for many genes, but such annotation of 

genic landmarks is incomplete. When the genome of a previously un-sequenced organism is 

first sequenced, there is a need to computationally predict all its encoded genic boundaries. 

One of the first successful methods for gene boundary prediction (see (Brent 2005) for 

a review of the history of gene prediction) did not use ML, but used the Generalized 

Hidden Markov Model in its GENESCAN implementation (Burge and Karlin 1997). While 

GENSCAN was a timely and effective tool in the early days of whole genome sequencing, 

from which this writer had greatly benefitted at the time, it is only about 35% accurate. 

By contrast, a gene boundary prediction algorithm that adopted the Support Vector Machine 

(SVM) classifier, a supervised ML method, achieved ~50% predictive accuracy (Gross et al. 

2007).

6.1 SVM

SVM is a standard tool in classification or regression (Vladimir N. Vapnik 1998) of input 

data, which consists of mapping the nonlinear input data to a high-dimensional space in 

Ray Page 12

Wiley Interdiscip Rev Data Min Knowl Discov. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an attempt to find a linear hyperplane in the high-dimensional space that will classify the 

inputs, such that a maximal separating hyperplane is constructed (Wang 2005) (Fig. 6). Two 

parallel hyperplanes are constructed on each side of the hyperplane that separates the data. 

The separating hyperplane is the hyperplane that maximizes the distance between the two 

parallel hyperplanes. To do this, an input feature vector x is mapped to a high-dimensional 

feature vector, z = ϕ (x). The high-dimensional feature space is an inner product space, 

called a Reproducing Kernel Hilbert Space. The aim is then to find a hyperplane, w . z 
+ b = 0, such that the distance between the hyperplane and the closest training examples 

is maximal (Fig. 3). Assigning class labels y = +1 or −1 to positive and negative training 

samples, respectively, w b are rescaled by requiring that the closest training sample (with 

feature vector, say, z' and class label y' ) is such that y'(w.z' + b) = 1. With this condition, the 

square of the distance between the closest training example and the hyperplane is < w, w>−1, 

where <, > is the inner product on the Reproducing Kernel Hilbert Space. By requiring that 

this distance is maximal, the problem can be solved as a standard dual optimization problem 

by quadratic programming (Cristianini and Shawe-Taylor 2000). An interesting property of 

SVM is that it simultaneously minimizes the empirical classification error and maximizes 

the geometric margin, and therefore performs well on noisy data. However, a limitation of 

SVM is the choice of the kernel function, because the choice of the kernel function that best 

classifies a given problem is an open question.

Numerous important classification problems in genomics in addition to gene prediction has 

been successful with SVM. Among these are miRNA target prediction (Kim et al. 2006; 

Yang et al. 2008), prediction and distinguishing long non-coding RNA (lncRNA) from 

protein-coding genes (Sun et al. 2015; Schneider et al. 2017), prediction of gene-gene 

interaction phenotype from protein-protein interaction network (Paladugu et al. 2008), 

improving and augmenting protein-protein interaction between virus encoded proteins and 

host proteins (Cui et al. 2012), and the prediction of protein function by kernel based 

integration of heterogeneous data (Brown et al. 2000; Pavlidis et al. 2002; Cui et al. 2012). 

In another challenging problem in biology—the prediction of protein folding—SVM has 

been used to classify the interface structures of pairs of interacting proteins, which helps 

in predicting the important amino acid residues in such interactions (Daberdaku and Ferrari 

2018, 2019).

The inference of gene regulatory networks from complex genomic sequences with limited 

experimental data and high levels of uncertainty constitutes one of the two most challenging 

problems in genomics today, and SVM has been used to this end with a relatively high 

degree of success (Mordelet and Vert 2008; Ni et al. 2016). Metagenomics, the field of 

inferring communities of microbes, their properties and communal interactions through 

genomic DNA sequences of microbial samples taken from the population without a detailed 

knowledge of the constituent microbes is a challenging area of increasing significance 

in human health, plant-soil management in agriculture, and environmental remediation. 

SVM has impacted this area by enabling better de novo assembly of metagenomes from 

random short DNA sequences of largely unknown microbial organisms obtained from 

complex environmental samples (Liu et al. 2013; Zhu et al. 2014). The problem here was 

the assignment of pairs of partially overlapping unknown DNA sequences uniquely to a 
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continuous genome, and thus to assign an identity to the DNA fragments in terms of their 

source organism within the complex sample.

6.2 Lasso and Ridge Regression

Whereas SVM has been an extremely popular ML method for the classification of complex 

biological information, by any means it has not been the only one. Other classification as 

well as regression models are increasingly being used. Generalized regression models with ℓ1 

Regularization (the Least absolute shrinkage and selection operator or Lasso Regression) has 

been used with relatively encouraging results in generating gene regulatory networks from 

multiple gene expression profile data including time-course expression profiles (Omranian 

et al. 2016; Nguyen and Braun 2018; Ghosh Roy et al. 2020). Lasso regression estimates 

the regression coefficients through an ℓ1-norm penalized least-squares criterion. This is 

equivalent to minimizing the sums of squares of residuals plus an ℓ1 penalty on the 

regression coefficients.

A fused ℓ2 regression model (Ridge Regression) that learns gene a regulatory network 

dynamics from simulated regulatory proteins that bind to regulatory elements on the DNA, 

also performed well (Lam et al. 2016). In this latter method, the response variables 

must be solved simultaneously through vectorization if there is any chain of linked 

response variables connecting them, which quickly becomes computationally intractable 

for networks with large number of genes. However, to avoid this problem, depth-first 

search was used to identify linked columns of each transcription factor’s gene expression 

matrix which was then used to design and form response matrices through vectorization, 

thus segmenting the network into smaller subsets requiring fewer simultaneous equations 

to be solved. This method worked relatively well for prokaryotic microbes by enabling 

the assignment of transcription factor binding sequences to downstream regulated genes 

(Lam et al. 2016). A recent study explored the performance of Ridge Regression for 

discovering eukaryotic gene regulatory networks having significantly higher densities of 

linked variables, and successfully reported the assignment of nucleosome positioning 

patterns (the arrays of DNA-bound proteins that control local transcriptional dynamics on 

the eukaryotic chromosomes) to transcription factor function (Maehara and Ohkawa 2016).

6.3 Elastic Net for gene-phenotype association discovery

Genome wide association studies (GWAS) are of fundamental importance for identifying 

genetic variations as determinants of complex traits (traits that are determined by multiple 

genetic factors), such as human diseases or the food yield or the resistance to pests or 

pathogens by an agricultural crop, from sampling large populations (McCarthy et al. 2008). 

Personalized genomics critically depends on this goal. Questions in this field is of the 

following type: does this or that variant found for a DNA nucleotide sequence increases or 

decreases the susceptibility of the carrier person to a disease?

In these studies a very large number (millions) of genetic variants (typically, single 

nucleotide polymorphisms or SNPs) are monitored in thousands to tens of thousands of 

individuals. The significance of statistical association of each SNP variant with a binary 

property (e.g., the presence or absence of a disease) or a quantitative property (a value in the 
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real number space, such as blood pressure or the age of onset of a disease) is computed for 

the test population relative to that of a control population (e.g., no disease). Unfortunately 

the procedure suffers from large-n/small-p problem: type I statistical error, or very high 

false positive rates. As a result, the significance p value is corrected for multiple hypothesis 

testing or false discovery rates under the assumption of independent segregation of each 

SNP variant in the population. This results into the opposite problem: type II error or very 

high false negative rates. This is because SNPs are often linked or there is selection for 

certain variants in the population, which leads to violation of the assumption of independent 

probabilities central to the correction methods, and due to the high dimensionality of the 

variables. As an alternative to this standard GWAS analysis, multiple regression models, 

specifically, Logistic (Patron et al. 2019), Lasso and Elastic Net (Waldmann et al. 2013) 

regressions, respectively, were used to identify SNP variants of interest. The idea is simple: 

Consider a multiple linear regression model, y = β0 + bX + e, where y is the predicted or 

response variable (e.g., blood pressure or the age of disease onset), X is the n × m matrix of 

predictor variables (e.g., n genetic loci with m variants of each with categorical values of −1, 

0, +1, for homozygosity of the major allele, heterozygosity or homozygosity for one minor 

allele, respectively, at the corresponding locus), β0 is the intercept, b is a column vector that 

contains the regression coefficients (β1, β2 … βn), and e is the vector of the corresponding 

error terms with a normal distribution. The Elastic Net (EN) model (Zou and Hastie 2005) of 

regression is based on a compromise between the ℓ1 norm regularized Lasso penalty and the 

ℓ2 norm regularized Ridge penalty functions, respectively:

βo, β = argmin ∑
i = 1

n
yi − β0 − ∑

j = 1

m
βjXij

2
+ λ ∑

j = 1

m 1
2 1 − α βj2 + α |βj|

Where, 0 ≤ α ≥ 1 is the penalty weight, and λ is the regularization parameter that controls 

shrinkage and must be tuned or chosen based on prior results.

Several studies explored regression analysis to identify and evaluate the sources of genetic 

variability for various phenotypes (Malo et al. 2008; Wu et al. 2009; Ayers and Cordell 

2010; Waldmann et al. 2013). There is no consensus yet on whether regression models can 

do better than the single marker association studies (Waldmann et al. 2013). This is an 

important area of future research as it is intimately connected to personalized treatment of 

patients based on their genomic sequence data, especially for patients with certain forms of 

cancer, which should benefit from further exploration of ML methods.

6.4 Random Forest

Random Forest (Fig. 7A) is an ensemble decision tree-based ML method (Breiman 2001). 

The model grows multiple decision tree-structured classifiers {h(xΘk,k = 1,2 … k}, based 

on values of an independently distributed randomly sampled vector {Θk}, wherein, each 

tree casts a unit ‘vote’ for the most popular class based on the attributes (input or predictor 

variables from the matrix, x) that the tree was built on. Iteratively, decision trees with more 

votes are generated and these are agglomerated. The generalization error of the ensemble of 

decision tree classifiers depends on the strength of each tree and the correlation among them. 
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The model predicts new data by choosing the classification that receives the most votes over 

all the trees. Random forest model thus reduces the variance of prediction while retaining a 

low bias. A lower bias and variance translate to a reduction in the prediction error and also 

avoids over-fitting the model to the training data. An improved version of the Random Forest 

implementation that iteratively removes some ‘unimportant’ features, which evidently makes 

the predictor more accurate, is available (Paul et al. 2018).

Random Forest ML classification presents encouraging potential in molecular genomics 

and the prediction of disease phenotypes for genetic variants. For a genomics application, 

miRWalk is a Random Forest based microRNA target prediction algorithm that 

simultaneously produces a network-based model of interacting genes and microRNA 

molecules (Sticht et al. 2018). Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) have become famous over the past decade as a tool for genome engineering 

(Anzalone et al. 2020); a Random Forest based tool for identifying novel CRISPR 

arrays in bacteria has been described for biotechnology application (Wang and Liang 

2017). Integration of multiple ‘omics’-scale heterogeneous datatypes for the prediction of 

physiological responses to treatment, such as adverse drug response or the prediction of 

efficacy of novel drug-like molecules, is a challenging area where Random Forest has been 

applied (Rahman et al. 2017). Similar applications for the prediction of novel biomarkers 

for clinical application, such as accurate diagnosis or prognosis of a cancer type, are 

possible (Toth et al. 2019). As previously discussed in the context of SVM, very large 

genome level datasets concerned with population genomics and metagenomics are also 

ripe for the application of Random Forest classification, as reported for the investigation 

of a possible genetic connection between intestinal microbiome composition and diabetes 

mellitus (Kuang et al. 2017) or fatty liver disease (Loomba et al. 2017). An emerging 

area of research that is likely to profoundly impact environmental resource management 

and reversal of global warming is the understanding of the precise role of genes in the 

evolution of complex ecosystems (Brieuc et al. 2018). As described above with reference to 

multiple regression models for capturing the effects of genetic variations in large populations 

through GWAS experiments, Random Forest appears to be at least as equally robust as other 

competing methods (Stephan et al. 2015).

6.5 Gradient Boosting Machine

As in Random Forest, Gradient Boosting Machine (GBM) also generates collections of 

decision tree classifiers for classification and regression. The premise of GBM is the concept 

of ‘boosting’ that serially adds new prediction models to the ensemble of classifiers at each 

iteration which gradually optimizes a cost-function over function space (Fig. 7B). A new 

weak, base-learner model is trained at every iteration based on the negative gradient of the 

loss function of the entire ensemble obtained till that point (Friedman 2001; Natekin and 

Knoll 2013). The weak model slowly becomes more robust as the state of the machine 

descends along the error gradient with the number of iterations.

GBM is finding increasing popularity in genomics style of biotechnology. A recent work 

used GBM to evaluate genome-wide RNA profiles for optimizing protein amount and 

quality of meat in pigs in response to feed programs and thus identified a series of predictor 
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gene expression signatures (Messad et al. 2019). The reader is referred to a succinct 

description of this type of application in nearly any agricultural, food or drug production/

manufacturing industry (González-Recio et al. 2013), with possible future application to 

environmental management, where the optimization of one or more products based on 

the genomic profiling of a population of organisms is desired. In a related application 

we addressed whether protein-protein interaction network has sufficient information to 

discriminate between interactors and non-interactor proteins with a toxic (pathogenic) 

version of the Huntington’s disease protein (Lokhande et al. 2016, 2018).

Like proteins, the geometry of RNA secondary structure (i.e., intramolecular folding) is an 

important aspect for the prediction of its biochemical function, which includes the behavior 

of RNA sequence variants in causing diseases and producing enzymatic reagents for 

synthetic biology. The classical ab initio RNA secondary structure prediction algorithms use 

thermodynamic free energy optimization using dynamic programming (e.g., the Nussinov 

algorithm (Nussinov and Jacobson 1980)); however, this imposed a severe limit to the length 

of the RNA that could be handled. More recently GBM has been applied with considerable 

success in the prediction of RNA secondary structure genome wide, which achieved 

high correlation (correlation coefficients >0.9) with experimentally (X-ray diffraction and 

Nuclear Magnetic Resonance) determined RNA secondary structures (Ke et al. 2020). 

This approach has now become feasible as numerous RNA secondary structure models 

are now available through genome-wide biochemical methods of RNA structure “model” 

construction (Lucks et al. 2011). These experimentally determined “model” structures, as 

well as a limited number of experimentally determined structures, are used as large training 

sets, with test sets taken from experimentally determined “gold standard” RNA structures in 

the GBM regression model (Ke et al. 2020).

6.6 Deep Learning

Deep Learning is the subfield of ML that is inspired by our concept of how the biological 

brain works through its multilayered architecture of neurons (Azulay et al. 2016), typified 

by the Artificial Neural Network (ANN) model of computation (see (Eraslan et al. 2019) 

for a recent review on Deep Learning in genomics) (Fig. 8). In general, if xi be the vector 

of some summary statistic (input) of a dataset i, and yi is the vector of response (output) 

variable of that dataset, and if we have n such datasets, then together {(x1, y1), (x2 y2) 

… (xn yn)} form the training dataset used to learn the function that relates the summary 

statistic to the response variables. These complex nonlinear functions are expressed by the 

layered structures of deep neural networks. The first layer is the input layer; the subsequent 

layers are “hidden layers” with feed-forward as well as back-propagation topologies with 

adjustable weights (which recapitulate the architecture of the human brain), and the final 

layer is the output (or the “hypothesis” generator) layer. These so-called hidden layers 

introduce the computational capability of learning nonlinear functions, but also are the 

cause of the “black-box” nature of artificial neural networks which reduces their appeal for 

applications to human health (see later discussion on “explainable AI”).

ANNs are algorithms that mimic the massively parallel layered architecture of a few simple 

but repeating computing circuits of neurons in the brain (Qian et al. 2011); a “neuron” in a 
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neural network is a mathematical function that collects and classifies information according 

to a specified architecture, and is also called a perceptron. A perceptron is akin to a multiple 

linear regression computing unit; each perceptron feeds the output of a multiple linear 

regression into other perceptrons, or into an output node, though an “activation function” 

which may be nonlinear. Convolutional Neural Network (CNN) is the special case where 

the input features are an n-dimensional matrix, and mathematical convolution of multiple 

functions to determine the ‘shape’ of the output is used instead of matrix multiplication 

during multiple regression. Deep Learning involves very large (many layered) NNs or 

CNNs with both feed-forward and backpropagation architecture. The advantage is that Deep 

Learning algorithms scale significantly better than other ML algorithms with respect to size 

of the problem (or datasets).

One of the most noteworthy contributions of Deep Learning regression in genomics was a 

prediction engine for genome-wide RNA folding (Singh et al. 2019). This investigation used 

as training dataset (upon judiciously filtering the data for the highest confidence structures) 

a recently produced massive dataset of experimentally determined short RNA structures and 

produced an algorithm with a predictive accuracy of >90%. The researchers were able to 

validate all of the novel predicted structures that were subsequently tested for congruence 

with experimentally observed structures.

Prediction of the patterns of epigenetic modification of the genome is a computationally 

hard problem because of the high dimensionality and high degree of combinatorial classes 

that are possible. This problem is at the heart of genomics-inspired biology, and is 

also superbly suited for deep learning regression because of the availability of datasets 

that are being generated by massively parallel DNA sequencing methods coupled with 

identifying the boundaries of genomic DNA sequences (sequence foot-prints) occupied 

by epigenetically relevant proteins. The challenge is to predict the occupancy patterns of 

proteins at different epigenetic conditions. Recent efforts in this direction has been described 

in a number of publications (Wang et al. 2018; Yin et al. 2019; Beknazarov et al. 2020; 

Singh et al. 2016; Sekhon et al. 2018; Li et al. 2018). However, the field is still very much 

open because of the high degree of overfitting observed often in Deep Learning exercises 

with too many variables and too few training sets.

Robots that simulate human behavior are of high importance and constitute areas of 

massive future growth (not without its own perils if misused) for its promise of alleviating 

human suffering. The neural basis of higher human cognition, such as its plasticity of 

behavior in learning, language processing, nuance detection and display, is thought to be 

constructed by evolution as an organizational hierarchy in the frontal cortical lobe of the 

human brain. Memory is formed “bottom up” from primitive brain regions (present also 

in lower mammals) to the more recently developed unique brain structures of higher apes 

(Fuster 2004). Together, these associations constitute the “perception-action cycle”, in which 

external signals are “perceived” primarily by the lower level sensory receptor neurons, the 

outputs of which are then progressively associated ‘upwards’ in the neural hierarchy to 

form the “perception”, which then associate with previous memory held dispersed over 

large areas of the brain. The subsequent signals then are transmitted to lower areas to 

generate an “action”. Neuro-Inspired Companion robots (NICO) are designed to emulate 
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this perception-reaction cycle, to emulate human emotions by learning and processing 

human facial changes during emotive actions. Deep neural networks using two parallel 

multilayered perceptrons have been used to train and refine a NICO (Barros and Wermter 

2016). This multilayered perceptron used a CNN and a SOM (see above) to recognize an 

emotion. Once the facial features are learned using the CNN to represent the former as 

feature vectors, the CNN feature vector outputs were fed as inputs to the SOM. In the SOM, 

different layers of neurons respond to different emotions (feature vectors) and the best match 

between the input feature vector set and the stored feature sets were computed (Churamani 

et al. 2017). The resulting training for 200 rounds with human subjects was able to perform 

exceptionally well on correctly detecting several human emotions (anger, happiness, neutral, 

sadness and surprise), performing the best on anger, happiness and neutral but scored lower 

on detecting surprise and sadness. This reincarnation of SOM in deep learning presents 

exciting though yet unexplored potential for its further applications to shape recognition in 

postgenomic biology—for example, in automated image recognition and processing required 

for high-throughput single-cell based phenotypic assays during drug candidate development 

(Kellogg et al. 2014). A yet another unexplored area that is set for future development, 

which is more relevant to genomics, is to analyze human emotional disturbances by a 

NICO so as to correlate with the patient’s individualized genomic-level medical diagnosis. 

A refined measure of emotional disturbance, for which currently only self-evaluation and/or 

qualitative clinical evaluation exists, may provide an invaluable aid to psychometry in the 

future.

6.7 GNN

A particularly exciting development with the potential for robust applications to hypothesis 

development and causal connection detection in massive networks of genes and proteins 

that are generally the case in genomics is the so-called Graph Neural Network or GNN 

(Scarselli et al. 2009) (Fig. 9). GNNs extends the concept of neural network to graph domain 

representations of large datasets. GNN implements a function that maps a graph G(V,E), 
where V are nodes or vertices and E are edges that describe the relations between pairs of 

nodes, and its n nodes into an n -dimensional Euclidean space. The graphs are then encoded 

into feed-forward neural networks that compute a mapping of the informational influence 

of each node of the graph into a local transition function and a local output function. 

The computed values are then used to “unfold” the encoding network in which each layer 

corresponds to a time-instant and the connections among layers represent the connectivity 

of the graph. While both linear and nonlinear associations can be learned by GNNs, the 

cost of the learning phase, especially for nonlinear learning, is significantly higher than that 

of the test phase. A recent GNN implementation has performed well on existing human 

protein-protein interaction network data by achieving an accuracy of 99.5% (Yang et al. 

2020), although the method is yet to validated for predictive accuracy on fully unknown 

(novel) data through biological testing.

7. A challenge well-met: Deep Learning for protein structure prediction

One of the most challenging problems in biology is the ab initio prediction of a folded 

protein structure from its primary sequence (the linear sequence of amino acids in a 
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protein) (Dill et al. 2008). The exhaustive search space for possible structures of even a 

relatively short protein is astronomical, implying that generating all structural variants and 

thus determining the minimum free energy configuration cannot be feasible. Nonetheless, 

proteins do manage to fold spontaneously—a situation known famously as the Levinthal’s 

paradox (Zwanzig et al. 1992). Levinthal’s paradox suggests that there must be favored 

pathways of protein folding, and ML might be one way to circumvent the high complexity 

combinatorial search space by using as features the physical and structural properties of a 

large number of proteins for which structures are solved. Consequently, Deep Learning has 

now been engaged widely to solve various sub-problems related to protein folding (reviewed 

by (Torrisi et al. 2020)). Most notably, gradient descent with a Deep Neural Network was 

able to train the algorithm to construct and optimize a force-field potential, which could be 

used to predict distances between pairs of atomic residues in their stable structural states 

within a protein (Senior et al. 2020).

A current incarnation of the gradient descent neural network, AlphaFold 2, made by 

DeepMind of Google, has reportedly outperformed every other competitor protein folding 

algorithm (Senior et al. 2020; Jumper et al. 2021) in the latest international “Critical 

Assessment of Structure Prediction” (CASP14) competition—the atomic coordinates of a 

few of its predicted structures are indistinguishable from those obtained by cryo-electron 

microscopy (at 0.3–0.6 nanometer resolution) of the folded proteins (Callaway 2020). 

Alphafold 2 achieves this feat by simultaneously considering multiple alignment of protein 

sequences, some of whose structures are already known, and by representing residue by 

residue interactions at a distance, in a two-track neural network. Further improvements 

have been made to protein structural prediction by simultaneously considering amino acid 

sequence pattern homology with known structures, residue-residue interactions, and possible 

three dimensional structures using neural network in a three-track neural network model 

(RoseTTAFold), and the codes are available in the public domain (Baek et al. 2021). 

The next logical extension of this approach has been successfully made by the latter 

group to predict protein interaction partners of other proteins (Humphreys et al. 2021). 

These breakthrough advances in protein folding prediction and computing protein-protein 

interaction partners are set to revolutionize genome-scale biology by potentially generating 

proteome-wide structural and interactome models upon which further simulation of their 

activities can be performed. These approaches are poised to provide unprecedented levels 

of quantitative sophistication in the hands of biologists and medical researchers, from 

cancer biologists who aim to develop an understanding of the cancer cell’s metastatic 

states to the biochemical engineers who wish to manipulate the carbon flux in plants and 

soil microorganisms to reduce the anthropogenic carbon burden. There are quite a few 

resources in the public domain for ab initio protein folding so as to try one’s hands at the 

protein-folding problem (Adhikari 2020) and per chance to improve upon these.

A related problem is the prediction of protein-ligand interaction, for which Deep Learning 

has been relatively successful (Ragoza et al. 2017; Stepniewska-Dziubinska et al. 2018; 

Zhang et al. 2019). A more complex version of the problem is to predict interaction surfaces 

of antibody-antibody binding, where ANN has been engaged though with relatively less 

success (Ansari and Raghava 2010; Liu et al. 2020). If the latter problem is solved with high 

precision, it should be possible one day to go in a few hours from solving the structure of a 
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viral protein to the task of making a designed antibody reagent for a possible human clinical 

trial against any novel viral pandemic, a task that takes at least 4–6 months today (e.g., in the 

case of the SARS-CoV-2 antibody cocktail made by Regeneron Pharmaceuticals, Inc. (Baum 

et al. 2020)).

A related challenging problem in postgenomic biology is the computational docking of 

ligands (which could be small molecules, short peptides, RNA/DNA aptamers as well 

as full proteins) to proteins. While for small molecules and proteins of known 3-D 

structure docking by standard molecular dynamics simulation works well, at the genome 

level the challenge is to computationally dock thousands, perhaps millions, of ligands to 

tens of thousands of proteins. Many of the latter have no solved structures, such that 

protein structural prediction is a first step towards undertaking such a task. Computational 

docking with ML, which now out-performs classical molecular dynamics docking, is now 

mainstream (Kinnings et al. 2011; Hassan et al. 2018), and a recent review well describes 

this field (Torres et al. 2019). As predictable, biases introduced into the nonlinear regression 

models of deep learning and the use of numerous feature variables can be confusing; 

suggestions have been made for interpreting the results of such endeavors in meaningful 

ways (Sieg et al. 2019).

8. Newer approaches to Deep Learning

GAN:

A relatively novel deep neural network approach is the Generative Adversarial Network 

(GAN) (Goodfellow et al. 2014; Lan et al. 2020; Franci and Grammatico 2020). A GAN 

consists of two separate subnetworks—a generator and a discriminator. The objective of 

a GAN algorithm is to play a “mini-max” game between the two subnetworks, such 

that the generator’s goal is to fool the discriminator by synthesizing realistic but “fake” 

data from an arbitrary distribution of samples. On the other hand, the function of the 

discriminator neural net is to distinguish between the real data and the “fake” synthesized 

data. GANs have been used in several genomics applications: single-cell sequencing data, 

the analysis of Hi-C contact maps, and the generation of synthetic protein structures ( Lan 

et al., 2020). GANs are somewhat slow and difficult to train because often the solutions 

are stuck at local equilibria; therefore, to solve some of the problems GANs have been 

cast as a game-theoretic algorithm for attaining a stochastic Nash equilibrium (Franci & 

Grammatico, 2020). Genomics applications of this recasting of GAN is pregnant with 

promise, if not merely because this adversarial game strategy of two competing networks 

reflects evolutionary competition between species or even between neural circuits in higher 

brain in cognition.

9. Explainable Artificial Intelligence or XAI

A problematic aspect of ML, especially of Deep Learning, insofar as its application to 

biology is concerned is the apparent black-box nature of its models due to their nested 

nonlinear structure. What works with high precision and recall rates might be good enough 

for most real-life engineering applications. In ML applications to biology, especially 

to human health, however, an additional layer of transparency is often demanded: an 

Ray Page 21

Wiley Interdiscip Rev Data Min Knowl Discov. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



understanding of the biological significance of the important predictor variables as identified 

by the trained ML algorithm. While every attempt is made to identify and/or quantify the 

contribution of each input variable to the prediction model, often complex interaction terms 

preclude a clear conclusion. Philosophically, in human health applications and in genomics 

research, “what works” as a predictor is as important as what “the truth of nature” behind 

the prediction model might be. This is the goal of the so-called XAI or, interchangeably, 

“Explainable ML” (Samek et al. 2017). In specific applications related to the diagnosis, 

prognosis or treatment of human diseases, the explainability of an ML model is important 

for compliance purposes. In future applications to environmental problems, explainability 

will be an important factor because of the potential for high societal cost were the policies 

implemented based on a model turn to be erroneous. Comprehensibility, or “explainability” 

attempts to validate the reasoning behind the predictions, identifies the flaws and biases of 

the model, allows a deeper understanding of the problem that is claimed to be solved by 

the “black-box” ML model, and, finally, enables the enacting of social policies based on 

objective understanding or enables compliance to already-enacted social policies (Barredo 

Arrieta et al. 2020).

In standard statistical analysis, the contributions of the variables of importance identified by 

data regression are examined by different types of sensitivity analysis. The objective is to 

quantify the uncertainty in the output variable as an input variable is varied around a fixed 

point of all other variables (in the hyperspace of multiple variables) (see Fig. 10). In linear 

regression, the standardized regression coefficient associated with each variable quantifies 

the ‘influence’ of that variable to the overall model’s output. If the regression is not linear, 

however, as is the case with many ML methods, this method cannot be used. Other methods, 

such as the derivative method and variance method must be used. In the derivative method, 

a partial derivative of the output variable is taken with respect to each of the input variables 

while all other input variables are kept at a fixed point in the variable space (Fig. 10). This 

method is strictly local in the sense that the entire range of the input variable cannot be 

explored because it only examines small perturbations of each variable taken one at a time. 

Variance method is a global sensitivity analysis (Saltelli et al. 2007) in which the variance of 

the output variable is decomposed into sum of the variances of individual input variables and 

all of their linear combinations in a Bayesian framework (Fig. 10).

Sensitivity analysis might fail, however. For example, if sensitivity of the model to one 

compartment at a time is determined we neglect interactions among the compartments, 

which can lead to type II statistical error. Sometimes, diverse sensitivity metrics can reduce 

transparency of the model performance. Sensitivity analysis on too many output variables 

likewise can hide the key inference of the model.

Numerical support from sensitivity analysis does not by itself provide sufficient insights 

about the underlying mechanistic process that is discovered by the ML algorithms. 

Additional insights are needed to establish causality, which provides confidence as well 

as transferability to the knowledge thus discovered. To understand recent approaches to 

eXplainable ML (or, XAI) in which the notion of causality is an integral part, let us consider 

in a more detail a recent example of XAI for understanding the basis of ML-derived 

gene-regulatory pathways inferred from two kinds of data (Anguita-Ruiz et al. 2020): (1) 
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temporal patterns of expression of genes, (2) experimentally determined binding sites of 

transcriptional regulatory proteins on their putative target genes. The rationale is described 

in Fig. 11. When such a reconstruction was applied to about 30,000 genes (both protein 

and RNA) in over 50 human subjects in response to an experimental condition (nutritional 

intervention of obese patients). The data were mined for extracting association and/or 

sequential rules, such as, X → Y, or if X occurs then it is likely that Y occurs too; [gene A, 

gene B] → time-delay [gene C, gene D, gene E] or if gene A is up-regulated and B is down 

regulated then with a time-delay genes C, D and E are all simultaneously up-regulated then 

it is likely that genes A and B are both regulators of genes C, D and E but with mutually 

opposite signs, and so on. From the data, such rules were extracted using input features of 

gene expression values, and categorial properties of known genes using an ML algorithm, 

CMRules (Fournier-Viger et al. 2012). The resulting rules of association were evaluated by 

computing the correlation between the numerical quality metrics of each association rule 

between gene pairs with the biological significance of the individual genes as provided by 

functional enrichment metrics in the Gene Ontology database (Gene Ontology Consortium 

2021). If two genes are functionally related, then their biological annotations are related, 

which is measured by a distance metric in a directed acyclic graph derived from the 

ontological relations among the member genes. Thus, by combining numerical confidence 

scores of association rules with a measure of the relatedness of biological functions, it 

was possible to assess the biological validity, as opposed to merely the numerical validity, 

of the resulting regulatory circuits. Moreover, the notions of causality with numerical 

confidence values thus discovered may enable the transfer of the mechanistic knowledge 

to the treatment of human disease conditions, and provide a level of transparency that is 

needed for enacting a responsible health-care practice. To increase comprehensibility and 

transparency, it is important therefore not only to provide numerical comprehensibility (the 

exact form of the functions that relate the output to the input variables) but also to present 

post-hoc analysis of the results of simulations using visual representation of the relations, 

the range or domains of applicability, relational logical rules among the input and output 

variables, as well as sensitivity analysis (Barredo Arrieta et al. 2020). In short, the black-box 

nature of AI needs to be deconvoluted explicitly to establish expert-user confidence and, if 

possible, causality of the model.

10. Concluding Remarks

In a prophetic essay written in January 1991, Walter Gilbert (who shared a Nobel Prize 

in chemistry for the discovery of DNA sequencing method) wrote, “The new paradigm, 
now emerging, is that all the ‘genes’ will be known (in the sense of being resident in 
databases available electronically), and that the starting point of a biological investigation 
will be theoretical. An individual scientist will begin with a theoretical conjecture, only then 
turning to experiment to follow or test that hypothesis” (Gilbert 1991). This “new” paradigm 

in biology is now routine. AI is now making our ability to make intricately detailed, 

therefore quantitatively testable, theoretical conjectures possible. Its impact on medicine, 

public health and environmental management is already palpable though much more remains 

to be achieved. It is hoped that students of biology as well as computer science upon reading 
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this review will talk to one another, and by doing so perhaps will be inspired to influence the 

transformation of biology in a way the author cannot imagine at the present.
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Figure 1. 
A bird’s eye view of challenging post-genomic biology where machine learning has been 

successful. Main areas of application are boxed. Most future progress however is expected to 

occur in “function prediction”, which involves modeling multicellular and multi-community 

interactions that span scales of distance (from sub-nanometer to meter) and time (from 

microseconds to evolutionary/geological timescales).
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Figure 2. 
A broad overview of personalized medicine challenges for machine learning. Modeling 

population fine structures of genetic variants (colored in purple) to disease causation, 

especially for complex diseases of strong multi-genic and environmental influences, is an 

open challenge. Patient-specific diagnosis or prognostic models must solve the ‘black-box’ 

nature of deep learning.
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Figure 3. 
A cartoon diagram of Self Organized Map (SOM). Open circles represent an n x m 

dimensional grid. A neural network algorithm allows gradual mapping of the datasets 

(solid circles) according to the centroids that minimize a distance metric from their nearest 

neighbors; the emergent paths of the grid points are diagrammatized by the curved arrows. 

X1 and X2 are variables that describe the data. (Redrawn after (Tamayo et al., 1999))
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Figure 4. 
Clustering and decision trees. (A) Network clustering. Objects with certain relations are 

represented as graphs, from which an adjacency matrix is created, which then leads to 

the computation of graph properties, such as the clustering coefficient (the cliquishness of 

nodes) or simply a distance metric (e.g., the shortest path between node pairs, or any one 

of the centrality measures, etc.). Using these graph properties of similarity measures, tree-

structured dendrograms are created. Inspection of the dendrograms reveals the likelihood 

of relatedness among nodes. (B) An example unrooted tree drawn from discrete clustering 

technique where each node belongs to a unique cluster of related nodes. (C) An example 

output of “fuzzy clustering”, where the yellow-colored nodes belong to both blue and purple 

node clusters. (D) A broad overview of the method of decision tree construction. Here a set 

of data points are represented along three dimensions (two spatial dimensions, X1 and X2, 

and one color dimension (purple, blue, green, yellow, red). The principle of decision trees 

is to “divide and conquer”: the data are partitioned recursively until a set of partitions that 

minimize the residual error due to the inhomogeneity of the data is attained. The result is a 

directed acyclic graph that has the power to identify important properties of the dataset.
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Figure 5. 
A diagrammatic example of decision rule mining by linear regression (Lam et al., 2016). 

Circles represent proteins within or different species of organisms, respectively. Colors 

define homologs of genes across species (here, yeast or mouse or human), also called 

orthologs. Thus, a and a1 are orthologs across species. a1 and a2 are both orthologs of a. 

Such orthologous relationships are deduced from sequence conservation of the proteins or 

their encoding genes.. When the sequence conservation is above a certain threshold, the two 

genes (or proteins) are accepted as “orthologs”. If proteins a and c of species 1 (yeast) are 

both orthologs of proteins a1 and c1 of species 2 (mouse), and if d is also an ortholog of d1’, 

and if it is known that a regulates both b and c, then the rule that a1 is a regulator of c1 is 

supported by the regression coefficients (βa1,c1). Dashed lines indicate potential regulatory 

interactions.
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Figure 6. 
A cartoon diagram explaining the principle of Support Vector Machine (SVM). See text for 

explanation.
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Figure 7. 
Cartoons illustrating the principles of random forest and gradient boosting machines for 

classification and regression. (A) Random Forest algorithms build numerous decision trees 

from random subsets of the data but introduces a noise at each treat splitting. The decision 

trees are aggregated and as a result the surface of the decision function, which is complex for 

each tree, is smooth when numerous trees are considered together. (B) In Gradient Boosting 

Machines, new trees are sequentially added to existing trees while reducing the residual 

error, and thus the decision function surface becomes smoother as the error decreases 

progressively down the error gradient. Both methods can often lead to model overfitting (due 

to complexity of the prediction function surface) and sometimes the models can get hung up 

on local minima. Therefore, rigorous testing of the prediction function using data that were 

not used for model training needs to be conducted.
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Figure 8. 
A simple four-layered artificial neural network or ANN. See text for explanation. A deep 

neural network contains many, many layers with fee-forward and back-propagation (arrows) 

in its architecture. The first layer (left) is the input layer whereas the last layer (right) 

is the output layer. This architecture superficially resembles the architecture of the brain. 

The connections (arrows) have “Hebbian” weights, which lead to complex nonlinear signal 

processing. The details of the signal processing function that is produced due to training 

are generally refractory to deconvolution, thus leading to the “black-box” nature of ANNs. 

Nonetheless, deep ANNs have been remarkably successful in real world data modeling, and 

are expected to increasingly contribute to post-genomic biology.
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Figure 9. 
A cartoon illustrating the principle of Graph Neural Network or GNN. A simple graph 

(nodes are circles, edges are directed arrows) with a shaded area representing the 

informational influence on node 3, is explicitly encoded, which then is used to train a 

multi-layered feed-forward neural network by supervised learning. The layered network is 

then “unfolded” or decoded by the last layer and the outputs are computed. Ii are the input 

variables and Oi are outputs.

Ray Page 39

Wiley Interdiscip Rev Data Min Knowl Discov. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Types of uncertainties and their measurements important for explainable machine learning. 

See text for explanation. This figure has been influenced by the discussion and illustrations 

in the PhD thesis of Katie Smith (Smith, 2016), University of Nottingham.
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Figure 11. 
An illustration of explainable machine learning (XAI). (A) Machine learning regression 

determines the gene expression levels (red, increase; blue, reduction; white, steady state) 

at time slices t1 through t5. (B) Machine learning regression determines the occupancy of 

gene products (Pi) on the “regulatory” sequences on genes (Gi). (C) Extraction of rules from 

ML analysis on the outputs of (A) and (B) generates causal relations: Gene 1 regulates with 

a positive sign the expression of Genes 2, 4, and 5 but not of Gene 3. Gene 2 regulates 

the expression of Genes 1 and 4 only. Thus, the results of (A) and (B) are given a logical 

interpretability by (C).
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