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Abstract
Objectives: The cognitive reserve hypothesis has been proposed as a key mechanism explaining the link between social net-
works and cognitive function but has rarely been empirically tested using neuroimaging data. This study examines whether 
social network attributes moderate the association between amygdalar volume and cognitive function.
Methods: Data were from the Social Networks in Alzheimer Disease study (N = 154) and Indiana Alzheimer’s Disease 
Research Center. Social networks were measured using the PhenX Social Network Battery. Regional data from magnetic 
resonance imaging (amygdalar volume [AV]) were analyzed using FreeSurfer software. Cognitive function was measured 
using the Montreal Cognitive Assessment (MoCA) and consensus diagnosis. Linear regression analyses were conducted to 
test the moderating role of social networks on the association between AV and cognitive function.
Results: Participants with greater ability to span multiple social roles and subgroups within their networks scored higher 
on the MoCA after adjusting for sociodemographic variables, depression, frequency of contact, and AV. Social networks 
moderated the association between AV and cognitive function.
Discussion: Among participants who engaged in diverse and loosely connected social networks, the expected adverse cog-
nitive effects of brain volume in regions implicated in socioemotional processing were attenuated. These findings suggest 
that cognitive stimulation achieved through social interaction with a diverse array of social relationships across multiple 
contexts may help promote cognitive reserve.
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Increasing longevity is associated with a rise in the prev-
alence of Alzheimer’s disease (AD). Approximately 5.8 
million Americans aged 65 and older currently live 
with AD—a figure that will triple by 2050 (Alzheimer’s 

Association, 2019). Despite the prevalence of AD among 
the older population, prevention and treatments have been 
slow to emerge. Consequently, AD researchers are looking 
to social–environmental factors to identify candidates for 
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clinical intervention (Chalfont et al., 2020). Improving our 
understanding of modifiable factors that can alter the clin-
ical course of AD is critical for reducing the burden of the 
disease.

One promising area of research focuses on personal so-
cial networks, documenting an inverse association between 
various measures of frequency or quality of social interac-
tion and risk for dementia in older adults (Crooks et  al., 
2008; Fratiglioni et  al., 2004; Gow et  al., 2013; Pillai & 
Verghese, 2009). For example, Barnes et al. (2004) found 
that adults older than age 65 at the 90th percentile for a 
number of social ties experienced a 39% reduction in the 
rate of cognitive decline over 5 years compared to those at 
the 10th percentile. Similar findings have been confirmed by 
several meta-analyses and systematic reviews (Evans et al., 
2019; Kelly et al., 2017; Lara et al., 2019; Penninkilampi 
et al., 2018; Perry, McConnell, Coleman, et al., 2021). Yet 
minimal research considers multidimensional features of the 
personal networks in which older adults are embedded. This 
is an important omission as individuals who occupy loosely 
connected networks composed of a mix of relationship 
types are exposed to a broader range of social stimuli com-
pared to those who occupy dense, homogenous networks 
(Ellwardt et al., 2015; Perry, McConnell, Peng, et al., 2021).

A prominent neurological theory explaining the link be-
tween social networks and cognitive function posits that 
exposure to diverse stimuli strengthens one’s cognitive re-
serve (i.e., the brain’s capacity to cope with neural damage; 
Donovan et al., 2016; Stern et al., 2020). According to the 
cognitive reserve hypothesis, cognitively stimulating activ-
ities (a) strengthen existing neural pathways that protect 
against neurodegeneration and (b) foster new neural path-
ways through which the brain can reroute to fulfill normal 
functioning (Stern, 2012). Indeed, individuals with high 
levels of cognitive reserve have been shown to function at 
cognitively normal (CN) levels in the presence of AD pa-
thology (Esiri et al., 2001; Katzman et al., 1989), whereas 
individuals with limited cognitive reserve tend to exhibit a 
stronger relationship between brain volume and cognitive 
function.

Taken together, the literatures on social networks and 
cognitive reserve suggest that social networks may mod-
erate the relationship between brain volume and cogni-
tive function. In other words, individuals with lower brain 
volume (a possible sign of neurological atrophy) will per-
form well on cognitive assessments so long as they main-
tain personal networks that expose them to novel and 
diverse social stimuli. Yet most studies have been unable to 
properly test this hypothesis because few data sets contain 
the necessary combination of social network data and neu-
roimaging data (c.f. Bennett et al., 2006). We address this 
research gap by analyzing data from the Social Networks in 
Alzheimer Disease (SNAD) project, a study of older adults 
containing clinical cognitive assessments, quantitative neu-
roimaging phenotypes (QNPs), and a detailed personal so-
cial network inventory.

Social Networks and Cognitive Function
Social networks—and the social relationships embedded 
within them—have been long recognized to influence health 
and well-being across the life span (Roth, 2020; Smith & 
Christakis, 2008). A wide body of research demonstrates 
a consistent link between personal network characteristics 
and multiple health outcomes such as psychological dis-
tress and hypertension (Cornwell & Waite, 2012; Huxhold 
et al., 2020) Similarly, older adults with numerous social 
contacts tend to perform better on cognitive assessments 
than those with fewer contacts (Barnes et al., 2004; Perry, 
McConnell, Peng, et  al., 2021). The prevailing message 
from epidemiologic and social science studies is that social 
networks and cognitive function are robustly associated.

Despite widespread research on social networks and 
cognitive function or decline, most existing studies rely on 
proxy measures (e.g., number of friends, frequency of so-
cial contact) that do not fully capture the complexities of 
social life that likely influence cognitive risk and resilience. 
These proxy measures limit the ability to identify which 
aspects of social networks are protective of AD pathology. 
An egocentric network approach, however, captures the so-
cial connections between a focal individual (i.e., ego) and 
their direct contacts (i.e., alters) as well as all possible con-
nections between those contacts (Perry et al., 2018). This 
approach situates each person within a unique personal 
community whose composition and structure have health 
consequences.

In terms of cognitive demand, individuals who are em-
bedded in diverse personal networks must routinely toggle 
between a combination of social roles and interactions 
when spanning multiple social contexts (Ellwardt et  al., 
2015; Mische & White, 1998). The mental processing as-
sociated with managing a complex set of relationships and 
roles, in turn, is hypothesized to strengthen cognitive re-
serve (Meyer et  al., 2012; Wlodarski & Dunbar, 2016). 
Conversely, individuals who occupy dense, homogenous 
networks engage in less cognitive “exercise” because the 
majority of their alters are interconnected and share sim-
ilar social roles (e.g., family members). These latter types of 
networks expose individuals to familiar situations that are 
less cognitively demanding. Based on these insights, we hy-
pothesize that the ability to span multiple social roles and 
bridge different subgroups within one’s personal network 
will be positively associated with cognitive function (H1).

Neurodegeneration and Cognitive Reserve
AD is characterized by progressive neurodegeneration and 
the presence of toxic amyloid plaques and neurofibrillary 
tangles that initially appear in the amygdala and hippo-
campus. These plaques and tangles accumulate over time 
and overwhelm the brain thereby increasing the risk of cog-
nitive decline. Despite the commonly observed debilitating 
effects of AD, prospective clinical studies indicate that a 
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significant proportion of older adults with unimpaired neu-
ropsychological test results meet full pathological criteria 
for AD (Nelson et al., 2021; Stern et al., 2020). In other 
words, extensive neuropathology does not invariably cause 
cognitive impairment.

As posited by the cognitive reserve hypothesis, individual 
variations in enriching experiences across the life course pro-
vide different degrees of reserve against neurodegeneration 
(Chapko et al., 2018; Stern, 2012). The benefits of cogni-
tive reserve are attributable to two mechanisms: (a) the de-
velopment of greater cognitive capacity and efficiency prior 
to neurodegeneration and (b) a greater ability of the brain 
to compensate for pathological disruptions to preexisting 
networks when neurodegeneration emerges. Given that ex-
posure to stimulating social environments is hypothesized 
to increase cognitive reserve (Wlodarski & Dunbar, 2016), 
we anticipate that older adults whose personal networks 
provide access to diverse social roles and groups will fare 
better in the presence of possible AD neuropathology (i.e., 
low brain volume) compared to older adults whose net-
works are narrower and more homogenous. Therefore, we 
hypothesize that the ability to span multiple social roles 
and subgroups within one’s personal network will mod-
erate the relationship between brain volume and cognitive 
function (H2).

Method

Study Sample

Data are from the SNAD project, which leverages studies 
being conducted at the Indiana Alzheimer Disease 
Research Center (IADRC). The IADRC is one of 34 NIH-
designated AD research centers that provide shared re-
search resources and that recruit, clinically characterize, 
and longitudinally follow up individuals with and at risk 
of AD and related disorders. Three groups of participants 
from the IADRC cohort were recruited for the proposed 
study: (a) CN older adults, (b) adults with mild cognitive 
impairment (MCI), and (c) adults with early-stage AD de-
mentia. Clinical diagnoses were made at the IADRC via 
consensus panel using the most recent diagnostic criteria 
and all available information from participants’ current 
and prior assessments. Weekly consensus conferences 
were held by the Clinical Core team, which included 
neurologists, neuropsychologists, psychiatrists, clinical 
trainees, and other investigators and staff involved in 
the cohort study. IADRC participants with advanced AD 
(i.e., Montreal Cognitive Assessment [MoCA] score <10) 
were excluded from SNAD eligibility due to incapability 
of sitting through a lengthy and cognitively burdensome 
interview. Participants with other types of dementia (e.g., 
frontotemporal lobar degeneration) were also ineligible 
for SNAD because there were too few to test the robust-
ness of findings in distinct pathology groups, and these 
groups may have unique etiologies.

Between March 2015 and May 2019, all eligible IADRC 
participants were approached to voluntarily complete the 
SNAD protocol (89% response rate). For the current anal-
ysis, we used baseline SNAD data collected from 278 par-
ticipants via face-to-face interview using computer-assisted 
personal interviewing in a private office during a routine 
IADRC clinic visit. A total of 124 participants who did not 
have neuroimaging data were excluded, resulting in a final 
analytic sample of 154. The excluded participants were 
largely missing data due to the study design, wherein neu-
roimaging data were collected less frequently than social 
network assessments (biannually). Nonetheless, we con-
ducted a comparison of those with and without missing 
data on sociodemographic and social network variables 
and identified only one modest but significant difference 
(years of education; see Supplementary Table A1).

The sample was purposively skewed toward the mildly 
affected because a major goal of the IADRC is to improve 
the early detection of neurodegenerative disorders at the 
transition from normal cognition to prodromal stages 
of disease. Within the CN group, 10% were aged 80 or 
older, 70% had a positive family history of AD or related 
dementia, and 39% were at elevated genetic risk for AD 
based on APOE genotype. These characteristics increase 
the likelihood of observing low brain volume and clin-
ical impairment—a unique and important feature of this 
sample.

Measures

Cognitive function
The primary dependent variable employed here is the MoCA 
(Nasreddine et al., 2005). The MoCA assesses global cogni-
tive function across multiple domains, including attention, 
memory, visuospatial ability, abstraction, delayed recall, and 
orientation to time and place. Higher scores indicate better 
cognitive function. The MoCA was embedded in a more 
comprehensive assessment administered by an expert team 
of neurologists, neuropsychologists, and psychometricians 
and used for diagnostic classification at the IADRC. The 
MoCA scores were z-standardized (mean = 0; SD = 1) to 
aid interpretation of the magnitude of associations. We also 
used clinical diagnosis (CN, MCI, or Alzheimer’s dementia) 
as an alternative outcome. Diagnosis was determined 
through a consensus panel.

Social networks
In the present study, network data were collected using an 
expanded PhenX Social Network Battery (SNB) tailored 
to older adults. The PhenX Toolkit provides high-quality, 
standard measures for inclusion in health and human ge-
netics research. It was developed by a panel of researchers 
from the National Human Genome Research Institute 
(PhenX Toolkit, 1991). The PhenX SNB took approximately 
20–30  min to complete. This interviewer-administered 
survey elicited names of a participant’s alters who were 
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activated in the past 6 months for discussions about im-
portant matters and health matters using items called name 
generators (Perry et al., 2018). These name generators tar-
geted discussants (people respondents actively sought out 
for advice and discussion) and regulators (people who has-
sled the respondent and encouraged behavior change) to 
maximize measurement of potential social mechanisms. 
There was no limit on the number of alters named. After 
names were provided, a series of questions were asked 
about each alter. These included sociodemographic and re-
lationship characteristics (e.g., relationship type, frequency 
of contact). In addition, we elicited basic information about 
ties between alters to compute structural measures of the 
network.

The following network-level attributes were constructed 
using data from the SNB. Figure 1 depicts two social net-
works with different values for structural characteristics 
used in this analysis. Network size was computed using the 
number of unique network members elicited in response to 
any name generator. Network diversity assessed participa-
tion in multiple types of social relationships (Cohen et al., 
1997). This measure—designated with different shapes in 
Figure 1—assesses the total number of social roles that a 
participant occupies within their personal network (e.g., 
spouse, parent, child, friend, coworker, neighbor). Diversity 
scores ranged from 0 (for the one participant with no net-
work ties) to 9. Effective size was calculated by subtracting 
network size from the mean number of ties that each alter 
had to all other alters. This quantifies the extent to which 
a participant engages in nonredundant social groups (i.e., 
dashed lines in Figure 1) that may provide access to distinct 
social experiences (Perry et  al., 2018). Together, network 
diversity and effective size signify the degree to which par-
ticipants are exposed to multiple social roles and subgroups 
within their personal networks.

As part of a supplementary analysis, we also considered 
the density of each participant’s personal network. Network 
density was computed using the valued strength of ties be-
tween each pair of alters in a participant’s network, which 
ranged from 0 (Don’t know each other) to 3 (Very close). 

The valued strength between all alter pairs was summed 
and divided by the total possible number of alter–alter ties 
to generate the density measure. Higher values signified a 
larger degree of interconnectivity within each personal net-
work. Density and effective size measure similar concepts, 
but the former does not directly account for number of al-
ters in the network.

Quantitative neuroimaging phenotypes
QNPs were derived from magnetic resonance imaging 
(MRI) performed by the Neuroimaging Core of the IADRC. 
All MRI scans were completed on an advanced research-
dedicated Siemens PRISMA 3T magnet. T1-weighted 
MPRAGE structural scans were used to quantitatively char-
acterize brain structure. QNPs were extracted from MRI 
data using FreeSurfer 6 (Fischl, 2012) and were merged 
with social network and clinical assessments for analysis.

We assessed brain region volume, which provides a di-
rect quantitative index of brain atrophy with strong correl-
ations to cognitive function and demonstrated diagnostic 
validity (Risacher & Saykin, 2013). Research has estab-
lished that subtle structural abnormalities are highly pre-
dictive of future conversion from a CN state to MCI (i.e., 
prodromal or preclinical phase of AD) and from MCI to 
dementia (Apostolova et al., 2006; Davatzikos et al., 2008; 
Risacher et  al., 2009). For final analyses, brain region 
volume was z-standardized (mean = 0; SD = 1) and multi-
plied by −1 to simplify interpretation and convey atrophy 
in tables and figures. We also adjust for intracranial volume 
to allow for differences in head size in the final analyses.

In the current analysis, we focused on mean bilateral 
volume in the amygdala (Klein-Koerkamp et  al., 2014; 
Poulin et  al., 2011). This brain region is ideal for two 
reasons. First, the amygdala is among the earliest regions 
of the brain affected by AD, allowing us to detect neuropa-
thology in our sample that is largely asymptomatic or has 
MCI (Poulin et al., 2011; Wachinger et al., 2016). Second, 
the amygdala is implicated in emotional processing, so-
cial behavior, and decision making, thus we expect to see 
an association with social network characteristics in this 
area (Benarroch, 2015; Felix-Ortiz & Tye, 2014). A larger 
amygdala is thought to have evolved in primates to accom-
modate the increasingly complex nature of social life, and 
amygdalar volume has been linked to social network size 
and complexity in humans (Bickart et al., 2011). As part 
of a supplementary analysis, we substitute hippocampal 
for amygdalar volume as the hippocampus is also among 
the earliest regions of the brain to be affected by AD 
(Wachinger et al., 2016). Although variables like social net-
work size, number of social roles, social engagement, and 
social support have been linked to brain volume across 
multiple brain regions (Blumen & Verghese, 2019; Cotton 
et al., 2020; Kwak et al., 2018), as the social information 
processing centers of the brain, the amygdala and hippo-
campus are a natural starting point for this line of research 
on dementia.Figure 1. Two examples of effective size and diversity.
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Covariates
We adjusted for the following measures in final analyses 
to address potential confounding factors: sex (female = 1; 
male = 0), race (White = 1; non-White = 0), age (years), and 
education (years). These measures all potentially confound 
the relationship between network characteristics and cog-
nitive function. Additionally, we included the proportion 
of alters in the network with whom the participant sees 
or talks to “very often” to account for the extent of expo-
sure to different network structures. Finally, we included 
the 15-item Geriatric Depression Scale (Sheikh & Yesavage, 
1986) to control for depression. Postestimate diagnostics 
indicated this variable was highly right-skewed. We there-
fore used the natural log transformation of this variable 
in the final analysis to achieve homoskedasticity of errors.

Data Analysis

We first summarized our sample using descriptive statis-
tics. Next, we employed linear regression models predicting 
standardized global cognitive function as measured by the 
MoCA. Baseline models examined direct associations be-
tween social network attributes, clinical measures, and 
cognitive function, adjusting for gender, race, age, educa-
tion, depressive symptoms, and amygdalar volume (Models 
1–3). Interaction models assessed whether the network 
attributes (i.e., diversity, effective size) moderated the re-
lationship between brain volume (i.e., bilateral mean 
amygdalar volume, reverse-coded to indicate atrophy) and 
cognitive function (Models 4–5). We adjusted for network 
size in the models with diversity but not those with effec-
tive size because network size is a key component of effec-
tive size. In addition to the regression models, we provided 
figures of predicted marginal effects to aid interpretation 
of the direction and magnitude of amygdala volume asso-
ciations with cognitive function across different types of 
networks. To avoid discarding cases with missing data, all 
models were estimated using full information maximum 
likelihood—a method that uses all available information 
provided without omitting any cases. All analyses were 
conducted using Stata 16 (StataCorp, 2019). Finally, we 
conducted multiple sensitivity analyses: (a) using network 
density in place of the other two network attributes, (b) 
using hippocampal atrophy as an alternative measure of 
neurodegeneration, (c) predicting clinical diagnosis instead 
of MoCA, and (d) replicating main models after eliminating 
participants with AD. Results from these models are pre-
sented in Supplementary Materials and were consistent 
with those presented in the main analyses.

Results

Descriptive Statistics

Table 1 provides the descriptive statistics for the full anal-
ysis sample and by diagnosis. Overall, 64% of participants Ta
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were female (72% CN; 47% MCI; 42% AD). The mean age 
was 71.18 years (SD = 8.26), with a slightly higher mean 
age among those with cognitive impairment (70.40 CN; 
72.89 MCI; 72.92 AD). Mean education was 16.51 years 
(SD  =  2.65) overall (16.58 CN; 16.64 MCI; 15.58 AD). 
Although network size ranged from 0 to 17, 83% of parti-
cipants named between 2 and 7 alters. The mean network 
size was 5.12 (SD = 2.69) for the full analysis sample (5.52 
CN; 4.78 MCI; 2.67 AD). These networks consisted of more 
than three different social relationship types (mean = 3.58, 
SD = 1.53) as indicated by the network diversity measure 
(3.83 CN; 3.33 MCI; 2.00 AD). The mean effective size 
was 2.01 (SD = 1.60), indicating that the average partici-
pant shared network ties to roughly two nonredundant so-
cial groups (2.18 CN; 1.85 MCI; 1.03 AD). Mean cognitive 
function (assessed using the MoCA) was 24.23 (SD = 4.11, 
range = 10–30), though this varied, on average and as ex-
pected, by diagnosis (25.73 CN; 22.06 MCI; 17.58 AD).

Multivariate Analyses

Table 2 presents the findings from the linear regression 
predicting cognitive function. Model 1 indicates that female 
participants (β = 0.37, SE = 0.15), participants with more 
education (β  =  0.08, SE  =  0.02), and White participants 
(β = 0.45, SE = 0.15) all had significantly higher cognitive 
function compared to each of their counterparts. Geriatric 

Depression Scale scores were negatively associated with 
cognitive function (β  = −0.48, SE  = 0.09). Amygdalar at-
rophy was also negatively associated with cognitive function 
(β = −0.19, SE = 0.08). For every SD increase in amygdalar 
atrophy, participants scored 0.21 SD lower on the MoCA.

Models 2 and 3 introduce the network attributes into the 
regression. Model 2 shows that network diversity is positively 
associated with cognitive function such that every additional 
social relationship type corresponds to a 0.12 SD increase 
on the MoCA. Effective size, however, showed no signifi-
cant association with cognitive function (Model 3, β = 0.01, 
SE = 0.04, p = .82). The findings from these models provide 
partial support to H1, which states that the ability to span 
multiple social roles and subgroups within one’s personal net-
work will be positively associated with cognitive function.

Models 4 and 5 test the interactions between amygdalar 
volume and network attributes to assess whether net-
work diversity and effective size moderate the (negative) 
relationship between brain volume and cognitive func-
tion (H2). The significant interaction term in Model 4 
(β  =  0.08, SE  =  0.04) indicates that the relationship be-
tween amygdalar atrophy and cognitive function is weaker 
for participants with diverse networks (i.e., multiple social 
relationship types) compared to those with less diverse net-
works. Figure 2 uses the marginal effects from this model 
to visualize the interaction. As shown, there is a clear neg-
ative association between amygdalar atrophy and MoCA 

Table 2. Linear Regression Models Predicting Montreal Cognitive Assessment (z-standardized)

Model 1 Model 2 Model 3 Model 4 Model 5

 β (SE) β (SE) β (SE) β (SE) β (SE)

Sociodemographics      
 Age −0.02 (0.01) −0.02 (0.01) −0.02* (0.01) −0.02 (0.01) −0.02* (0.01)
 Woman 0.39* (0.15) 0.33* (0.14) 0.36** (0.14) 0.31* (0.14) 0.30* (0.15)
 Education (years) 0.08*** (0.02) 0.07** (0.02) 0.08*** (0.02) 0.07*** (0.02) 0.08*** (0.02)
 White 0.46** (0.15) 0.43** (0.14) 0.55*** (0.13) 0.42** (0.14) 0.42** (0.14)
Clinical measures      
 GDS (logged) −0.50*** (0.09) −0.45*** (0.08) −0.29*** (0.08) −0.46*** (0.08) −0.51*** (0.08)
 Intracranial volume (z) 0.12** (0.07) 0.08 (0.08) 0.06 (0.07) 0.07 (0.08) 0.05 (0.08)
 Amygdalar atrophy (z) −0.21* (0.08) −0.19** (0.07) −0.19** (0.07) −0.45*** (0.13) −0.43*** (0.11)
Network attributes      
 Size  −0.03 (0.03)  −0.023 (0.03)  
 Prop. frequent contact  −0.61* (0.25) −0.59** (0.22) −0.48 (0.25) −0.55* (0.25)
 Diversity  0.12* (0.05)  0.13* (0.05)  
 Effective size   0.01 (0.04)  0.03 (0.04)
Interactions      
 Amygdala × Diversity    0.08* (0.04)  
 Amygdala × Effective size     0.14* (0.05)
Intercept 0.23 (0.81) −0.38 (0.84) 0.51 (0.75) −0.23 (0.82) 0.79 (0.80)
Adjusted R2 0.43 0.48 0.44 0.49 0.49
N 154 154 154 154 154

Notes: GDS = 15-item Geriatric Depression Scale. Models 3 and 5 do not control for network size because network size is a key component used to calculate 
effective size. 
*p < .05, **p < .01, ***p < .001.
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scores when network diversity was lower than average (i.e., 
−1 SD). This follows the theoretically expected relationship 
between lower brain volume and poorer clinical cognitive 
performance (i.e., low MoCA score). However, Figure 2 
also shows that participants with high levels of network di-
versity (i.e., +1 SD) failed to demonstrate any relationship 
between amygdalar atrophy and MoCA scores. In other 
words, access to social roles via one’s personal network ap-
pears to attenuate the association between brain volume 
and cognitive impairment.

Model 5 tests the interaction between amygdalar atrophy 
and effective size. Similar to the interaction term from the 
previous model, this interaction shows that the association 
between atrophy and cognitive function is moderated by 
effective size (β = 0.14, SE = 0.05). Figure 3, which displays 
the marginal effects from Model 5, shows that participants 
whose networks expose them to fewer nonredundant social 
groups (i.e., −1 SD below the mean effective size) exhibited 
a strong negative association between amygdalar atrophy 

and cognitive function. In substantive terms, a partici-
pant with a healthy amygdala (e.g., 2 SD above the mean) 
and whose effective size was 1 SD below the mean was 
expected to score 0.79 SD above the mean on the MoCA 
(95% CI = 0.35–1.23). By contrast, a participant with the 
same effective size but whose amygdalar volume was 2 SD 
below the mean (i.e., an unhealthy amygdala) was expected 
to score 0.92 SD below the mean on the MoCA (95% 
CI  =  −1.35, −0.50). Participants whose networks had an 
effective size that was 1 SD above the mean were expected 
to score similar on the MoCA regardless of their levels of 
amygdalar atrophy (as shown by the solid line in Figure 3). 
Supplementary models that use network density instead of 
effective size replicate these findings (Supplementary Table 
A1). Collectively, these findings support H2.

Sensitivity Analyses

We conducted additional analyses to ensure the robustness 
of our findings by estimating a parallel set of models. First, 
we ran a linear regression in which we interacted network 
density by amygdalar atrophy (Supplementary Table A2). 
The findings from this model showed that participants who 
had a more interconnected network (i.e., high density) ex-
hibited a negative relationship between amygdalar atrophy 
and MoCA, whereas participants who had a more loosely 
connected network (i.e., low density) were expected to score 
similar on the MoCA across levels of atrophy. Second, we 
reestimated the linear regression models from Table 2 and 
Supplementary Table A2 by substituting hippocampal at-
rophy for amygdalar atrophy (Supplementary Table A3). 
The results from these models were substantively consistent 
with the results from the models used in the main analyses. 
Third, we ran a series of logistic regression models using 
clinical diagnosis as the outcome (Supplementary Table A4). 
These modeled the odds of being diagnosed as either MCI 
or AD compared to CN (MCI and AD were combined due 
to small cell sizes). The results from these models suggested 
that the significant interactions between network attributes 
and brain atrophy from previous models also held when 
using clinical diagnosis as an outcome rather than cognitive 
performance. That is, we found a stronger relationship be-
tween amygdalar atrophy and diagnosis of clinical cognitive 
pathology for those with less network diversity and lower 
effective size compared to those with higher values. Finally, 
we reestimated the original linear models from Table 2 but 
omitted participants who were clinically diagnosed with AD 
(Supplementary Table A5). The findings from these latter 
models were consistent with findings from the models that 
included participants with dementia.

Discussion
This study examined the moderating role of social networks 
in the association between low amygdalar volume—a poten-
tial indicator of neurodegeneration—and cognitive function 

Figure 2. Marginal effect of brain atrophy on cognitive function by net-
work diversity. Note: Predicted values are derived using average marginal 
effects from Table 2, Model 4. MoCA = Montreal Cognitive Assessment.

Figure 3. Marginal effect of brain atrophy on cognitive function by ef-
fective size. Note: Predicted values are derived using average marginal 
effects from Table 2, Model 5. MoCA = Montreal Cognitive Assessment.
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in a sample of older adults at risk for AD. We found that 
individuals who span multiple social roles and subgroups 
within their personal networks demonstrated better global 
cognitive function (H1). More importantly, we found that 
these network attributes moderated the association between 
cognitive function and probably underlying neuropathology 
in the regions of the brain associated with emotional proc-
essing, social behavior, and decision making (H2).

These findings are broadly consistent with the cognitive 
reserve hypothesis of AD resilience. A viable explanation is 
that interacting with a diverse and expansive set of social 
ties engages the brain in ways that attenuate the impact of 
brain atrophy on cognitive decline (Ellwardt et al., 2015; 
Mische & White, 1998; Wlodarski & Dunbar, 2016). It is 
possible that older adults in our study with low cognitive 
reserve (i.e., minimal social network diversity and low effec-
tive size) experienced a steep trajectory of cognitive decline 
as AD neuropathology increased. In contrast, participants 
with high cognitive reserve may have exhibited greater re-
silience and a delayed trajectory of decline, resulting in a 
null relationship between amygdalar volume and cognitive 
function. If these interpretations are correct, we anticipate 
that older adults with diverse networks that allow them 
to engage in multiple nonredundant social groups—if fol-
lowed longitudinally—would maintain relatively higher 
levels of cognitive function before eventually experiencing 
delayed but rapid decline. Unfortunately, this trajectory is 
currently unobservable in our cross-sectional analyses.

Social scientists argue that because people who are em-
bedded in the same social groups likely share similar char-
acteristics, interests, and activities, those who bridge two 
otherwise unconnected networks have a social advantage 
(Burt, 1992; Cornwell, 2009). We extend this theory to 
the case of cognitive aging and integrated with theories 
of cognitive reserve. Specifically, having access to novel 
and diverse social stimuli and processing complex social 
information may work to establish cognitive reserve over 
the life course, creating conditions for greater resilience to 
AD pathology. Meaningful contact with heterogeneous in-
teraction partners—such as that which occurs in monthly 
supper clubs or community volunteering—likely provides 
access not only to novel ideas, information, and social 
activities, but also to diverse visual and auditory stimuli 
(Mische & White, 1998). Interactions within these types 
of diverse contexts produce eustress (i.e., good stress), re-
quiring greater cognitive effort to interpret social cues and 
exercise other social cognitive skills (Meyer et  al., 2012; 
Wlodarski & Dunbar, 2016). Social networks that force 
individuals to span multiple contexts are therefore more 
cognitively enriching than familiar, repetitive, and comfort-
able exchanges with immediate family members and other 
interconnected confidantes. This explanation is consistent 
with related research suggesting that the volume of specific 
brain regions (e.g., amygdala, hippocampus) are associated 
with social network size and density in humans (Blumen & 
Verghese, 2019; Noonan et al., 2018).

An alternative explanation is that individuals with more 
robust neural structure and function may be resistant to 
cognitive decline and therefore also able to maintain so-
cial relationships and activities with a more diverse social 
network (Cornwell, 2009). In this case, the observed re-
lationships might be surrogate rather than causal. In all 
likelihood, associations between social networks and cog-
nitive outcomes are beneficial and self-reinforcing, such 
that those with a higher level of initial social engagement 
are more resilient to cognitive decline and also more ca-
pable of maintaining social functioning despite underlying 
neuropathology.

Strengths and Limitations

The present study has a unique strength that contributes 
to the existing literature on social networks and cognitive 
function. By gathering contemporaneous data on partici-
pants’ cognitive function, QNPs, and social networks, we 
were able to properly test a key element of the cognitive 
reserve hypothesis by examining whether social networks 
moderate the relationship between brain atrophy and cog-
nitive function.

At the same time, our study has several limitations. 
First, our data were cross-sectional. Until longitudinal ob-
servations become available, we are unable to examine re-
lationships over time between reductions in brain volume 
and declines in cognitive function. We instead inferred 
trajectories by observing individuals at different levels of 
amygdalar volume and cognitive function. Therefore, any 
conclusions about causality are inappropriate. Second, we 
relied on data from a clinical sample. Although this limits 
our ability to generalize to the broader population, it was 
the only way to ensure both neuroimaging data and net-
work data on a sufficient number of older adults. Third, 
although our focus on the amygdala and hippocampus 
stems from a large body of research implicating atrophy 
in these regions in MCI and early-stage AD (Poulin et al., 
2011; Wachinger et  al., 2016), recent studies have sug-
gested that atrophy in other regions, such as the prefrontal 
cortex, may also be indicative of AD (Boublay et al., 2020; 
Yu et al., 2021). Moreover, there is research suggesting that 
the neurological linkages to social networks and social en-
gagement are well distributed across different regions of 
the brain (Eisenberger & Cole, 2012; Kwak et al., 2018). 
Future research should examine the moderating role of 
social networks on the effects of other brain regions and 
neurological processes, as this might reveal important and 
underexplored etiological pathways (Yu et al., 2021).

Although it has many advantages, the social network ap-
proach used here has some potential drawbacks. First, self-
reported social networks are subject to recall error. Such 
errors may theoretically be heightened among older adults 
and especially those with lower levels of cognitive function. 
However, a previous study using SNAD data showed that 
when compared against network perceptions from a study 
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partner, focal participants with early-stage AD or MCI 
were no more likely to omit specific alters from their per-
sonal networks compared to CN participants (Roth et al., 
2021). Second, we used a relatively brief social network 
inventory that largely captures relatively strong and con-
temporaneous ties. Moreover, we were unable to compare 
results using social network measures to other more tradi-
tional measures of social engagement, such as participation 
in leisure activities. Notwithstanding, measurement of mul-
tiple social network dimensions, and especially structural 
characteristics, is an important contribution to existing re-
search in this area. Future research would further benefit 
from the use of a more expansive network inventory that 
elicits information about weaker, inactive, or sporadic net-
work ties, and from direct comparisons between network 
measures and traditional indicators of social engagement 
or activity.

Conclusions
Our results are consistent with a cognitive reserve expla-
nation for the well-established protective role of social net-
works and interactions in cognitive decline (Evans et  al., 
2019; Kelly et  al., 2017). Findings suggest that access to 
novel social stimuli and cognitively diverse social networks 
may attenuate the effects of underlying neurodegeneration 
on global cognitive function. Additional research using lon-
gitudinal data is critical for establishing stronger evidence. 
More broadly, our research suggests that leveraging a so-
cial network approach provides unique insight into the spe-
cific mechanisms underlying the association between social 
interactions and cognitive outcomes. Increasing our under-
standing of social processes in the neurology of aging is 
likely to help identify novel targets for intervention to re-
duce the burden of AD and age-related cognitive decline on 
individuals, families, and the health care system.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series B: Psychological Sciences and Social 
Sciences online.
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