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We thank Wostyn et al. (1) for their supportive comments,
their interest in our research (2), and their informative
descriptions of the potential mechanisms underlying the
observed spaceflight-related changes in perivascular spaces
(PVS). We also appreciate their intriguing question about the
possibility to determine whether the MRI-visible PVS mea-
sured in our study corresponded to periarterial or perivenous
spaces. With the current MRI data collected in astronauts and
cosmonauts, it was not possible for us to reliably discriminate
the periarterial from the perivenous compartment. At least
another sequence for specifically imaging arteries (e.g., MR
angiography) or veins (e.g., susceptibility-weighted sequences)
would be required to define the detected MRI-visible PVS as
periarterial or perivenous. Recent MRI studies found that the
majority of MRI-visible PVS in the white matter are periarterial
(3–5). The reason why perivenous spaces are less visible than
periarterial spaces on structural MRI data remains currently
elusive, but a few potential explanations include their smaller
size and/or a different composition of the perivenous fluid
compared with the periarterial. A very recent pathological
study in patients with cerebral amyloid angiopathy also
showed that the pathologically enlarged PVS are mostly peri-
arterial (6).

Based on these findings, it is conceivable that the MRI-
visible PVS that we quantified in astronauts and cosmo-
nauts are mostly periarterial.

Interestingly, increased stiffness and reduced compli-
ance in arteries above the heart have been described after
long-duration spaceflight (7), resulting in reduced arterial
wall compliance and pulsatility, a major motive force for
the perivascular fluid (8). The accumulation of fluid in peri-
arterial spaces might contribute to reduce the arterial pul-
satility, due to the increased resistance on the arterial wall,
possibly leading to further stagnation of perivascular fluid
in a feedforward loop and to a reduction in perfusion, as
described in a terrestrial analog for spaceflight (9).

In addition to the mechanisms underlying PVS changes,
it is also important to understand the clinical consequences

of these alterations to the space flyers. Increased blood
biomarkers of brain injury after long-duration spaceflight
have been recently discovered (10), which could derive
from a potentially compromised perivascular clearance
pathway, as suggested by the PVS enlargement we obser-
ved (2).

Moreover, we found an association between a higher
MRI-visible PVS volume in white matter, both preflight and
postflight, and the development of the spaceflight-associated
neuro-ocular syndrome (SANS) (2), suggesting that some
individuals with a higher baseline amount of fluid in PVS
might have an increased risk for SANS. Together with lateral
ventricles, PVS might represent a buffering system for the
brain fluids, and the PVS buffering capacity might have a vol-
umetric threshold above which the spaceflight-associated
cerebral fluid accumulation could induce structural changes
in the eyes.

Our results further highlight the importance of imple-
menting advanced MRI sequences (11) to investigate the
brain vasculature, the perivascular compartments, and the
cerebrospinal fluid dynamics in space flyers for a better
understanding of the brain modifications related to pro-
longed microgravity and their reversibility after returning
on Earth, and for the development of strategies to improve
and facilitate the human adaptation to space.
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