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Understanding spoken language requires transforming ambiguous acoustic streams into
a hierarchy of representations, from phonemes to meaning. It has been suggested that
the brain uses prediction to guide the interpretation of incoming input. However, the
role of prediction in language processing remains disputed, with disagreement about
both the ubiquity and representational nature of predictions. Here, we address both
issues by analyzing brain recordings of participants listening to audiobooks, and using
a deep neural network (GPT-2) to precisely quantify contextual predictions. First, we
establish that brain responses to words are modulated by ubiquitous predictions. Next,
we disentangle model-based predictions into distinct dimensions, revealing dissociable
neural signatures of predictions about syntactic category (parts of speech), phonemes,
and semantics. Finally, we show that high-level (word) predictions inform low-level
(phoneme) predictions, supporting hierarchical predictive processing. Together, these
results underscore the ubiquity of prediction in language processing, showing that the
brain spontaneously predicts upcoming language at multiple levels of abstraction.
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Understanding spoken language requires transforming ambiguous stimulus streams into a
hierarchy of increasingly abstract representations, ranging from speech sounds to meaning.
It is often argued that during this process, the brain relies on prediction to guide the
interpretation of incoming information (1, 2). Such a “predictive processing” strategy has
not only proven effective for artificial systems processing language (3, 4) but has also been
found to occur in neural systems in related domains such as perception and motor control,
and might constitute a canonical neural computation (5, 6).

There is a considerable amount of evidence that appears in line with predictive language
processing. For instance, behavioral and brain responses are highly sensitive to violations
of linguistic regularities (7, 8) and to deviations from linguistic expectations more broadly
(9–13). While such effects are well documented, two important questions about the role
of prediction in language processing remain unresolved (14).

The first question concerns the ubiquity of prediction. While some models cast
prediction as a routine, integral part of language processing (1, 15, 16), others view it
as relatively rare, pointing out that apparent widespread prediction effects might, instead,
reflect other processes like semantic integration difficulty (17, 18), or that such prediction
effects might be exaggerated by the use of artificial, prediction-encouraging experiments
focusing on highly predictable “target” words (17, 19). The second question concerns
the representational nature of predictions: Does linguistic prediction occur primarily at
the level of syntax (15, 20–22) or rather at the lexical (16, 23), semantic (24, 25), or
the phonological level (13, 26–29)? And is prediction limited to incremental, antici-
patory processing within a given level, or does it extend to top-down prediction across
levels (30)?

Event-related potential (ERP) studies have described brain responses to violations of,
and deviations from, both high- and low-level expectations, suggesting prediction might
occur at all levels simultaneously (1, 31) (but see refs. 19 and 32). However, it has been
disputed whether these findings would generalize to natural language, where violations are
rare or absent and with few highly predictable words. In these cases, prediction may be less
relevant or might, perhaps, be limited to the most abstract levels (17, 19, 32). Studies on
naturalistic comprehension, on the other hand, have found neural sensitivity to various
metrics of linguistic unexpectedness, suggesting prediction does, in fact, generalize to nat-
ural language (10, 11, 13, 22, 27, 28, 33, 34). However, these studies often focused on just
one [or two (35)] levels of analysis—for example, speech sounds, words, or grammar. This
leaves open whether metrics at different levels provide different vantage points onto a single
underlying process or whether prediction happens at multiple levels simultaneously—and,
if so, whether predictions at different levels may interact. Moreover, it is unclear whether
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such overall predictability effects actually reflect continuous pre-
diction, or might be driven by a subset of (highly predictable)
events in naturalistic stimuli.

Here, we address both issues, probing the ubiquity and nature
of linguistic prediction during natural language understanding.
Specifically, we analyzed brain recordings from two independent
experiments of participants listening to audiobooks, and used
a powerful deep neural network (GPT-2) to quantify linguistic
predictions in a fine-grained, contextual fashion. First, we ob-
tained evidence for predictive processing, confirming that brain
responses to words are modulated by linguistic predictions. Criti-
cally, the effects of predictability could not be reduced to nonpre-
dictive factors such as integration difficulty, were logarithmically
related to word probability, and were not confined to a subset of
constraining words, but were widespread—supporting the notion
of continuous, probabilistic prediction. Next, we investigated at
which level prediction occurs. To this end, we disentangled the
model-based predictions into distinct dimensions, revealing dis-
sociable neural signatures of predictions about syntactic category
(parts of speech), phonemes, and semantics. Finally, we found that
higher-level (word) predictions constrain lower-level (phoneme)
predictions, supporting hierarchical prediction. Together, these
results underscore the ubiquity of prediction in language process-
ing, and demonstrate that prediction is not confined to a single
level of abstraction but occurs throughout the language network,
forming a hierarchy of predictions across many levels of analysis,
from phonemes to meaning.

Results

We consider data from two independent experiments, in which
brain activity was recorded while participants listened to natural
speech from audiobooks. The first experiment is part of a publicly
available dataset (36), and contains 1 h of electroencephalographic
(EEG) recordings in 19 participants. The second experiment
collected 9 h of magnetoencephalographic (MEG) data in three
individuals, using individualized head casts that allowed us to
localize the neural activity with high precision. While both ex-
periments had a similar setup (Fig. 1), they yield complementary
insights, both at the group level and in three individuals.

Neural Responses to Speech Are Modulated by Continuous
Linguistic Predictions. We first tested for evidence for linguistic
prediction in general. We reasoned that, if the brain is con-
stantly predicting upcoming language, neural responses to words
should be sensitive to violations of contextual predictions, yielding
“prediction error” signals which are considered a hallmark of
predictive processing (5). To this end, we used a deconvolution

technique (regression ERP; see Materials and Methods) to estimate
the effects of prediction error on evoked responses within the
continuous recordings. We focus on the low-frequency evoked
response because it connects most directly to earlier work on
neural signatures of prediction in language (7, 32, 37, 38).

To quantify linguistic predictions, we analyzed the books par-
ticipants listened to with a deep neural language model: GPT-2
(39). GPT-2 is a large transformer-based model that predicts the
next word given the previous words, and is currently among the
best publicly available models of its kind. Note that we do not use
GPT-2 as a model of human language processing but purely as a
tool to quantify how expected each word is in context.

To test whether neural responses to words are modulated
by contextual predictions, we compared three regression models
(SI Appendix, Fig. S2). The baseline model formalized the hy-
pothesis that natural, passive language comprehension does not
invoke prediction. This model did not include regressors related
to contextual predictions, but did include potentially confound-
ing variables (such as frequency, semantic integration difficulty,
and acoustics). The constrained guessing model formalized the
hypothesis that, during comprehension, 1) predictions are not
generated constantly but only for a subset of words, in con-
straining contexts; and 2) these predictions are all or none. These
assumptions capture how prediction was traditionally conceived
of by many in psycholinguistics (38). We implemented them as
a regression model using all regressors from the baseline model,
plus an unexpectedness regressor. This unexpectedness regressor
was 1) only included for a subset of words in the most constraining
contexts; and 2) used a linear metric of word improbability, since
all-or-none prediction results (on average) in a linear relationship
between word probability and brain response. This is because the
probability of an all-or-none prediction error scales linearly with
a word’s improbability. Therefore, while the regression model was
itself not categorical, it provides the best approximation to an all-
or-none prediction error, given that we do not know participants’
moment-by-moment all-or-none predictions (see Materials and
Methods).

Finally, we considered a continuous prediction model. This
model included all regressors from the baseline model, plus a
logarithmic metric of word improbability (surprisal) for every
word in the audiobook. This formalized the hypothesis that the
brain continuously generates probabilistic predictions, and that
the response to a stimulus is proportional to its negative log
probability, as postulated by predictive processing accounts of
language (1, 9, 37) and neural processing more broadly (5, 6).

When we compared the ability of these models to predict
brain activity using cross-validation, we found that the con-
tinuous prediction model performed better than both of the

A B

Fig. 1. Schematic of experimental and analytical framework. (A) (Top) In both experiments, participants listened to continuous recordings from audiobooks
while brain activity was recorded. (Bottom) The texts participants listened to were analyzed by a deep neural network (GPT-2) to quantify the contextual
probability of each word. A regression-based technique was used to estimate the effects of (different levels of) linguistic unexpectedness on the evoked
responses within the continuous recordings. (B) Datasets analyzed: one group-level EEG dataset, and one individual subject source-localized MEG dataset.
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Fig. 2. Neural responses are modulated by probabilistic predictions. (A) Model comparison. Cross-validated correlation coefficients for EEG (Left) and each
MEG participant (Right). EEG: dots with connecting lines represent individual participants (averaged over all channels). MEG: bars represent median across runs,
error bars represent bootstrapped absolute deviance (averaged over language network sources). (B) EEG: coefficients describing the significant effect of lexical
surprise (see SI Appendix, Fig. S3 for the full topography over time). Highlighted area indicates extent of the cluster, and shaded error bar indicates bootstrapped
SE. Inset shows distribution of absolute t values and of channels in the cluster. (C) Difference in prediction performance across cortex (transparency indicates
family-wise-error (FWE)-corrected P values). Significance levels correspond to P < 0.01 (**), P < 0.001 (***) in a two-tailed paired Student’s t or Wilcoxon sign
rank test.

other models (Fig. 2A). The effect was highly consistent, both
in the EEG participants (continuous prediction vs. constrained
guessing, t18 = 3.18, p = 5.20× 10−3; prediction vs. baseline,
t18 = 5.01, p = 9.04× 10−5) and within each MEG participant
(continuous prediction vs. constrained guessing, all p < 1.78×
10−4; probabilistic vs. baseline, all p < 1.58× 10−11).

The constrained guessing model differed from the continu-
ous prediction model in two ways—by assuming 1) a linear
relationship between probability and brain response and 2) that
predictions are limited to constraining contexts. To understand
which of these explains the continuous prediction model’s su-
periority, we also compared control models to probe the issues
separately. This confirmed that both contributed: Effects of word
predictability are both logarithmic (SI Appendix, Fig. S5) and not
limited to words in constraining context, but are found much
more broadly, and not just for content words but also for function
words (SI Appendix, Figs. S5 and S6). These results are in line
with earlier work on surprisal effects, and support the notion that
predictions are ubiquitous and automatic (see Discussion).

Having established that word unexpectedness modulates neural
responses, we characterized this effect in space and time. In the
MEG dataset, we asked for which neural sources lexical surprise
was most important in explaining neural data, by comparing the
prediction performance of the baseline model to the predictive
model in a spatially resolved manner. This revealed that overall
word unexpectedness modulated neural responses throughout
the language network (Fig. 2C ). To investigate the temporal
dynamics of this effect, we inspected the regression coefficients,
which describe how fluctuations in lexical surprise modulate
the neural response at different time lags—together forming a
modulation function also known as the regression evoked response
(40). When we compared these across participants in the EEG
experiment, cluster-based permutation tests revealed a significant
effect (p = 2× 10−4) based on a posteriocentral cluster with a
negative polarity peaking at 400 ms post word onset (Fig. 2B and
SI Appendix, Fig. S3). This indicates that surprising words lead to

a stronger negative deflection of evoked responses, an effect tightly
matching the classic N400 (7, 24, 32). Coefficients for MEG
subjects revealed a similar, slow effect at approximately the same
latencies (SI Appendix, Fig. S4).

Together, these results constitute clear evidence for predic-
tive processing, by confirming that brain responses to words are
modulated by predictions. These modulations are not confined to
constraining contexts, occur throughout the language network,
evoke an effect reminiscent of the N400, and are best explained
by probabilistic predictive processing accounts.

Linguistic Predictions Are Feature Specific. The results, so far,
revealed modulations of neural responses by overall word un-
expectedness. What type of prediction might be driving these
effects? Earlier research suggests a range of possibilities, with some
proposing that the effect of overall word surprisal primarily reflects
syntax (15, 20), while others propose that prediction unfolds at
the semantic (24, 25) or the phonemic level (13, 26, 27)—or at
all levels simultaneously (1).

To evaluate these possibilities, we disentangled the aggregate,
word-level linguistic predictions from the artificial neural network
into distinct linguistic dimensions (Fig. 3). This allows us to derive
estimates of three feature-specific predictions: the part of speech
(POS) prediction (defined as the probability distribution over
syntactic categories), semantic prediction (defined as the predicted
semantic embedding), and phonemic prediction (the distribution
over phonemes, given the phonemes in the word so far and the
prior context). Note that, since each of these predictions is based
on the same aggregate prediction from GPT-2, the features refer
to the prediction content, and not its source. For instance, the
POS prediction is a prediction about the part of speech, but not
necessarily based on the part of speech or syntactic category alone.
By comparing these predictions to the presented words, we derived
feature-specific prediction error regressors which quantified not
just the extent to which a word is surprising but also in what way:
semantically, (morpho)syntactically, or phonemically.
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Fig. 3. To disentangle the model-derived predictions into distinct linguistic dimensions, the lexical predictions were analyzed. For the prediction about syntactic
category, POS tagging was performed over all potential sentences (e.g., “It made the boy sad to think,” “It made the boy sad to see,” etc.). To compute the
phonemic prediction, each predicted word was decomposed into its constituent phonemes, and the predicted probabilities were used as a contextual prior in
a phoneme model (Fig. 6). For the semantic prediction, a weighted average was computed over the GLoVe embeddings of all predicted words to retrieve the
expected semantic vector, based on GPT-2.

We reasoned that, if the brain is generating predictions at a
given level (e.g., syntax or grammar), then the neural responses
should be sensitive to prediction errors specific to this level.
Moreover, because these different features are processed by partly
different brain areas over different timescales, the prediction er-
rors should be at least partially dissociable. To test this, we
formulated a new regression model (SI Appendix, Fig. S7). This
included all variables from the lexical prediction model as nuisance
regressors, and added three regressors of interest: POS surprisal
(defined for each word), semantic prediction error (defined for
each content word), and phoneme surprisal (defined for each
phoneme).

Because these regressors were, to some degree, correlated, we
first asked whether, and in which brain area, each of the prediction
error regressors explained any unique variance not explained
by the other regressors. In this analysis, we turn to the MEG
data because of their spatial specificity. As a control, we first
performed the analysis for a set of regressors with a known
source: the acoustics. This revealed a peak around the auditory
cortex (SI Appendix, Fig. S9), in line with earlier work (41) and
confirming that the approach can localize areas sensitive to a given
regressor. We then tested the three prediction error regressors,
finding that each explained significant additional variance in each
individual (Fig. 4), although, in one participant, the variance
explained by phonemic surprisal was only marginally significant
after multiple comparisons correction.

The statistically thresholded patterns of explained variance
appear spatially distinct (Fig. 4). To test whether this spatial
dissociation was statistically reliable, we performed a dissociability
analysis (see Materials and Methods). This revealed that the pat-
terns of variance explained by each unexpectedness regressor were
dissociable, both overall, in a four-way classification (all p < 2×
10−5), and for all pair-wise comparisons (SI Appendix, Table S1).
To validate that this dissociation was not an artifact of our
analysis (of subdividing linguistic unexpectedness into multiple
regressors), we also performed control analyses with simplified
regressions, which confirmed that the spatial patterns were not an
artifact of our analysis (SI Appendix, Fig. S16), and that phoneme-
level regressors were indeed temporally aligned to phonemes
(SI Appendix, Fig. S8).

Although there was variation in lateralization and exact spa-
tial locations between individuals, the overall pattern of sources
aligned well with prior research on the neural circuits for each
level. We observed a wide set of areas responsive to semantic pre-
diction errors—consistent with the observation that the semantic
system is widely distributed (42, 43), whereas, for the phonemic
and POS surprisal, we found more focal, temporal areas, that are
known to be key areas for syntactic processing (21, 44, 45), and
for speech perception and auditory word recognition, respectively
(see Discussion).

Together, this shows that the brain responds differently to dif-
ferent types of linguistic unexpectedness, implying that linguistic

Fig. 4. Dissociable patterns of explained variance by syntactic category (POS) and semantic and phonemic predictions. Unique variance is explained by
different types of unexpectedness (quantified via surprise or prediction error) across cortical sources in each MEG participant. In all plots, color indicates
amount of additional variance explained; opacity indicates FWE-corrected statistical significance. Note that p < 0.05 is equivalent to − log10(p) > 1.3. For the
maps of additional control variables (lexical surprisal and acoustics), see SI Appendix, Fig. S9.
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Fig. 5. Spatiotemporal signatures of syntactic, semantic, and phonemic prediction errors. EEG (Left): coefficients averaged across the channels participating
for at least one sample in the three main significant clusters (one per predictor). Highlighted area indicates temporal extent of the cluster. Shaded area around
waveform indicates bootstrapped SEs. Stars indicate cluster-level significance; p < 0.05 (*), p < 0.01 (**). Insets represent selected channels and distribution of
absolute t values. Note that these plots only visualize the effects; for the full topographies of the coefficients and respective statistics, see SI Appendix, Fig. S10.
MEG (Right): polarity aligned coefficients averaged across the sources with significant explained variance (Fig. 4) across participants. Shaded area represents
absolute deviation. Insets represent topography of absolute value of coefficients averaged across the highlighted period. Note that, due to polarity alignment,
sign information is to be ignored for the MEG plots. For average coefficients for each source, see SI Appendix, Figs. S13–S15 for coefficients of source in each
individual.

predictions are feature specific and occur at multiple levels of
processing.

Dissociable Spatiotemporal Signatures of Predictions at Differ-
ent Levels. Having established that the three different types of
prediction errors independently modulated neural responses in
different brain areas, we further investigated the nature of these
effects. This was done by inspecting the coefficients, which de-
scribe how fluctuations in a given regressor modulate the response
over time. We first turn to the EEG data because, there, the sample
size allows for population-level statistical inference on the coeffi-
cients. We fitted the same integrated model (SI Appendix, Fig. S7)
and performed spatiotemporal cluster-based permutation tests.
This revealed significant effects for each type of prediction error
(Fig. 5).

First, POS surprisal evoked an early, positive deflection (p =
8.7× 10−3) based on a frontal cluster between 200 and 500 ms.
This early frontal positivity converges with two recent studies that
investigated specifically syntactic prediction using models trained
explicitly on syntax (22, 33), suggesting the effect is not specific to
the POS formulation used here but reflects predictions about syn-
tax more broadly (see Discussion). We also observed a late negative
deflection for POS surprisal (p = 0.02; SI Appendix, Fig. S11),
but this was neither in line with earlier findings nor replicated
in the MEG data. The semantic prediction error also evoked a
positive effect (p = 0.013), but this was based on a much later,
spatially distributed cluster between 600 and 1,100 ms—an effect
reminiscent of late “post-N400 positivities (PNP)” observed for
purely semantic anomalies (38, 46). Notably, although semantic
prediction error was also associated with a cluster for an N400-like
modulation, this effect was not significant (p = 0.075), presum-
ably because the negative deflection was already explained by the
overall lexical surprisal, which was included as a nuisance regressor
(SI Appendix, Fig. S12). Finally, the phoneme surprisal evoked a
negative effect (p = 5.1× 10−3) based on an early, distributed
cluster between 100 and 500 ms. This effect was similar to the
word-level surprise effect (Fig. 2C and SI Appendix, Fig. S12) but

occurred earlier, peaking at about 250 ms to 300 ms (jackknife-
based latency t test: t18 = 6.96, p = 1.69× 10−6). This effect
strongly resembles N250 or phonological mismatch negativity
(PMN) components from ERP studies on phonological mismatch
(47) and effects from recent model-based studies of predictive
phonological processing of natural speech (13, 28, 48).

When we performed the same analysis on the MEG data,
we observed striking variability in the exact shape and timing
of the modulation functions between individuals (SI Appendix,
Figs. S13–S15). Overall, however, we could recover a temporal
pattern of effects similar to the EEG results: phonemic and POS
surprisal modulating early responses, and semantic prediction
error modulating later responses—although not as late in the
EEG data. This temporal order holds on average (Fig. 5 and
SI Appendix, Fig. S12), and is especially clear within individuals
(SI Appendix, Figs. S13–S15).

Finally, to confirm that these dissociable signatures were not
an artifact of subdividing linguistic unexpectedness into multiple
regressors, we again performed simplified regressions as a control.
The observed effects were preserved in simplified regressions,
suggesting they are, indeed, independent effects (SI Appendix,
section B and Fig. S17).

Overall, our results (Figs. 4 and 5) demonstrate that the distinct
classes of prediction errors evoke brain responses that are both
temporally and spatially dissociable. Specifically, while phonemic
and POS predictions modulate relatively early neural responses
(100 ms to 400 ms) in a set of focal temporal (and frontal)
areas that are key for syntactic and phonetic/phonemic processing,
semantic predictions modulate later responses (>400 ms) across
a widely distributed set of areas across the distributed semantic
system. These results reveal that linguistic prediction is not imple-
mented by a single system but occurs throughout the speech and
language network, forming a hierarchy of linguistic predictions
across all levels of analysis.

Phoneme Predictions Reveal Hierarchical Inference. Having es-
tablished that the brain generates linguistic predictions across
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A

B C

Fig. 6. Evidence for hierarchical inference during phoneme prediction. (A) Two models of phoneme prediction during incremental word recognition. Phonemic
predictions were computed by grouping candidate words by their identifying next phoneme, and weighting each candidate word by its prior probability. This
weight (or prior) could be either based on a word’s overall probability of occurrence (i.e., frequency) or on its conditional probability in that context (from GPT-2).
Critically, in the frequency-based model, phoneme predictions are based on a single level: short sequences of within-words phonemes (hundreds of milliseconds
long) plus a fixed prior. By contrast, in the contextual model, predictions are based not just on short sequences of phonemes but also on a contextual prior which
is, itself, based on long sequences of prior words (up to minutes long), rendering the model hierarchical (see Materials and Methods). (B and C) Model comparison
results in EEG (B) and all MEG participants (C). EEG: dots with connecting lines represent individual participants (averaged over all channels). MEG: bars represent
median across runs; error bars represent bootstrapped absolute deviance (averaged over language network sources). Significance levels correspond to
P < 0.01 (**) or P < 0.001 (***) in a two-tailed paired t or Wilcoxon sign rank test.

multiple levels of analysis, we finally asked whether predictions
at different levels might interact. One option is that they are
encapsulated: Predictions in separate systems might use different
information, for instance, unfolding over different timescales,
rendering them independent. Alternatively, predictions at dif-
ferent levels might inform and constrain each other, effectively
converging into a single multilevel prediction—as suggested by
hierarchical predictive processing (5, 6, 49).

One way to adjudicate between these hypotheses is by evalu-
ating different schemes for deriving phonemic predictions. One
possibility is that such predictions are only based on information
unfolding over short timescales. In this scheme, the predicted
probability of the next phoneme is derived from the cohort of
words compatible with the phonemes so far, with each candidate
word weighted by its frequency of occurrence (Fig. 6A). As such,
this scheme entails a single-level model: Predictions are based only
on a single level of information—short sequences of within-word
sequences of phonemes, plus a fixed prior (of word frequencies in
a language).

Alternatively, phoneme predictions might not only be based
on sequences of phonemes within a word but also on the longer
prior linguistic context. In this case, the probability of the
next phoneme would still be derived from the cohort of words

compatible with the phonemes presented so far, but, now, each
candidate word is weighted by its contextual probability (Fig.
6A). Such a model would be hierarchical, in the sense that
predictions are based both—at the first level—on short sequences
of phonemes (i.e., of hundreds of milliseconds long) and on a
contextual prior which itself is based—at the higher level—on
long sequences of words (i.e., of tens of seconds to minutes long).

Here, the first model is more in line with the classic co-
hort model of incremental (predictive) word recognition, which
suggests that context is only integrated after the selection and
activation of lexical candidates (50). By contrast, the second model
is more in line with contemporary theories of hierarchical predic-
tive processing which propose that high-level cortical predictions
(spanning larger spatial or temporal scales) inform and shape
low-level predictions (spanning finer spatial or temporal scales)
(49, 51). Interestingly, recent studies of phoneme predictions dur-
ing natural listening have used both the frequency-based single-
level model (27, 29) and a context-based (hierarchical) model
(13). However, these studies did not compare which of these best
accounts for prediction-related fluctuations in neural responses to
phonemes.

To compare these possibilities, we constructed three phoneme-
level regression models (SI Appendix, Fig. S19), which all only

6 of 12 https://doi.org/10.1073/pnas.2201968119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://doi.org/10.1073/pnas.2201968119


included regressors at the level of phonemes. First, the baseline
model only included nonpredictive control variables: phoneme
onsets, acoustics, word boundaries, and uniqueness points. This
can be seen as the phoneme-level equivalent of the baseline
model in Fig. 2 and SI Appendix, Fig. S5. The baseline model was
compared with two regression models which additionally included
phoneme-level predictability regressors. In one regression model,
these regressors were calculated using a single-level model (with
a fixed, frequency-based prior); in the other, the predictability
regressors were derived from a hierarchical model (with a dynamic,
contextual prior derived from GPT-2). To improve our ability to
discriminate between the hierarchical and single-level model, we
used not only phoneme surprisal but also phoneme entropy as a
regressor (13).

When we compared the cross-validated predictive perfor-
mance, we first found that, in both datasets, the predictive model
performed significantly better than the nonpredictive baseline
(Fig. 6 B and C ; hierarchical vs. baseline, EEG: t18 = 3.15,
p = 5.50× 10−3; MEG: all p < 7.99× 10−12). This replicates
the basic evidence for predictive processing but now at the
phoneme rather than word level. Critically, when we compared
the two predictive models, we found that the hierarchical
model performed significantly better, both in EEG (t18 = 3.61,
p = 7.28× 10−3) and MEG (all p < 3.34× 10−4). This
suggests that neural predictions of phonemes (based on short
sequences of within-word speech sounds) are informed by lexical
predictions, effectively incorporating long sequences of prior
words as contexts. This is a signature of hierarchical prediction,
supporting theories of hierarchical predictive processing.

Discussion

Across two independent datasets, we combined deep neural lan-
guage modeling with regression-based deconvolution of human
electrophysiological (EEG and MEG) recordings to ask whether
and how evoked responses to speech are modulated by linguistic
expectations that arise naturally while listening to a story. The
results demonstrated that evoked responses are modulated by con-
tinuous predictions. We then introduced a technique that allowed
us to quantify not just how much a linguistic stimulus is surprising
but also at what level—phonemically, morphosyntactically, and/or
semantically. This revealed dissociable effects, in space and time, of
different types of predictions: Predictions about syntactic category
(part of speech) and phonemes modulated early responses in a
set of focal, mostly temporal areas, while semantic predictions
modulated later responses across a widely distributed set of cortical
areas. Finally, we found that responses to phonemic surprisal and
entropy were best modeled by a hierarchical model incorporating
two levels of context: short sequences of within-word phonemes
(up to hundreds of milliseconds long) and long sequences of prior
words (up to minutes long). This suggests predictive processing is
not limited to anticipatory incremental processing within levels,
but includes top-down prediction across levels (30). Together, the
results demonstrate that, during natural listening, the brain is
engaged in prediction across multiple levels of linguistic represen-
tation, from speech sounds to meaning. The findings underscore
the ubiquity of prediction during language processing, and fit
naturally in predictive processing accounts of language (1, 2) and
neural computation more broadly (5, 6, 51, 52).

A first result of this paper is that evoked responses to words are
modulated by a logarithmic metric of unexpectedness (surprisal).
This replicates earlier work on surprisal effects on reading times
(9, 53–55) and brain responses (10, 37, 56–58) (but see ref.
59 for contrasting results using cloze probabilities). Regression

models including word unexpectedness performed better than
a strong nonpredictive baseline, indicating that predictability
effects cannot be reduced to confounding factors like semantic
integration difficulty. This aligns with recent ERP studies aimed at
distinguishing prediction from semantic integration (60, 61) and
extends those by analyzing not just specific “target” words but all
words in a story.

The fact that predictability effects were ubiquitous and logarith-
mic supports a view of prediction as continuous and probabilistic.
One possibility is that the logarithmic effect at the word level
reflects explicit log-probabilistic prediction (or logarithmic error
calculation)—as suggested by some predictive processing models
(e.g., ref. 6). Alternatively, it may reflect probabilistic prediction
at a much lower level. In this scenario, prediction (or error) is not
necessarily logarithmic at the level of the predicted fragments, but
becomes logarithmic at the word level, as long as the predicted
fragments are much smaller, such that many fragments combine
into one word (see ref. 9 for derivation). Interestingly, such a
“highly incremental” account also implies that prediction is hierar-
chical in linguistic structure, which is exactly what we find (Fig. 6).
Importantly, both possibilities cast prediction as continuous and
probabilistic, and hence both contrast with the classic view of
prediction as the occasional all-or-none preactivation of specific
words (38). However, we acknowledge that these views are not
strictly incompatible: Occasional all-or-none commitment could
occur in addition to continuous probabilistic prediction, and
predictability may have combined linear and logarithmic effects,
as suggested recently (62).

Because our regression ERP analysis focused on evoked re-
sponses, the results can be linked to the rich literature on linguistic
violations using traditional ERP methods. This is powerfully
illustrated by the regression ERP of lexical surprisal (Fig. 2B)
tightly following the N400 modulation effect, one of the first pro-
posed, most robust, and most debated ERP signatures of linguistic
prediction (7, 24, 32). Similarly, the early negativity we found
for phoneme surprisal and later positivity for semantic prediction
error (Fig. 5) align well with N250 or PMN and the semantic
P600 or PNP effects of phonological mismatch and semantic
anomaly, respectively (31, 38). Unlike most ERP studies, we
observed these effects in participants listening to natural stimuli—
without any anomalies or violations—not engaged in a task. This
critically supports that these responses reflect deviations from
predictions inherent to the comprehension process—rather than
reflecting either detection of linguistic anomalies or expectancy
effects introduced by the experiment (17, 19).

A notable discrepancy between our results and the traditional
ERP literature was the early effect of POS surprisal. In traditional
ERP studies, syntactic violations are primarily associated with a
much later positivity [P600 (8)]. The early frontal positivity we ob-
served does, however, replicate recent regression-based analyses of
syntactic surprisal (22, 33). One explanation for this discrepancy is
that syntactic surprisal might not fully capture syntactic violations
as used in ERP studies. Indeed, a recent paper on syntactic
prediction using a related regression-based approach, found a
similar early positive effect for word-level syntactic surprisal, and a
later P600-like effect not for syntactic surprisal but for the number
of syntactic reinterpretation attempts a word induced (22). In this
view, the early effect we observe may reflect the prediction error or
update incurred by registering local (morpho)syntactic attributes
of a word, while the later P600 effect reflects updates in the global
structural interpretation—which are possibly not well captured by
word-by-word POS surprisal.

Beyond the ERP literature, our results also build on prior
electrophysiological studies that used model-based approaches
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to probe prediction during naturalistic comprehension. Those
studies mostly focused on lexical unexpectedness (12, 37, 56–58)
or on a single level of linguistic analysis such as syntax (22, 33)
or phonemes (13, 27, 28). We extend these works by showing
1) distinct effects of predictions at four levels (phonemes, words,
syntactic categories, and semantics), 2) interactions between lev-
els. and 3) a method for extracting multilevel predictions from a
single (large, pretrained) model. Probing predictions at different
levels simultaneously is important, because unexpectedness met-
rics at different levels are correlated. Therefore, when metrics at
different levels are used in isolation, they could capture a single
underlying process.

An advantage of our disentangling method (Fig. 3) is that one
can derive predictions at multiple levels from a pretrained large
language model (LLM). Such LLMs have a deeper grasp of lin-
guistic regularities than domain-specific models used by previous
studies, that have to be independently trained and typically only
take limited amounts of context into account (e.g., refs. 33, 35, 37,
and 45). However, a disadvantage of our method is that the source
of the disentangled predictions is unknown, since an LLM will
use any statistical cue available to it to generate predictions. Both
approaches are thus complementary, as testing hypotheses about
which information is used to generate predictions cannot be done
with disentangled predictions alone. One avenue to combine the
two is to test whether the interaction between levels we find for
phonemes applies to all linguistic levels—or whether predictions
at some levels (e.g., syntax) might be independent.

We combined group-level analysis (of the EEG data) and
individual-level analysis (of the MEG data). These approaches
are complementary. By combining both, we found that the
effects of prediction and the comparison of hypotheses about
its computational nature were identical on the group level and
within individuals (Figs. 2 and 6). However, the spatiotemporal
signatures showed substantial variability (Figs. 4 and 5 and
SI Appendix, Figs. S4 and S13–S15)—even for the strongest and
least correlated regressors, suggesting the variability reflects
real individual differences and not just uncertainty in the
regression estimate (SI Appendix, Fig. S18). This suggests that,
while the overall effects are likely present in each individual, the
spatiotemporal signatures are best understood as an average, not
necessarily representative of underlying individuals.

Two recent functional MRI (fMRI) studies on linguistic predic-
tion also report evidence for prediction hierarchies (63, 64). Like
the current study, those fMRI studies align well with the notion
of hierarchical predictive processing. However, a key difference is
that they probe predictions based on a hierarchy of timescales into
the past (63) or into the future (64), and formalize different levels
in a data-driven fashion, using different layers of a deep network.
By contrast, we study distinct, linguistically interpretable levels of
analysis using well-established formalizations (words, phonemes,
parts of speech, lexical semantics), that more directly connect
to the traditional psycholinguistic literature. Understanding how
these predefined, linguistically motivated levels relate to data-
driven, model-based levels is an interesting challenge for future
work.

Why would the brain constantly predict upcoming language?
Three (nonexclusive) functions have been proposed. First, pre-
dictions can be used for compression: If predictable stimuli are
represented succinctly, this yields an efficient code (6, 51). A
second function is that predictions can guide inference, in line
with findings that linguistic context can enhance neural represen-
tations in a top-down fashion (refs. 65 and 66; but see refs. 67
and 68). Finally, predictions may guide learning: Prediction errors
can be used to perform error-driven learning without supervision.

While learning is the least-studied function of linguistic prediction
in cognitive neuroscience (but see ref. 16), it is its primary
application in artificial intelligence (69, 70). In fact, the model
we used (GPT-2) was created to study such predictive learning.
These models are trained simply to predict lexical items (words or
word-part tokens), but learn about language more broadly, and
can then be applied to practically any linguistic task (39, 70–72).
Interestingly, models trained with this predictive objective also
develop representations that are “brain-like,” in the sense that they
are currently the best encoders of linguistic stimuli to predict brain
responses (73–77). And yet, these predictive models are also brain-
unlike in an interesting way—they predict upcoming language
only at a single (typically lexical) level.

Why would the brain predict at multiple levels? For
compression or inference, this seems useful, since redundancies
and ambiguities also occur at multiple levels. But, if predictions
drive learning, this is less obvious, since effective learning can be
achieved using simple, single-level prediction. One fascinating
possibility is that it might reflect the brain’s way of performing
credit assignment. In artificial networks, credit assignment is done
by first externally computing a single, global error term, and then
“backpropagating” this through all levels of the network—but
both steps are biologically implausible (78). Interestingly, it has
been shown that hierarchical predictive coding can approximate
classical backpropagation while using only Hebbian plasticity and
local error computation (6, 78, 79). Therefore, if the brain uses
predictive error-driven learning, one might expect such prediction
to be hierarchical, so error terms can be locally computed
throughout the hierarchy—which is in line with what we find.

Beyond the domain of language, there have been other reports
of hierarchies of neural prediction, but these have been limited to
artificial, predictive tasks or to restricted representational spans,
such as successive stages in the visual system (80–82). Our results
demonstrate that, even during passive listening to natural stimuli,
the brain is engaged in prediction across disparate levels of ab-
straction (from speech sounds to meaning), based on timescales
separated by three orders of magnitude (hundreds of millisec-
onds to minutes). These findings provide important evidence for
hierarchical predictive processing in the cortex. As such, they
highlight how language processing in the brain is shaped by a
domain-general neurocomputational principle: the prediction of
perceptual inputs across multiple levels of abstraction.

Materials and Methods

We analyzed EEG and source localized MEG data from two experiments. The EEG
data are part of a public dataset that has been published about before (36, 83).

Participants. All participants were native English speakers and gave informed
consent before participating in the study. In the EEG experiment, 19 subjects
(13 male) between 19 and 38 y old participated; in the MEG experiment, 3
subjects participated (2 male), aged 35, 30, and 28 y. Both experiments were
approved by local ethics committees (EEG: ethics committee of the School of
Psychology at Trinity College Dublin; MEG: CMO region Arnhem-Nijmegen).

Stimuli and Procedure. In both experiments, participants were presented with
continuous segments of narrative speech extracted from audiobooks. The EEG
experiment used a recording of Hemingway’s The Old Man and the Sea. The MEG
experiment used 10 stories from The Adventures of Sherlock Holmes by Arthur
Conan Doyle. Excluding breaks, EEG subjects listened to 1 h of speech (∼11,000
words and 35,000 phonemes); MEG subjects listened to 9 h (excluding breaks)
of speech (containing ∼85,000 words and ∼290,000 phonemes).

In the EEG experiment, each participant performed only a single session,
which consisted of 20 runs 180 s long, amounting to the first hour of the book.
Participants were instructed to maintain fixation and minimize movements but
were otherwise not engaged in any task.

8 of 12 https://doi.org/10.1073/pnas.2201968119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201968119/-/DCSupplemental
https://doi.org/10.1073/pnas.2201968119


In the MEG experiment, each participant performed a total of 10 sessions,
each 1 h long. Each session was subdivided into six or seven runs of roughly
10 min, although the duration varied, as breaks only occurred at meaningful
moments (making sure, for example, that prominent narrative events were not
split across runs). Unlike in the EEG experiment, participants in the MEG dataset
were asked to listen attentively and had to answer questions in between runs: one
multiple choice comprehension question, a question about story appreciation
(scale 1 to 7), and a question about informativeness.

Stimulus Annotation. To retrieve onset times for each word and phoneme,
the original texts were matched to the audio recordings in a forced alignment
procedure. For the EEG dataset, this was performed by the authors who originally
collected the data, and who provided the onset times for phonemes and func-
tion words (36, 83). For the MEG dataset, the forced alignment was performed
using the Penn Forced Aligner (P2FA). Here, we used ARPABET for transcription;
phonetic transcriptions missing from the phonetic dictionary were manually
added. For the phoneme-by-phoneme analysis, the phonemes from the stimulus
annotation had to be aligned and recognized by our pronunciation tree–based
phoneme model. To this end, phonemic annotation mismatching those from our
phoneme dictionary (e.g., alternative pronunciations) were manually checked,
and added to the dictionary or corrected.

MRI Acquisition and Headcast Construction. To produce the headcast, we
needed to obtain accurate images of the participants’ scalp surface, which were
obtained using structural MRI scans with a 3T MAGNETOM Skyra MR scanner
(Siemens AG). We used a fast low-angle shot sequence with the following image
acquisition parameters: slice thickness of 1 mm; field of view of 256 × 256 ×
208 mm along the phase, read, and partition directions, respectively; TE/TR =
1.59/4.5 ms.

Data Acquisition and Preprocessing. The EEG data were originally acquired
using a 128-channel (plus two mastoid channels) ActiveTwo system (BioSemi)
at a rate of 512 Hz, and down-sampled to 128 Hz before being distributed as
a public dataset. We visually inspected the raw data to identify bad channels, and
performed independent component analysis (ICA) to identify and remove blinks;
rejected channels were linearly interpolated with nearest-neighbor interpolation
using MNE-python.

The MEG data were acquired using a 275 axial gradiometer system at 1,200
Hz. For the MEG data, preprocessing and source modeling was performed in
MATLAB 2018b using fieldtrip (84). We applied notch filtering (Butterworh IIR)
at the bandwidth of 49 Hz to 51 Hz, 99 Hz to 101 Hz, and 149 Hz to 151 Hz to
remove line noise. Artifacts related to muscle contraction and SQUID jumps were
identified and removed using fieldtrip’s semiautomatic rejection procedure. The
data were down-sampled to 150 Hz. To identify and remove eye blink artifacts,
ICA was performed using the FastICA algorithm.

For both MEG and EEG analyses, we focus on the slow, evoked response,
and hence restricted our analysis to low-frequency components. To this end,
we filtered the data between 0.5 and 8 Hz using a bidirectional finite impulse
response (FIR) band-pass filter. Restricting the analysis to such a limited range of
low frequencies (which are known to best follow the stimulus) is common when
using regression ERP or temporal response function (TRF) analysis, especially
when the regressors are sparse impulses (28, 36, 85). The particular upper bound
of 8 Hz is arbitrary but was based on earlier papers using the same EEG dataset
to study how EEG tracks acoustic and linguistic content of speech (36, 56, 66).

Head and Source Models. The MEG sensors were coregistered to the subjects’
anatomical MRIs using position information from three localization coils attached
to the headcasts. To create source models, FSL’s Brain Extraction Tool was used to
strip nonbrain tissue. Subject-specific cortical surfaces were reconstructed using
Freesurfer, and postprocessing (down-sampling and surface-based alignment) of
the reconstructed cortical surfaces was performed using the Connectome Work-
bench command-line tools (v 1.1.1). This resulted in cortically constrained source
models with 7,842 source locations per hemisphere. We created single-shell
volume conduction models based on the inner surface of the skull to compute
the forward projection matrices (leadfields).

Beamformer and Parcellation. To estimate the source time series from the
MEG data, we used linearly constrained minimum variance beam forming,

performed separately for each session, using Fieldtrip’sft sourceanalysis
routine. To reduce the dimensionality, sources were parcellated, based on a
refined version of the Conte69 atlas, which is based on Brodmann’s areas. We
computed, for each session, parcel-based time series by taking the first principal
component of the aggregated time series of the dipoles belonging to the same
cortical parcel.

Lexical Predictions. Lexical predictions were computed using GPT-2—a large,
pretrained language model (39). We passed the raw texts through GPT-2 (see
SI Appendix, section A for details) for each run independently (assuming that
listeners’ expectations would, to some extent, “reset” during the break). This
resulted in a sequence of conditional (log-)probability distributions over the
lexicon for each token. From the token-level probabilities, we derived word-level
probabilities, p(wi|context), for each word wi. We used the XL version of GPT-2,
and used a windowed approach to process texts longer than the maximum
context window of 1,024 tokens. For details on the model and procedure, see
SI Appendix, section A.

Feature-Specific Predictions. Feature-specific predictions were derived by
analyzing the lexical prediction, illustrated in Fig. 3. For the part-of-speech pre-
diction, we did POS tagging on every potential sentence to derive the probability
distribution over POS. From this distribution, unexpectedness was quantified
via surprisal: the negative log probability of the POS of the presented word
(SI Appendix).

For the semantic prediction, the predicted lexicosemantic vector was com-
puted as the average of the GloVe embedding of each predicted word, weighted
by its predicted probability. From this vector, semantic unexpectedness was
computed as a prediction error: the cosine distance between the vector of the
actually presented word and the predicted vector.

For phoneme predictions, we used a phoneme model to compute the prob-
ability of the next phoneme, given the phonemes so far, and given a prior
probability assigned to each lexical candidate (see Fig. 6for an illustration). We
compared two formulations of the phoneme model, that either used a fixed
(frequency-based) prior over lexical candidates (single-level model) or used a
GPT2-derived contextual prior (hierarchical model). Both models compute a prob-
ability distribution over phonemes, from which unexpectedness was defined via
surprisal.

Note that the difference between prediction error and surprisal is not im-
portant, since surprisal is simply a probabilistic metric of prediction error. For
technical details, see SI Appendix, section A.

Non-Prediction-Related Control Variables. To ensure we were probing ef-
fects of predictions, we had to control for various nonpredictive variables: onsets,
acoustics, frequency, and semantic distance or integration difficulty. We will
briefly outline our definitions of each.

Each model contained onset regressors for each word and phoneme; content
words onsets were included separately, to allow the model to capture different
average responses to content words and function words. Second, a range of
acoustic confound regressors were included, all on a phoneme-by-phoneme basis
(SI Appendix, Figs. S2 and S7). To capture spectral differences between different
speech sounds, we computed a log mel spectrogram with eight bands spaced on
a log-mel scale. For each band, average spectrogram amplitude was computed
for each phoneme, to compute a spectrally resolved amplitude pattern for speech
sound. For speech, it is known that the cortical responses are also highly sensitive
to fluctuations in the broadband envelope—a response specifically driven by rapid
increases of the envelope amplitude, or “acoustic edges” (86). To capture these
acoustic edges, we quantified variance of the broadband envelope over each
phoneme, following ref. 66. Finally, we analyzed all speech materials using Praat
(87), via parselmouth (88), to compute the average pitch of each phoneme. For
voiceless phonemes or other segments in which the pitch could not be identified,
pitch values were zeroed out.

In addition to acoustic regressors, we included word-level lexical confound re-
gressors. First, we accounted for frequency via unigram surprisal − log P(word)
based on its frequency of occurrence in subtlex. Second, we accounted for word
class (content or function word). Finally, we controlled for the semantic distance
or semantic integration difficulty. This speaks to the “prediction vs. integration”
question: Are unpredictable words more difficult to process because they violate
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a prediction, or because they are more difficult to semantically integrate for a
different reason? This can be illustrated by considering a constraining context
(“coffee with milk and ...”). When we contrast a highly expected word (“sugar”)
and an unexpected word (e.g., “dog”), the unexpected word is not just less
likely but also semantically incongruous. As such, the increased processing cost
reflected by effects like N400 increases might not (only) be due to a violated
prediction but due to difficulty integrating the target word (“dog”) in the se-
mantic context (“coffee with milk”) (7, 18, 60, 61). The primary explanation
for differences in semantic integration difficulty is intralexical priming (18, 38,
89). Bottom-up priming between words facilitates processing of related words
(coffee, milk, sugar) without requiring linguistic prediction. Such bottom-up
semantic priming can occur through multiple mechanisms (18), but all imply
that the degree of priming depends on the semantic proximity or association
between words. To control for this effect, we computed the semantic distance
(inverse of proximity) between each content word and the preceding context.
This was defined as the cosine distance between the average semantic vec-
tor of the prior context words and the target content word, following ref. 36.
This metric is known to predict N400-like modulations and can hence cap-
ture the extent to which such effects can be explained by semantic distance
alone (36).

Word-Level Regression Models. The word-level models (see SI Appendix,
Fig. S2 for graphical representation) captured neural responses to words as a
function of word-level processing. The baseline model formalized the hypothesis
that responses to words were not affected by word unexpectedness but only by the
following nonpredictive confounds: word onsets, word class, semantic distance
(semantic integration difficulty), word frequency, phoneme onsets, and acoustics
covariates for each phoneme, that is, spectrogram amplitudes (eight bands),
broadband envelope variance (acoustic edges), and pitch.

The continuous prediction model formalized the hypothesis that predictions
were continuous and probabilistic. This model was identical to the baseline
model plus the lexical surprisal (or negative log probability of a word), for every
word. This was based on normative theories of predictive processing which state
that the brain response to a stimulus should be proportional to the negative log
probability of that stimulus (6).

The constrained guessing model formalized the classical notion of prediction
as the all-or-none preactivation of specific words in specific (highly constraining)
contexts (38). This was formalized as a regression model using the insight by
Smith and Levy (9) that all-or-none predictions result in a linear relationship
between word probability and brain responses. The argument follows from two
assumptions: 1) All predictions are all or none; and 2) incorrect predictions incur
a cost, expressed as a prediction error brain response (fixed in size because of
assumption 1). So, while, for any individual word, the size of the prediction error
is categorical (either zero or yerror), on average, the expected error response for
a given word is a linear function of the size of the error (which is a constant),
and the probability of mispredicting the word: (1 − p). In other words, it scales
linearly with word improbability. Note that this linear improbability is a contin-
uous approximation that will never fully match the (hypothesized) categorical
prediction error for individual words. However, it provides the best possible
approximation of categorical prediction error effects, given that we know the
statistics participants are tracking, but not the exact all-or-none predictions any
participant may sample from moment to moment.

To capture the notion that predictions are only generated in specific contexts,
the improbability regressor is only defined for constraining contexts, and we
add a constant to those events to capture the effects of correct predictions
(SI Appendix, Fig. S2). To identify “constraining contexts,” we simply took the 10%
of words with the lowest prior lexical entropy. The choice of 10% was arbitrary—
however, using a slightly more selective definition would not have changed the
conclusion because the naive guessing model (which included linear predictabil-
ity for every word) performed consistently better (SI Appendix, Fig. S5).

Integrated Regression Model. For all analyses on feature-specific predictions,
we formulated an integrated regression model with lexical predictions, and
feature-specific predictions, at both the word and phoneme level (SI Appendix,
Fig. S7). As regressors of interest, this model included phoneme surprisal, POS
surprisal, and semantic prediction error. In principle, we could have also included
phoneme and POS entropy rather than just surprisal (e.g., ref. 13)—however,

these are highly correlated with the respective surprisal. Since this was already
a complex regression model, including more correlated regressors would have
made the coefficients estimates less reliable and hence more difficult to interpret.
As such, we did not include both but focused on surprisal because it has the most
direct relation to stimulus evoked effect.

Phoneme-Level Regression Models. To compare different accounts of
phoneme prediction, we formulated three regression models with only
regressors at the individual phoneme level (SI Appendix, Fig. S19). In all
models, following ref. 27, we used separate regressors onset and information-
theoretic regressors for word-initial and word-noninitial phonemes, to account
for juncture phonemes being processed differently. This was not done for the
acoustic regressors, since we do not expect such an effect for the prelinguistic
acoustic level. The baseline model only included nonpredictive factors of word
boundaries, phoneme onsets, and uniqueness points. The two additional
models also included phoneme surprise and phoneme entropy from either
the hierarchical model or nonhierarchical model. To maximize our ability to
dissociate the hierarchical prediction and nonhierarchical prediction, we included
both entropy and surprise. Although these metrics are correlated, adding both
should add more information to the model comparison, assuming that there is
some effect of entropy (13). (Note that, here, we were only interested in model
comparison, and not in comparing the coefficients, which may become more
difficult when including both.)

Time-Resolved Regression. As we were interested in the evoked responses,
variables were regressed against EEG data using time-resolved regression, within
a regression ERP/ERF framework (40). The regression ERP technique is similar to
TRF modeling (90), except that the predictors are event-based (impulses) rather
than continuous stimuli. We use regression ERP because it is formally equivalent
to ERP analysis (used by majority of prior literature), and because the use of sparse
impulses allows to model all 10 MEG sessions jointly. Briefly, we use impulse
regressors for both constants and covariates defined at event onsets, and then
temporally expand the design matrix such that each predictor column C becomes
a series of columns over a range of temporal lags Ctmax

tmin
= (Ctmin , . . . , Ctmax ). For

each predictor, one thus estimates a series of weights β tmax
tmin

(Fig. 1) which can
be understood as the modulation function describing how a given regressor
modulates the neural response over time, and which corresponds to the effec-
tive evoked response that would have been obtained in a time-locked ERP/ERF
design. Here, we used a range between −0.2 and 1.2 s. All data and regressors
were standardized, and coefficients were estimated with �2-norm regularized
(Ridge) regression, using the scikit learn sparse matrix implementation (91). In
both datasets, models were estimated by concatenating the (time-expanded)
design matrix across all runs and sessions. Regularization was set based on leave-
one-run-out R2 comparison; for inference on the weights in the EEG data, this
was done across subjects to avoid doing statistics over coefficients with different
amounts of shrinkage.

Model Comparison. In both datasets, model comparison was based on com-
paring cross-validated correlation coefficients. Cross-validation was performed
in a leave-one-run-out cross-validation scheme, amounting to 19-fold cross-
validation in the EEG data and between 63- and 65-fold cross-validation for
the MEG data (in some subjects, some runs were discarded due to technical
problems).

For the EEG data, models’ cross-validated prediction performance was com-
pared across subjects to perform population-level inference. To this end, we
reduced the scores into a single nsubs dimensional vector by taking the median
across folds and taking the mean across channels. Critically, we did not select
channels but used the average across the scalp. For the MEG data, models were
primarily compared on a within-subject basis, except in some isolated cases (see
below). Because the MEG data were source localized, we could discard sources of
no interest (e.g., visual cortex). To this end, we focused on the language network,
using a rather unconstrained definition encompassing all Brodmann areas in the
temporal lobe, plus the temporoparietal junction, and inferior frontal gyrus and
dorsolateral prefrontal cortex, bilaterally (SI Appendix, Fig. S20).

Statistical Testing. All statistical tests were two-tailed and used an alpha of
0.05. For all simple univariate tests performed to compare model performance
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within and between subjects, we first verified that the distribution of the data did
not violate normality and was outlier-free. If both criteria were met, we used a
parametric test (e.g., paired t test); otherwise, we resorted to a nonparametric
alternative (Wilcoxon sign rank). For the MEG data, most statistical tests were
performed on a within-subject basis only. However, in some isolated cases, we
aggregated across participants for simplicity or additional statistical power. For
this, we used a multilevel nonparametric test (hierarchical bootstrap t test), using
hierarchical bootstrapping (92). P values were obtained using 10,000 resamples,
and a fixed random seed was used across the project. To statistically compare
the rERP latencies (between phoneme and lexical surprisal), we performed the
jackknife-based latency t test, using the relative amplitude criterion (set at 0.5),
following recommendations in ref. 93.

In EEG, we performed mass univariate tests on the coefficients across partici-
pants between 0 and 1.2 s. This was, firstly, done using cluster-based permutation
tests (94, 95) to identify clustered significant effects as in Fig. 5 (10,000 permu-
tations per test). Because the clustered effects as in Fig. 5only provide a partial
view, we also reported more comprehensive picture of the coefficients across
all channels (SI Appendix, Figs. S3 and S10); there, we also provide multiple-
comparison-corrected P values to indicate statistical consistency of the effects;
these were computed using threshold-free cluster enhancement (TFCE). In the
MEG, multiple comparison correction for comparison of explained variance across
cortical areas was done using TFCE. In both datasets, mass univariate testing
was performed based on one-sample t tests plus the “hat” variance adjustment
method with σ = 10−3.

Spatial Dissociability Test. To test whether the distinct signatures of spatial
patterns of explained variance (Fig. 4 and SI Appendix, Fig. S9) were not just
statistically significant (compared to a null distribution) but also significantly
dissociable (compared to each other), we performed a classification-based test.
In this test, we evaluated whether a linear classifier could robustly distinguish
spatial patterns of additional variance explained by different unexpectedness
regressors, on held-out cross-validation folds. For this test, we compared the
map of four unexpectedness regressors: lexical surprisal, phoneme surprisal,
POS surprisal, and semantic prediction error (SI Appendix, Fig. S9). To avoid the
classifier picking up overall differences in the amount of variance explained, all
patterns were mean normalized. To assess the separability, we trained a linear
logistic regression model, implemented in scikit learn (91), using all default

parameters. The model was evaluated both in a multinomial classification and
in all pairwise comparisons, by computing accuracy in a stratified sixfold cross-
validation scheme, across the independent patterns of additional explained
variance for each regressor, for each run.

Polarity Alignment. In the source localized MEG data, the coefficients in in-
dividuals (e.g., SI Appendix, Figs. S13–S18) are symmetric in polarity, with the
different sources in a single response having an arbitrary sign, due to ambiguity
of the source polarity. To harmonize the polarities, and avoid cancellation when
visualizing the average coefficient, we performed a polarity alignment procedure.
This was based on first performing singular value decomposition (SVD), A =
AΣV�, where A is the m × n coefficient matrix, with m being the number of
sources and n being the number of regressors, and then multiplying each row of
A by the sign of the first right singular vector. Because the right singular vectors
(columns of U) can be interpreted as the eigen vectors of the source-by-source
correlation matrix, this can be thought of as flipping the sign of each source as
a function of its polarity with respect to the dominant correlation. This procedure
was used for visualization purposes only (SI Appendix, Figs. S4 and S13–S18).

Data Availability. EEG data was previously published and is openly
available (see ref. 36, and https://doi.org/10.5061/dryad.070jc). The full
raw MEG dataset is availlable and described in detail in ref. 96 and at
https://doi.org/10.34973/5rpw-rn92. Data and code required to reproduce the
results in this paper are found at https://doi.org/10.34973/dfkm-h813 (97).
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