
The grid code for ordered experience

Jon W. Rueckemann1,2,4, Marielena Sosa3,4, Lisa M. Giocomo3,5, Elizabeth A. Buffalo1,2,5

1Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, 
WA, USA.

2Washington National Primate Research Center, Seattle, WA, USA.

3Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.

4These authors contributed equally: J. W. Rueckemann and M. Sosa.

5These authors jointly supervised this work: E. A. Buffalo and L. M. Giocomo.

Abstract

Entorhinal cortical grid cells fire in a periodic pattern tiling space, suggestive of a spatial 

coordinate system. However, irregularities in the grid pattern as well as responses outside the 

spatial domain have presented a challenge to existing models of entorhinal function. In this 

perspective, we propose that hippocampal input provides a key drive to the grid network in both 

spatial and non-spatial circumstances, particularly around salient events. We build upon previous 

models in which neural activity propagates through the entorhinal-hippocampal network in time. 

This temporal contiguity in network activity points to temporal order as a necessary characteristic 

of representations generated by the hippocampal formation. We advocate that interactions in the 

entorhinal-hippocampal loop build a topological representation rooted in the temporal order of 

experience. In this way, the structure of grid cell firing supports a learned topology rather than a 

rigid coordinate frame bound to measurements of the physical world.

Introduction

The discovery of grid cells in the medial entorhinal cortex (MEC) inspired theories for 

an elegant spatial code in the brain1,2. Grid cells exhibit spatially periodic fields that tile 

the environment2,3, suggestive of a spatial coordinate system. Together with hippocampal 

place cells that fire in individual locations4, grid cells are thought to construct an internal 

spatial map of the external world5,6. Because grid cell firing corresponds to reliable 

coordinates in open-field environments and is maintained across environments, grid cells 

are often interpreted to reflect a universal positional code capturing veridical measurements 

of external space. However, both grid cells and place cells fire selectively in circumstances 

outside of spatial navigation, and research in humans has long implicated both the entorhinal 

cortex and hippocampus in structuring newly learned information into episodic memories7,8. 

In this perspective, we seek to resolve this tension between spatial and non-spatial 

functionality by revising existing network models thought to support MEC processing, 

proposing that the MEC-hippocampus loop builds topological representations7,9–14 that 

reflect temporal contiguity between events within experience (Fig. 1A).
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In several prominent network models proposed to support spatial navigation, the recurrent 

connectivity within the entorhinal-hippocampal circuit allows the network to continuously 

track position in allocentric space. Precision of spatial measurement is an emergent feature 

of these models, and some recent works propose that the ‘metric’ ability of the grid 

cell network to make veridical measurements in physical space also allows it to encode 

measurements in abstract feature spaces15–17 (Fig. 1A). We challenge the notion of metric 

rigidity in these models, but we highlight the utility of the physiological mechanisms they 

invoke to explain experimental observations across both spatial and non-spatial tasks. In 

light of mounting evidence that recurrent connectivity and continuous attractor dynamics 

are critical to processing across the entorhinal-hippocampal circuit, we advocate that 

temporal contiguity is an essential characteristic of coding in the MEC and hippocampus. 

We propose that network activity progresses sequentially over time through reciprocal 

interactions between the MEC and hippocampus to create topological representations of 

experience. Under this hypothesis, a topology is defined as a structural representation of 

relationships between elements in an experience, preserving their arrangement independent 

of the exact time or metric distance between them. We suggest that the topology supported 

by the entorhinal-hippocampal network is specifically derived from the temporally ordered 

relationships between experiential elements, or ‘events’. This proposed function builds 

on existing models to explain how the grid system can both map spatial positions under 

certain navigational circumstances as well as learn the temporally structured relationships 

between events in non-spatial episodic experiences. Under this framework, both spatial and 

mnemonic processing are aspects of a more general function of the hippocampal formation 

in learning topological structure from experience rather than coding for measurable features.

Continuous attractor networks

To lay a foundation for our updated model of hippocampal-entorhinal function, we first 

discuss the MEC as a continuous attractor network (CAN). We then review the influential 

proposal that a CAN specialized for estimating allocentric position governs activity in the 

MEC.

Recent studies describing the anatomy and physiology of cells within the MEC have 

converged with computational work to describe the grid network using continuous attractor 

models18–26. In a continuous attractor network (CAN), local “bumps” of excitation flow 

through an interconnected matrix of neurons through recurrent synaptic connections 

and surrounding feedforward inhibition. Excitatory drive to the network can propel 

activity through this neural sheet, stabilizing in local subsets of neurons via the intrinsic 

connectivity. Grid cell firing is thus thought to be a readout of the excitatory bumps 

of activity “passing through” individual neurons in the sheet and eliciting spikes18,19. 

The possibility that the MEC operates as a CAN is strongly supported by the intrinsic 

microcircuitry between MEC neurons (Box 1)22–26.

The path integration continuous attractor network (PI-CAN)

During spatial navigation, grid cells fire in a repeating pattern of equilateral triangles 

(Fig. 1B). This pattern persists across environments irrespective of running speed or the 

Rueckemann et al. Page 2

Nat Rev Neurosci. Author manuscript; available in PMC 2022 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



route taken, suggesting that the grid cell circuitry may continuously track idiothetic, or 

self-movement, information to estimate allocentric position2,27. This process is known as 

path integration and is thought to be a central function of the grid network21,28,29.

To derive the allocentric specificity of grid cells from self-movement information, the 

path integration continuous attractor network (PI-CAN) model posits that neural activity is 

driven through the attractor manifold by an afferent velocity signal18,19,21. This signal has 

two critical elements: direction and speed. The direction component is hypothesized to be 

supplied by head direction cells within the MEC, which respond maximally at a particular 

head orientation relative to the external environment27,30–32. Head direction cells rotate their 

preferred directions coherently with grid cell orientations to remap new environments33–35, 

suggesting that these cell types are integrated into a single attractor network. Though 

theories differ on the source of the speed component of the velocity signal, the principal 

candidates are MEC speed cells36–38 or the amplitude and frequency modulation of the 

theta rhythm driven by inputs from the medial septum39–43. The velocity-driven activity 

of the PI-CAN is anchored to allocentric space via interactions with landmarks, the most 

salient of which are often environmental borders44–46. By linking each element of a path 

integration circuit to concrete physiological mechanisms, the PI-CAN model has elicited 

enduring support for the theory that spatial navigation is central to the function of the MEC.

The combined idiothetic and sensory inputs to the PI-CAN are theorized to generate a 

direct mapping between translocation through space and advancement of neural activity 

through the neural sheet (i.e. the attractor state)21,29. The attractor state yields a positional 

code through the collective activity of grid cell modules, sub-networks of grid cells with 

shared field size, spacing, and orientation of the grid axis47. Each grid cell module maps 

a tile that repeats throughout the environment (Fig. 1C), and the fields of grid cells within 

the module are offset from each other, collectively mapping the relative space within a 

tile47–49. Periodicity is posited to arise from connectivity within the module that allows 

the activity to repeatedly cycle through the attractor whenever the animal reaches the 

edge of the module tile18–20,50,51. Due to this connectivity, the grid network is thought to 

provide a geometrically consistent code irrespective of the shape or size of the environment. 

Because the pattern of activity within each module repeats, unique locations across the 

entire environment are disambiguated by combining information across different modules 

with different orientation and spacing18,48,49,52,53 (Fig. 1D). If the grid field spacing of each 

module is consistent across the environment, the combined activity across modules can map 

a one-to-one relationship between the attractor state and the animal’s coordinates in space. 

With these elements, the PI-CAN model of the grid cell system is thought to create an 

efficient and boundless code, allowing a downstream structure to calculate the distance and 

vectoral bearing between two points48,53,54.

Evaluating the PI-CAN framework

Data consistent with the PI-CAN model

Experimental findings support the idea that a local attractor network underlies MEC 

processing. Grid cell spiking is accompanied by sustained membrane depolarization as 

animals pass through the firing fields of a grid cell55,56, consistent with a link between 
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translocation and excitatory bumps of activity moving through the neural sheet. As predicted 

by CAN models, anatomically neighboring grid cells are roughly clustered into modules 

with similar grid spacing and orientation24,47,57 that maintain their spatial relationships 

across different environments25,58. Spike correlations between cells within a module 

are preserved during sleep59–61, demonstrating that structured activity during waking is 

supported by intrinsic connections rather than solely reliant on external inputs. In addition, 

manipulations of both MEC layer II pyramidal cells26 and parvalbumin interneurons62 (see 

Box 1) disrupt the spatial specificity of grid fields, indicating that grid cell firing is critically 

shaped by intrinsic MEC connectivity consistent with a CAN.

Spatial data requiring an update of the PI-CAN model

While there is strong evidence of CAN dynamics, accumulating experimental evidence 

presents two main challenges to the PI-CAN framework. First, the PI-CAN model posits that 

symmetric field spacing of grid cells allows a metric measurement of space. To provide this 

metric measurement, symmetric spacing should be static across experience and independent 

of environmental features. However, several lines of evidence have shown that grid spacing 

is instead dynamic with experience and malleable with changing environmental features. 

Displacing the walls of 2D environments causes grid fields to elongate their spacing in 

proportion to the environmental change37,47,63, and open fields that lack symmetry cause 

distortions in the geometry of the grid pattern near the asymmetric wall64,65 (Fig. 1E). 

These shifts in grid field spacing may depend on the recent experience of the animal in 

encountering borders66, driving history-dependent updates to the relationship between the 

attractor state and the external environment44,45,66. Consistent with a role for experience in 

shaping the grid pattern, environmental novelty increases grid field spacing, while gaining 

familiarity reverses this effect67 and shifts grid spacing in accordance with the learned layout 

of the environment68,69. During goal-directed behaviors, grid fields can migrate towards 

learned reward locations, locally distorting grid spacing and overrepresenting goals70. The 

symmetric spatial periodicity implied by the PI-CAN model is therefore not an immutable 

feature of grid cells. Rather, environmental features anchor grid fields, which sometimes 

results in irregular spacing. This limits the interpretability of grid patterns as a metric 

code71. Instead, the grid network is well suited to represent the spatial relationships between 

environmental borders and other types of landmarks learned over the course of experience.

Second, the locomotor velocity input in the PI-CAN model, provided putatively by speed 

and head direction cells, is often assumed to be uniform across behavioral conditions to 

supply the consistent driving force for a universal and boundless grid pattern. Contrary 

to this assumption, changes to environmental boundaries cause speed cells to rescale their 

firing responses and head direction cells to reorient37. While the rescaling of speed signals 

can account for changes in grid spacing in the PI-CAN model19, it is unclear what drives 

speed cells to rescale or why these changes would occur asymmetrically. In addition to 

a dynamic speed signal, head direction cells can transiently reorient when local salient 

cues are moved relative to the allocentric reference frame72. These observations suggest 

that like grid spacing, speed and head direction cells are anchored to salient environmental 

characteristics rather than absolute metrics of locomotion37. Moreover, speed and head 

direction signals do not seem sufficient to drive grid cell firing. Locomotion exerts a variable 
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influence on the positional specificity of MEC cells73 and competes with the influence 

of optic flow information to drive grid cell periodicity74. In addition, head direction cells 

can decouple from the grid network in linearized environments, maintaining allocentric 

orientation to room cues while grid cells reorient58,75–78. This finding is contrary to the 

expectation of the PI-CAN model since static coupling between head direction and grid 

cells is posited to support path integration calculations irrespective of environment. Finally, 

head direction fails to accurately capture true movement direction79, further calling into 

question the role of head direction coding in generating grid fields according to path 

integration. Together, the irregularity of grid fields and the inconstancy of the velocity 

signals demonstrate that activity in the MEC network is not dedicated to making precise 

spatial measurements. As the PI-CAN model is insufficient to explain MEC firing, a revision 

of the model is required to accommodate these new experimental observations.

Spatial data unanticipated by the PI-CAN model

Recent data have exposed additional sources of variability in grid cell firing that may 

elucidate a more complex drive to the MEC. The PI-CAN model predicts that each field of 

the grid pattern will have a consistent firing rate due to uniform drive from velocity inputs 

irrespective of position. Empirically, however, individual grid fields can exhibit different 

directional sensitivity80 and often have consistently different firing rates35,81–83 or fail to 

fire altogether84. Variable firing rates may also signal motivationally salient information, 

as grid cells selectively increase field firing rates based on route61 and near hidden reward 

locations33. The variable firing within grid cells suggests that input to the MEC varies 

by position throughout the environment -- a feature that cannot be derived from a location-

independent velocity vector.

In addition, reliable location-specific activity is exhibited by two-thirds of the neurons in 

the MEC outside of the grid cell population35,85. These ‘non-grid spatial cells’ remap the 

locations of their firing fields under the same conditions that produce rate remapping in 

individual fields of grid cells33,35. These coherent changes suggest that non-grid spatial cells 

are integrated within the grid network and may even provide an input to grid cells. Together, 

the location-specificity of both grid and non-grid cell firing indicates that position-specific 

input may be a strong determinant of MEC activity, which is not anticipated by the PI-CAN 

model.

Non-spatial data unanticipated by the PI-CAN model

Despite the historic focus on spatial navigation, there is increasing evidence that neurons 

within the hippocampal formation exhibit selective responses in domains beyond physical 

space. In the MEC of rats, both grid cells and head direction cells recorded in open 

arenas fire at specific points within a sequence of tones during a stationary auditory task86. 

MEC neurons also fire sequentially in time during delay periods87,88, indicating that the 

grid and head direction networks can be engaged outside of physical navigation. In both 

humans and non-human primates, grid-like firing patterns have been observed in entorhinal 

neurons during virtual spatial navigation89 and during visual exploration of a scene90,91, 

in absence of physical translocation and even eye movement91. Finally, studies in humans 

using functional imaging and electroencephalography have observed mesoscopic signals 
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suggestive of grid-like activity, not only in response to virtual spatial navigation92–95 but 

also in response to the progression of ordered visual stimuli93,96–100.

In the hippocampus, non-spatial response properties are even more well established across 

multiple modalities101–103 and across species7,104,105. Neurons in CA1 respond in tasks with 

continuously changing stimuli, showing place-like activity when presented with a series 

of tones86 or concentration gradients from one odor to another106. In tasks entailing a 

sequence of discrete odors or tones, hippocampal neurons respond depending on the order 

of the stimuli presented107–110. As in the MEC, hippocampal sequential tuning has also 

been shown for the temporal structure of a task111, corresponding to elapsed time during 

forced delay periods110,112–117 and to a specific number of laps around a track118. Together, 

these findings demonstrate that both continuous and discrete sequences of events can evoke 

hippocampal and entorhinal firing even in the absence of translocation through space.

The collection of multisensory responses in the hippocampal formation has led some to 

the hypothesis that these regions map non-spatial featural dimensions15,16,94,96,99,119,120. 

Several of these theories leverage aspects of the PI-CAN model to propose that the grid 

cell system can encode feature metrics15,16. One example of this proposal is the suggestion 

of a ‘car space’, with MEC grid cells coding a 2D space of car weight versus engine 

power and hippocampal place cells coding for individual categories of cars15. Under this 

framework, grid cells serve as a measurement system for regularly spaced intervals within 

continuous feature axes, while place cells specify unique feature identities15. However, this 

framework requires mechanisms that deviate from the physiological CAN dynamics that 

underlie the PI-CAN model (Box 2). Specifically, relationships within this type of feature 

space are not defined by experiencing transitions within the space through time. Instead, the 

feature space maps similarity of elements based on featural identifiers, akin to the process of 

categorization. A structural relationship (e.g. an orange is bigger than a lime but of similar 

size as an apple) in the feature space framework is an attribute built on the relative similarity 

of the neuronal representation (e.g. population firing rate). By contrast, mechanisms of path 

integration necessitate that neural activity moves through the network in time in concert 

with ongoing experience (Box 2). This temporal contiguity is preserved in certain abstract 

spaces tested experimentally, such as the “bird space” explored by Constantinescu and 

colleagues96. In this study, the subjects learned about relationships between features in the 

space by viewing bird necks and legs change continuously, thus linking features sequentially 

in time. In the following section, we propose a revised CAN model to explain why 

temporal contiguity is a critical aspect of spaces learned and represented in the hippocampal 

formation.

A revised CAN model of the MEC-hippocampal loop

To address the gaps left by the PI-CAN model in explaining experimental data, we 

propose that the dynamics of the MEC attractor network are substantially shaped over time 

by sequential hippocampal cell input. Hippocampal neurons can track sequences of task-

relevant stimuli, just as the activity of place cells continuously changes during movement 

on a maze, thereby bridging events within spatial and non-spatial experiences. With its 

prominent anatomical projections to the MEC and flexible responses across modalities, the 
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hippocampus is a strong candidate to provide informative drive to the MEC CAN. Because 

the location-specific variability of grid cells and the prevalence of non-grid spatial cells are 

not explained by the PI-CAN model, a velocity signal may provide only a component of the 

drive to the MEC even in the context of navigation26,121.

Supporting a critical role for hippocampal input, grid patterns appear only after place 

cells achieve spatial tuning during development50,122–125. Moreover, inactivation of 

the hippocampus decimates the two-dimensional periodicity of grid firing126, although 

spike correlations remain intact between grid cells126,127. These findings suggest that 

local intrinsic connections help determine the order of spiking between grid cells, but 

hippocampal input is required for periodic spatial patterns during behavior. Some authors 

advocating for the PI-CAN model interpret this to mean that the hippocampus is providing 

uniform excitatory drive to the entire grid network126. However, we advocate that the 

hippocampus provides non-uniform, event-specific input that can shape the flow of activity 

through the MEC CAN. For example, the unique ensembles of hippocampal place cells 

active at each location in an environment may drive location-specific variability in grid cell 

firing33,81,83,128, as well as the specificity of non-grid spatial patterns35. This hypothesis 

aligns with computational models which show that location-based inputs can generate grid 

patterns50,51,128–137, even in the absence of an explicit velocity input51,128,131,134–137. Thus, 

the ability of ordered hippocampal activity to generate periodic grid cell firing could be 

particularly critical in non-spatial circumstances without locomotion.

The MEC-hippocampal loop progresses network activity in time

We hypothesize that interactions between the hippocampus and MEC reciprocally drive 

updates to the attractor state within each region (Fig. 2A). In this model, the bidirectional 

communication is temporally coordinated by the theta rhythm138, which reflects windows 

of disinhibition that create discrete epochs of activity within each local network139. 

Hippocampal and MEC theta oscillations are offset from each other, such that spiking in 

MEC occurs out of phase with spiking in the hippocampus77 (Fig. 2B). Hippocampal input 

is thus well-timed to prime the flow of MEC CAN activity within each theta epoch, because 

the bulk of CA1 spiking occurs just before the rhythmic disinhibition of MEC neurons. 

Since each CA1 neuron has anatomically restricted axon terminals in the deep layers 

of the MEC140–142 which in turn generate non-uniform drive to the superficial layers143 

(Box 1), the population of CA1 neurons active on each theta cycle is poised to bias the 

directional flow of activity through the grid attractor network. This possibility is supported 

by the loss of grid cell periodicity when either hippocampal inputs126,144 or medial septal 

inputs supporting theta42,43 are removed, as well as computational work demonstrating that 

theta-time scale hippocampal inputs can generate MEC grid patterns134.

The reciprocal projections from the MEC back to the hippocampus complete a loop, 

allowing the MEC to mutually shape the activity within the hippocampus. Under the 

synchronizing guidance of the theta oscillation, these two regions alternate between speaker 

and listener. As each region responds to its input, it primes the subsequent state in its 

counterpart, inextricably binding the activity across regions as a progression of handshakes 

across time. This reciprocal communication may even explain sequential activity in the loop 
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in absence of changing sensory input to the hippocampal-entorhinal system during delay 

periods87,113,114,145,146. Because the flow of states across time is inherent to the physiology 

of the network147, the activity of neurons throughout the MEC-hippocampal loop reflects a 

continuous link of events through time.

The proposed handshake between the hippocampus and MEC may manifest at the fine time 

scale as the propagation of ‘theta sequences’ in each region. Hippocampal neurons display 

finely ordered spiking nested within a theta cycle148–150 mirroring the sequence of place 

cells that fire over the course of seconds as an animal traverses the environment (Fig. 2B–D). 

These theta sequences similarly track the progression of discrete events during non-spatial 

tasks109 (Fig. 2E). Each hippocampal theta sequence thereby constitutes a time-compressed 

representation of a momentary trajectory through the experience150,151 (Fig. 2B). Because 

theta sequences project ahead of the animal’s current position, this activity is poised to 

guide the flow of activity within the MEC network152. While theta sequences have not 

yet been thoroughly characterized in the MEC (but see 61), computational models suggest 

that MEC theta sequences would arise naturally from theta-paced inhibition mediating 

CAN dynamics153. Moreover, individual MEC cells show spiking temporally organized 

by the theta rhythm (i.e. theta phase precession)154, consistent with the existence of theta 

sequences. We hypothesize that as hippocampal input helps direct the entorhinal attractor 

through successive states, the MEC returns information to the hippocampus influencing 

the progression of the next theta sequence155 (Fig. 2B). Since theta sequences develop 

over the course of experience156 and have been linked to the retention of learned spatial 

information157–160, theta sequences in the MEC-hippocampal loop are well suited to support 

the representation of ordered events in episodic memory. Though some non-rodent species 

lack a continuous theta rhythm, temporally structured activity can nonetheless be observed 

relative to the underlying oscillation161–163. These observations point to compressed spike 

sequences, organized relative to a periodic or aperiodic carrier oscillation, as a general 

mechanism for updating attractor states across regions.

The MEC-hippocampal loop builds the topology of experience

We advocate that hippocampal input to the grid cell CAN shapes the progression of 

MEC activity in accordance with structured hippocampal firing around salient events. For 

example, place cells tend to shift their fields toward learned reward sites164,165, which 

could yield the changes in grid field spacing70 and firing rate33 observed near recalled 

reward locations166. The shared variability in field density and firing rates across the MEC-

hippocampal loop reflect mnemonic properties as well. MEC field rates are modulated by 

route destination or origin during goal-directed movement in linear environments61,167,168 

in concert with similar firing rate changes in hippocampal neurons167,169–171. Collectively, 

evidence of parallel flexibility in hippocampal and MEC firing patterns suggests that the 

hippocampus supplies structured drive to the grid network particularly around behaviorally 

relevant locations and events.

The MEC grid network is situated to provide a key input to the hippocampus, allowing 

it to bridge the gaps between salient stimuli with reliable sequences of activity172. It 

was once thought that hippocampal place cells read the MEC grid code to index specific 
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locations, but an accumulation of studies using lesions155,173–176, optogenetics146,177,178, 

and pharmacology83,179–181 has now demonstrated that hippocampal neurons retain the 

capacity for place fields irrespective of grid cell input. Instead, altering grid cell activity 

degrades hippocampal cell tuning in the middle of large arenas157,182,183 and during long 

delay periods146,157 when the animal is spatially or temporally far from salient landmarks. 

These studies suggest that grid cell input to the hippocampus is key to structuring 

hippocampal activity in absence of salient stimuli. This role of the MEC may be particularly 

vital in novel settings, before the structure of the environment has been learned. By 

supplying a regularly structured input from the beginning of learning, the periodicity of the 

grid CAN may help generate new sequences of hippocampal activity that bridge disparate 

landmarks172,184,185. In this way, the grid CAN could provide a temporal scaffolding onto 

which situation-specific activity can be linked across time, preserving the ordinal structure 

that supports a topology.

Bridging salient stimuli through the MEC-hippocampus loop

In order for grid network activity to link events into a topological representation of a given 

experience, the periodic scaffolding provided by the grid network must be anchored to 

salient landmarks that demarcate that experience. Salient landmarks may therefore influence 

grid CAN dynamics similar to the manner in which boundaries have been proposed to 

anchor the location of MEC attractor states to the external environment45,66,186. During 

spatial exploration, it is thought that velocity inputs drive the flow of activity within 

the grid CAN during locomotion, but encounters with walls, signaled by MEC border 

cells or hippocampal place cells, pull the flow of activity toward the state associated 

with the landmark44,66. In this way, the MEC attractor state becomes anchored to the 

physical environment, ensuring reliable spatial activity45,186. However, landmarks do not 

need to be physical walls to provide an anchoring stimulus. The hippocampal population 

over-represents the start and end points of virtual linear tracks106,187,188 and non-spatial 

task sequences86,109, and thus could entrain the grid CAN to event boundaries by virtue 

of focal increases in excitation from the hippocampus. Reward would act as a particularly 

salient feature to alter the structure of the topology, anchoring the MEC grid pattern33,70 

and the hippocampal population activity164,165 to salient goal locations. Updating by the 

hippocampus about salient landmarks can thus help provide waypoints that regulate the 

flow of activity through the grid cell CAN. In turn, the MEC facilitates the ability of 

both regions to form stable patterns of activity especially in novel settings. Together, 

these interactions in the MEC-hippocampus loop generate a topological representation of 

experience foundationally defined by the link between the progression of neural activity and 

the temporal order of events in the world.

Experimental results are consistent with the hypothesis that the MEC-hippocampal loop 

constructs a topological representation. Importantly, topological structure is preserved 

despite changes in spacing between salient events defining the topology189. In agreement 

with this, the grid pattern dynamically stretches in proportion to the displacement of a 

moveable wall63–65,68,69,190 -- a finding that has been mirrored in hippocampal place cells 

in the open field191. Experiments using expandable192–194 and reconfigurable10 linear tracks 

have further demonstrated that hippocampal cell firing corresponds to relative order in the 
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environment as opposed to precise distances (Fig. 2C). The flexibility of this topological 

code is evident in MEC and hippocampal neurons that rescale their responses to span 

the duration of a forced delay period88,195 (Fig. 2D). These findings suggest that the 

topology can be rescaled relative to the progression between salient events rather than 

providing veridical measurements of space or clock time. Indeed, neither elapsed time nor 

distance traveled definitively captures the specificity of grid cells and hippocampal neurons 

during treadmill runs in forced delays87,114. By adapting to changing intervals between 

salient events37,44,63–66,68,69, the grid CAN would aid in guiding the flow of activity in the 

hippocampus despite variability across individual experiences.

Though representations are malleable with manipulations to time or space, the fine spike 

timing between neurons remains intact within theta cycles193,195, indicating that the 

topological structure is maintained at the theta time scale despite the stretching that occurs 

at the behavioral time scale. This preservation of spike order between cells suggests that 

theta packets reflect an ordinal structure stored in the hippocampal formation, raising the 

possibility that the rescaling seen in time or space is an emergent property of pacing the 

progression of theta sequences11,196. This pacing is likely determined by the combination 

of inputs to the MEC-hippocampal system. As described in the PI-CAN model, inputs 

to the MEC conveying information about speed and allocentric orientation contribute to 

the flow of activity in the grid CAN31,42,43. These velocity inputs may even help to 

“label” each attractor state with metric information12,13,197, resulting in activity that can 

reflect a spatial code. Complementing inputs that reflect self-movement information, recent 

research has elucidated the additional importance of visual perception on attractor network 

activity198. Just as landmarks have been proposed to drag the flow of the attractor44,66, the 

MEC-hippocampus loop may be updated by perceptual information reflecting the approach 

or expectation of a salient event. Since salient features of a task are known to influence 

the extent of theta sequences199,200, perceptual updates to the network may shape the rate 

of sequence progression. If the approach to an upcoming salient event can be predicted by 

continuously evolving input, then we would expect to see a continuously changing set of 

theta sequences, as is the case with running on a linear track (Fig. 2C). However, if a task 

is solely defined by discrete events that progress in a punctuated manner, then we would 

expect the attractor to be drawn to these salient features and likewise demonstrate piecewise 

advancement through theta sequences109 (Fig. 2E). In either case, the progression of activity 

is always linked across time as a topology that binds experiences of the world within an 

ordinal structure.

Temporal contiguity defines the ordered topology

The reciprocity between the hippocampus and MEC illuminates the function of the 

hippocampal formation as building topological representations of experience7,9–14. As 

events unfold in time, the states of the MEC attractor continuously update in concert with 

the ongoing activity of the hippocampus. Because each state flows from a progression 

of previous states, the information supported by this network inherently incorporates 

temporal adjacency. Continuous attractor models that support path integration similarly 

track movement through physical space according to temporal adjacency28, and only differ 

by rigidly mapping the neural activity to measurements of physical distance. In casting 
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the circuitry of the hippocampal formation as a sequence generator11, the need for a 
priori dimensionality or metric relationships is avoided. Instead, the topology is built 

through synaptic plasticity between neurons repeatedly activated in a particular order during 

learning, similar to existing theories highlighting the importance of ordered spiking11,151,196. 

In this topological framework, the grid network supports ordered relationships between 

elements of experience without needing to measure exact feature quantities. Our proposal 

thus synergizes the activity exhibited by MEC and hippocampus during spatial navigation 

with the roles of these structures in forming episodic memories.

Once this topological representation is built, it can be used to facilitate decision-making. 

States within the topology span the sequence of events from task initiation to the outcome, 

similar to the progression of states described in reinforcement learning models136,166. 

With decision points in the topological graph anchored to salient features, the network 

would be able to propagate a series of states from the decision point to the goal to 

aid in choice61,167–169,171,172. Consistent with a role in decision-making, representations 

across the MEC-hippocampal network reflecting future choices61,167–169,201 manifest on 

the theta time scale in both spatial202,203 and non-spatial tasks109. Leading up to a choice, 

the representations of possible futures can even alternate on successive theta cycles202, 

suggesting that neuronal sequences mediate cognitive access to multiple possible outcomes 

via the task topology.

The topological interpretation also suggests that tuning in non-spatial tasks does not rely on 

particular stimulus features (e.g. auditory frequency). Instead, hippocampal and entorhinal 

neurons encode the position of the stimulus in a sequence. Such a sequential topology 

can be constructed from stimuli which are either continuously changing in time28,86,106 

or discretized94,105,109, since punctuated multimodal events are likewise represented by 

hippocampal tuning and compressed into theta sequences109 (Fig. 2E). While individual 

neurons may show specificity for particular odors or sounds during these tasks108–110, we 

advocate that tuning arises from the association of individual stimuli with specific transition 

probabilities in the sequence136 rather than detection of the sensory features of the stimulus. 

Our topological model therefore stands contrary to feature space proposals (Box 2) which 

cast the hippocampal formation more as a semantic organizer, determining relationships 

between objects based on measurable feature qualities15,16. Instead, given the accumulating 

evidence that the MEC-hippocampal network operates as a CAN, we highlight its defining 

attribute as the sequential progression of network activity through adjacent states over time. 

In sum, abstract feature spaces (Box 2) lacking temporal contiguity between neighboring 

elements would not be supported by the model mechanisms we propose here.

Critical aspects of our proposal are consistent with recent works that have formalized 

the coding of non-spatial domains without relying on feature measurements. One of 

these approaches is a model known as the Tolman-Eichenbaum Machine (TEM), which 

dissociates the representation of structural relationships in the MEC from their binding 

to sensory features in the hippocampus204. Similar to experimental training paradigms, 

TEM must be trained through ordered presentation of task stimuli to generate grid firing 

patterns consistent with structural relationships after learning. In this way, our emphasis 

on temporal contiguity aligns well with this model, although temporal progression is not 
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an explicit focus of TEM. However, we suggest that the MEC and HPC work together to 

learn structure, while the TEM advocates that the MEC has a special role in abstracting 

and storing relational structure. Despite this difference, both TEM and our model are 

also parsimonious with work proposing that hippocampal place cells represent predicted 

future states136, or successor representations135,136,205,206. In simplified terms, the successor 

representation (SR) model posits that hippocampal firing signals how much a current state 

predicts that the agent will occupy future possible states136. A topological representation 

storing the connectivity between states in an experience is highly compatible with both 

this predictability and the requirement for learning inherent in SR. Further, SR highlights 

the ability of a topology to facilitate decision-making at any step, because the agent learns 

the transition probabilities from each state to the outcome. The commonalities between 

TEM and SR are likewise compatible with multiple past works advocating for hippocampal 

topological representations9,12–14,207–209 as well as the foundational notion of relational 

memory7,210.

Our proposal raises several testable predictions (Box 3) and complements previous 

works in three important ways. First, we suggest a biological implementation of the 

MEC-hippocampal network’s ability to construct a topology via reciprocal communication 

organized by the theta rhythm. Second, we emphasize temporal contiguity in the 

information represented topologically, aligning this function more closely with learning 

sequences than learning featural relationships and differing from theories of conceptual 

organization15,94,211. Third, we unite a topological framework with continuous attractor 

networks, updating the hypothesized role of the grid network beyond allocentric spatial 

navigation.

Conclusion

We propose that the interplay between hippocampus and MEC works synergistically to build 

ordinal topologies based on experience. While the velocity inputs in the PI-CAN model 

may be sufficient to drive the MEC attractor network during navigation with few salient 

features, the hippocampus is ideally suited to bind the MEC representation to important 

elements of experience in the order they occur. We advocate that the function of grid cells 

is best interpreted through the lens of activity across the MEC network, rather than the 

patterning of spikes from individual cells in relation to an experimenter-chosen predictor. 

Under this broadened scope of entorhinal-hippocampal function, moving through physical 

space is just one example of progressing through a topology. Importantly, correspondence 

to measurements of physical or abstract spaces would be incidental to the necessary 

relationship between the temporal structure of experiences while moving through space. 

Recasting the hippocampal formation as a builder of topologies comports well with the 

role of this region in linking a series of events to construct new memories, and potentially 

resolves the tension between the navigation and memory literature.
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BOX 1.

Connectivity of the MEC and HPC supporting continuous attractor 
dynamics

Principal cells in layers II and III of the MEC comprise a multitude of functionally-

defined cell types, including grid cells, head direction cells, border cells, and non-

grid spatial cells27,35,212–214. Within the MEC, grid cells are embedded within a 

network that has elaborate intrinsic connectivity, with recurrent excitation between 

subsets of nearby excitatory neurons and strong feedforward inhibition via local 

interneurons22,23,26,215–218. This connectivity is poised to support recurrent activity 

patterns and supplies an anatomical substrate for intrinsic propagation of activity through 

the tissue.

Grid firing patterns have been observed in both excitatory principal cell types of the 

MEC219,220, stellate cells and pyramidal cells221,222. Layer II (L2) pyramidal cells 

make lateral excitatory synapses onto stellate cells, interneurons, and other pyramidal 

cells within L2217,218, whereas L2 stellate cells are thought to communicate with 

each other primarily via feedforward inhibition through interneurons22,216 (Box 1, A). 

Inhibition to the principal cell in layers II and III diminishes in strength as a function 

of distance22,23,26,143,215,216, suggesting that activity propagates through the network by 

successive recruitment of anatomically restricted microcircuits. Communication across 

layers is facilitated by ascending excitatory synapses from L5b pyramidal cells to 

L5a, L3, and L2142,143,223, as well as from L3 pyramidal cells to L2 stellate cells218. 

Descending excitation flows primarily from L2 stellate cells to L5b pyramidal cells, the 

primary recipients of hippocampal input224. The dendritic field of excitation ascending 

from deep to superficial layers of MEC is asymmetrically offset from the receiving 

neuron143, which suggests that deep layers may direct an asymmetric flow of activity 

within the CAN comprising the superficial layers39,52,225.

MEC stellate cells (green circle) in layer II project primarily to the dentate gyrus (DG) 

and CA3, while pyramidal cells (red triangles) in layers II and III project to CA1226–228 

(Box 1, B). Reciprocally, hippocampal CA1 and subiculum (Sub) project primarily back 

to layers V and VI of the MEC226,229, where grid cells are present but less numerous 

than in the superficial layers27. A direct projection from CA1/subiculum to layer III230 

and from CA2 to layer II has also been observed231, as have minor projections from 

layer V back to the hippocampus232. Ascending excitatory connections from the deep to 

superficial layers of MEC close the MEC-hippocampal loop142,143,218,223.
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Box 1 illustration. 
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BOX 2.

Incongruity of abstract feature spaces with CAN dynamics

To assess whether abstract features spaces could be supported by the mechanisms 

proposed to underlie the MEC CAN, let us imagine a two-dimensional conceptual space 

of fruit. In this space, fruit diameter lies on one dimension and tartness on the other 

dimension. For the hippocampal formation to code this ‘fruit space’, the fields of each 

grid cell would span the measurement range of each fruit dimension (e.g. smaller to 

large diameter), and hippocampal neurons would be selectively active for a subclass of 

fruit, such as lemons and limes. Generalizing the PI-CAN model to this space utilizes 

the model’s assumed metric relationship between features of the physical world and the 

firing patterns of grid cells and place cells. However, to adapt the mechanistic framework 

from the PI-CAN model to fruit space, two key model constructs must be reconciled, 

each creating unique challenges in featural domains.

First, measurements of change along the feature axes (i.e. delta-x and delta-y) (Box 2, 

A) must be conveyed to the grid network through afferents specifying information about 

each feature, analogous to a velocity signal containing direction and speed. These inputs 

must either bypass the velocity input to advance the attractor state through the CAN 

independently, or somehow convert the relationship between abstract features, such as 

perceived differences in tartness between fruits, to a velocity signal (Box 2, B). The 

possible mechanisms for converting sensory inputs specific to each feature to a velocity-

like input are unclear. To drive the CAN independently of this conversion would require 

a combinatorial explosion of extrinsic inputs to drive MEC representations of all possible 

abstract spaces. Moreover, in order to decode measurements of fruit diameter and tartness 

from the firing of a grid field, the network must generate regular field spacing that 

reflects metric intervals in the feature space. Such fixed regularity is often absent even in 

physical space outside of symmetric open-field environments.

Second, to measure displacements in the feature space using PI-CAN mechanisms, 

activity must move through successive states of the CAN. Because activity states evolve 

continuously over time, rather than shifting in large jumps across the manifold, updates 

require a “path” through the space that can be “path-integrated” through time from the 

velocity analog. To construct such a path, elements in the space must be ordered in time. 

It is unclear how feature spaces that lack temporal contiguity between their elements 

would correspond to updates in the CAN -- for example, does defining the tartness 

relationship between limes and apples traverse a path through oranges and lemons? (Box 

2, C) While landmark inputs alone (i.e. inputs specific to limes) can shift the network 

activity toward the landmark44, these inputs must be used in concert with a continuously 

evolving input like velocity in the PI-CAN model to drive the activity through intervening 

states. Together, these constraints imposed by the mechanisms in the PI-CAN model 

limit the scope of abstract spaces that can be plausibly mapped according to our current 

understanding of network dynamics in the MEC.
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Box 2 illustration. 
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BOX 3.

Open Questions

We have proposed that the MEC-hippocampal loop supports topological representations 

based in temporal contiguity. Here we suggest experiments to test several key predictions 

of the model:

1. Robust communication across the MEC-hippocampal loop manifests at the 
theta timescale. If large ensembles of neurons are simultaneously recorded 

in MEC and CA1, this model predicts several findings: 1) Theta sequences 

exist within the MEC. 2) Distortions in grid field patterns near reward sites 

should correspond to a concentration of fields in hippocampal neurons. 3) 

Trajectories decoded from the population activity on each theta cycle would 

be similar across regions, including cases where theta sequences sweep 

ahead toward goals201,202. 4) Disruption of firing order within hippocampal 

theta sequences via localized manipulation (e.g. 158) should also disrupt the 

structure of activity within the MEC, even though the aggregate hippocampal 

input will remain similar (see 126).

2. Order of stimulus presentation shapes the responses to individual stimuli, 
even if the featural qualities are the same. We predict that if an animal were 

trained to advance a continuously changing series of tones86 involving repeats 

of a tone within the sequence (for example), the MEC-hippocampal network 

would exhibit unique responses to each presentation of the tone. This result 

would strongly suggest that spiking is driven by sequential order informed by 

the history of experience, whereas similar responses to each presentation of 

the tone would suggest that spiking is driven by featural measurements. The 

results would inform the interpretation of similar phenomena observed in the 

spatial domain167,169 and with discrete sequences108.

3. Links in the topology depend on temporal contiguity. Virtual mazes offer 

the possibility of teleporting across space, allowing the animal to travel 

continuously through time while experiencing a discontinuity in space. We 

would expect the topology to smoothly link the two points of teleportation197, 

much like adjacent locations are represented by place cells. We would also 

expect theta sequences to extend across the points of teleportation but not 

through the intervening positions, since traversing the intervening space is 

not necessary to connect the two nodes in the topology. These expectations 

contrast with the predictions of a path integration framework, which would 

allow for interpolation of shortcuts via Euclidean geometry.

Remaining open questions:

1. Are navigational inputs privileged in driving the MEC attractor? Does the 

relative strength of navigational inputs vary across species with increases in 

cognitive flexibility?

Rueckemann et al. Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2022 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Is the intrinsic circuitry of the grid CAN static, or can novel sequences of grid 

cells be formed through plasticity?

3. How do extrinsic cortical afferents, such as those from the prefrontal cortex, 

influence activity in the MEC CAN? Which inputs inform MEC activity 

around goals and salient features according to task demands?

4. How do subpopulations and subcircuits of the hippocampus and MEC (e.g. 

CA1 sublayers; trisynaptic pathway; CA1 versus subiculum input to MEC) 

contribute to the computations in the MEC-hippocampus loop?

5. What happens to attractor dynamics in absence of a continuous theta rhythm, 

either during waking immobility or in primate species in which theta occurs 

in bouts?
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Figure 1. Representations argued to be supported by grid cells
A) Comparison of conceptual models that may be supported by grid cells. The 

‘Representational Scheme’ illustrates how the entorhinal-hippocampal network represents 

relationships (top), and the ‘Network Computation’ illustrates the nature of the information 

supplied to readers of the entorhinal-hippocampal network (bottom). Left: Topology based 

in temporal order. Structure across nodes is rooted in the order of events in experience; 

relationships reflect temporal adjacency. This structure formulates sequences that can link 

disparate items, which may be manifest in the fine timing of spikes within each theta cycle 
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(see Fig. 2). Right: Feature space defined by axes that quantify featural attributes of items. 

Relationships between items are defined by the qualities measured within the feature space, 

which can be used to derive categories (e.g. types of apples or citrus fruits; see Box 2).

B) Firing patterns of an archetypical grid cell in MEC (left) and place cell in hippocampus 

(right) in a square open arena. Grey line depicts the trajectory of the animal; red dots 

are spikes. The spatially averaged firing rates of the cells are shown with warmer colors 

indicating higher firing rates.

C) Grid cell fields are organized in a rhombus-shaped tile that spans the environment. 

Relative position within the tile is given by coordinates (phi, psi) defined by the rhombus 

axes. In one proposed implementation of connectivity within the tile, connecting the 

rhombus edges forms a twisted torus19,20,50,51, creating a continuous surface capable of 

generating periodic fields.

D) Grid cells with similar field spacing and orientation are organized in modules. Spatial 

offset between grid cells indexes relative position within a module tile. Combining activity 

across modules disambiguates individual positions in the environment (trajectory: dotted 

line). Spike rasters demonstrate the activity of each module over time as the trajectory 

progresses. The population rate code across modules creates a unique identifier for each 

position in space (green and red stars).

E) Inaccurate decoded positions resulting from distortion in grid field spacing (adapted from 
64).
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Figure 2. Topological representations in the spike order of theta sequences
A) The MEC-hippocampus loop model for updates to network activity in each region. 

Information about velocity and salient events are proposed to influence the MEC CAN, 

which reciprocally interacts with the hippocampus -- though this does not preclude a direct 

effect of these inputs on the hippocampus as well.

B) Theta sequences in hippocampus and hypothesized theta sequences in MEC. Left: A 

trajectory through an open arena (black arrow) passes through a sequence of place cells (top) 

and grid cells from a single module (bottom). Right: Place cells and grid cells both exhibit 
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ordered spiking at the theta timescale that progresses in concert with movement through the 

maze. Vertical dotted lines mark theta cycle boundaries. Theta disinhibition is out of phase 

between hippocampus and MEC, allowing communication to alternate across regions.

C-E) MEC grid cells and hippocampal place cells fire as a rodent moves along a linear 

track (C), runs continuously on a treadmill (D), or progresses through a sequence of 

discrete sensory events involving odors and tones 109 (E) (grid cell firing patterns in E 

are hypothetical). As the animal progresses in position or time, neurons exhibit theta phase 

precession, shown for hippocampal cells as the transition of spikes from later to earlier 

theta phases. In each of these experiences, neuronal spikes are ordered within a single theta 

cycle (red dashed arrow) according to the animal’s past, present, and future. This spike 

ordering generates a topological graph of the experience, with each node of the topology 

corresponding to an ordered instance in the experience (bottom panels). When a linear track 

is stretched 193 (C) or when the time of a treadmill run is increased 87,195 (D), both grid cells 

and place cells demonstrate the capacity to rescale to span the entire experience. Despite this 

field stretching, spike ordering is preserved within a theta cycle (bottom panels), preserving 

the topological representation from the original to the stretched experience by maintaining 

temporal relationships between neurons. Future work remains to determine the scalability of 

topological representations for discrete sequences of events. Adapted from 109,195.
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