Skip to main content
. 2022 Aug 11;380(5):44. doi: 10.1007/s41061-022-00397-3

Table 3.

Fullerene-based nanomaterial in wastewater remediation

Nanomaterial Contaminant Mechanism Sorption/catalytic capacity (%) Studied conditions Cycles References
pH Time (min) Temp °C
C60-modified ZnAlTi layered double oxide (ZnAlTi-LDO) Bisphenol A Photocatalytic degradation 85 7 60 28 [317]
Fullerene (C60)/CdS nanocomposite Rhodamine B Photocatalytic degradation 97 40 3 [318]

[PdCl2, H2PtCl6·nH2O & Y(NO3)3]

Doped TiO2

Methylene blue Photocatalytic degradation [319]
C60 17 CB congeners Sorption [320]
Polyhydroxy fullerene (PHF) coated TiO2 Procion red MX-5B Photocatalytic degradation 66–74 360 [321]
Hydroxylated fullerene (fullerenol) Diethyl phthalate (DEP) Degradation 100 3.5 60 [322]
Hydroxylated fullerene Chloramphenicol (CAP) Degradation 90 3 60 [323]
Fullerenol (polyhydroxyfullerene, PHF) Acid red 18 Photocatalytic degradation 86.7  < 8 60 4 [324]
[60]Fullerene-functionalized magnetic nanoparticles (Fe3O4@SiO2@C60) Polycyclic aromatic hydrocarbons (PAHs) Sorption 92.4–106.9 3–12 2–10 10 [325]
Titania nanotubes (TiNTs) functionalized with fullerenes (C60) Isopropanol Photocatalytic degradation 100 660 [326]
Nanocomposites of TiO2 and single fullerene (C60) molecule Methyl orange Photocatalytic degradation 30 [327]
Rutile-C60 composites Methylene blue Photocatalytic degradation 100% 240 [328]
Fullerene modified C3N4 (C60/C3N4) composites Rhodamine B Photocatalytic degradation 97% 60 5 [329]