Table 3.
Fullerene-based nanomaterial in wastewater remediation
| Nanomaterial | Contaminant | Mechanism | Sorption/catalytic capacity (%) | Studied conditions | Cycles | References | ||
|---|---|---|---|---|---|---|---|---|
| pH | Time (min) | Temp °C | ||||||
| C60-modified ZnAlTi layered double oxide (ZnAlTi-LDO) | Bisphenol A | Photocatalytic degradation | 85 | 7 | 60 | 28 | [317] | |
| Fullerene (C60)/CdS nanocomposite | Rhodamine B | Photocatalytic degradation | 97 | 40 | 3 | [318] | ||
|
[PdCl2, H2PtCl6·nH2O & Y(NO3)3] Doped TiO2 |
Methylene blue | Photocatalytic degradation | [319] | |||||
| C60 | 17 CB congeners | Sorption | [320] | |||||
| Polyhydroxy fullerene (PHF) coated TiO2 | Procion red MX-5B | Photocatalytic degradation | 66–74 | 360 | [321] | |||
| Hydroxylated fullerene (fullerenol) | Diethyl phthalate (DEP) | Degradation | 100 | 3.5 | 60 | [322] | ||
| Hydroxylated fullerene | Chloramphenicol (CAP) | Degradation | 90 | 3 | 60 | [323] | ||
| Fullerenol (polyhydroxyfullerene, PHF) | Acid red 18 | Photocatalytic degradation | 86.7 | < 8 | 60 | 4 | [324] | |
| [60]Fullerene-functionalized magnetic nanoparticles (Fe3O4@SiO2@C60) | Polycyclic aromatic hydrocarbons (PAHs) | Sorption | 92.4–106.9 | 3–12 | 2–10 | 10 | [325] | |
| Titania nanotubes (TiNTs) functionalized with fullerenes (C60) | Isopropanol | Photocatalytic degradation | 100 | 660 | [326] | |||
| Nanocomposites of TiO2 and single fullerene (C60) molecule | Methyl orange | Photocatalytic degradation | 30 | [327] | ||||
| Rutile-C60 composites | Methylene blue | Photocatalytic degradation | 100% | 240 | [328] | |||
| Fullerene modified C3N4 (C60/C3N4) composites | Rhodamine B | Photocatalytic degradation | 97% | 60 | 5 | [329] | ||