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Abstract

The tumour microenvironment and genetic alterations collectively
influence drug efficacy in cancer, but current evidence is limited
and systematic analyses are lacking. Using chronic lymphocytic
leukaemia (CLL) as a model disease, we investigated the influence
of 17 microenvironmental stimuli on 12 drugs in 192 genetically
characterised patient samples. Based on microenvironmental
response, we identified four subgroups with distinct clinical out-
comes beyond known prognostic markers. Response to multiple
microenvironmental stimuli was amplified in trisomy 12 samples.
Trisomy 12 was associated with a distinct epigenetic signature.
Bromodomain inhibition reversed this epigenetic profile and could
be used to target microenvironmental signalling in trisomy 12 CLL.
We quantified the impact of microenvironmental stimuli on drug
response and their dependence on genetic alterations, identifying
interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the
strongest actuators of drug resistance. IL4 and TLR signalling activ-
ity was increased in CLL-infiltrated lymph nodes compared with
healthy samples. High IL4 activity correlated with faster disease
progression. The publicly available dataset can facilitate the inves-
tigation of cell-extrinsic mechanisms of drug resistance and dis-
ease progression.
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Introduction

CLL is a common B-cell malignancy, attributed to the accumulation

of mature B-lymphocytes in the peripheral blood, bone marrow and

lymph nodes (Fabbri & Dalla-Favera, 2016). The disease course is

heterogeneous, influenced by multiple factors including B-cell recep-

tor (BCR) signalling, genetic alterations, epigenetic effects and the

tumour microenvironment (Puente et al, 2018). Despite significant

improvements to CLL treatment, including the advent of BCR inhibi-

tors (Burger et al, 2015) and BH3-mimetics (Fischer et al, 2019),

CLL remains incurable. There is a compelling need to better under-

stand cell-intrinsic and extrinsic causes of therapy failure.

The genetic landscape of CLL is well characterised. The most

important features include del(17p), TP53-mutations, immunoglob-

ulin heavy chain gene (IGHV) mutation status, del(13q) and trisomy

12 (Döhner et al, 2000; Gaidano & Rossi, 2017). This list of recur-

rent genetic and structural alterations has expanded in the past

years (Strefford, 2015). The predictive value of these alterations

has, however, declined in the context of modern targeted therapies,
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and resistance mechanisms are incompletely understood (Burger

et al, 2020).

Additionally to cell-intrinsic factors, CLL cell proliferation and

survival is dependent on the lymph node microenvironment (Hern-

don et al, 2017), which is underlined by the observation that CLL

cells undergo spontaneous apoptosis in vitro if deprived of protec-

tive microenvironmental signals (Collins et al, 1989). Microenviron-

mental stimuli can induce drug resistance in vitro. For example, the

combination of IL2 and resiquimod, a Toll-Like Receptor (TLR) 7/8

stimulus, induces resistance to venetoclax (Oppermann et al, 2016);

and interferon-γ (IFNγ) induces resistance to the BCR inhibitor ibru-

tinib (Xia et al, 2020). The CLL microenvironment constitutes a

complex network of stromal and immune cells that promote cell

expansion (Ten Hacken & Burger, 2016) via soluble factors and

cell–cell contacts. Microenvironmental signalling is particularly

important in protective niches, especially lymph nodes. Incomplete

response to BCR inhibitors has been linked to persistent enlarge-

ment of lymph nodes (Ahn et al, 2018), which are the main site of

CLL proliferation (Herndon et al, 2017).

Several studies have investigated individual components of the

microenvironment in leukaemia (Dietrich et al, 2012; Chatzouli

et al, 2014; Jayappa et al, 2017; Chen et al, 2019; preprint: Herbst

et al, 2022a). However, systematic studies, particularly those explor-

ing cell-extrinsic influences on drug response, are rare. Carey

et al, 2017 have screened acute myeloid leukaemia samples with a

panel of soluble factors and amongst them identified IL1ß as a medi-

ator of cellular expansion in acute myeloid leukaemia. This example

highlights the value of systematic approaches to dissect tumour–
microenvironment crosstalk.

Taking this approach further, we screened a panel of microenvi-

ronmental stimuli in CLL, individually and in combination with

drugs, representing a reductionist approach to microenvironmental

effects, and complemented our dataset with multi-omics data on the

patient samples. In this study, we integrate genetic, epigenetic and

microenvironmental modulators of drug response in CLL systemati-

cally in a large patient cohort that covers the clinical and molecular

diversity of CLL. Due to the dependency on microenvironmental

support, CLL is an important model system for the interaction

between malignant and microenvironmental cells in general.

Results

Ex vivo cell viability assay demonstrates functional diversity of
cytokine and microenvironmental signalling pathways

To investigate the influence of 17 cytokines and microenvironmen-

tal stimuli on spontaneous and drug-induced apoptosis, we mea-

sured their effects on cell viability in 192 primary CLL samples

individually, as well as in combination with each of 12 drugs

(Fig 1A–C). Relative viability was measured as luminescence-based

ATP count (i.e. Celltiter-Glo, Promega®) after 48 h of drug-stimulus

perturbation divided by the median of the DMSO controls. In subse-

quent analyses, we used the natural logarithm of this value, so that

negative and positive values indicate pro- and antiapoptotic effects,

respectively, and values close to 0 correspond to no effect.

The patient samples were characterised by DNA sequencing,

mapping of copy number variants, genome-wide DNA methylation

profiling and RNA-Sequencing (Dietrich et al, 2018). The distribu-

tion of genetic features in our cohort is comparable to other studies

(Appendix Fig S1 and Table S1) (Döhner et al, 2000).

To assess the heterogeneity of the response patterns, we calcu-

lated Pearson correlation coefficients for each pair of drugs and each

pair of stimuli. For the drugs, high correlation coefficients

(R > 0.75) were associated with identical target pathways. For

example, drugs targeting the BCR pathway (ibrutinib, idelalisib,

PRT062607 and selumetinib) were highly correlated, indicating that

our data sensitively and specifically reflect inter-individual differ-

ences in pathway dependencies (Fig 1D) (Dietrich et al, 2018).

In contrast, microenvironmental stimuli showed lower correla-

tions, even where stimuli targeted similar pathways (Fig 1E). For

example, lower correlations were observed between different stim-

uli of the JAK–STAT and NfκB pathways, indicating a low degree of

redundancy between stimuli. High correlations (R > 0.75) were only

seen with the TLR stimuli resiquimod (TLR7/8) and CpG ODN

(TLR9) as well as IL4 and IL4 + soluble CD40L (sCD40L), which tar-

get near-identical receptors and downstream targets.

Most stimuli increased CLL viability, underlining the supportive

nature of the microenvironment. However, IL6 and tumour growth

factor β (TGFβ) decreased viability (Appendix Fig S2). The strongest

responses were seen with IL4 and TLR7/8/9 agonists, highlighting

the potency of these pathways in modulating CLL survival. All

screening data can be explored manually (github.com/Huber-group-

EMBL/CLLCytokineScreen2021) and interactively, via the shiny app

(dietrichlab.de/CLL_Microenvironment/).

Patterns of responses to microenvironmental stimuli reveal two
subgroups of IGHV-M CLL with differential aggressiveness

To gain a global overview of the pattern of responses to our set of

microenvironmental stimuli across patient samples, we visualised

and clustered (Wilkerson & Hayes, 2010) the stimulus–response
profiles of all samples (Fig 2A).

This analysis revealed four functionally defined subgroups with

distinct stimulus–response profiles. Two clusters (termed C1 and

C2) were enriched in IGHV-unmutated CLLs (IGHV-U), and two (C3

and C4) in IGHV-mutated CLLs (IGHV-M). C1 and C2 showed strong

responses to IL4 and TLR7/8/9 agonists. C2 was distinguished by

stronger responses to the stimuli overall, in particular to NFκB ago-

nists including IL1β and anti-IgM. C3 responded weakly to the

majority of stimuli, whilst C4 was defined by a decreased viability

upon TLR7/8/9 stimulation (Appendix Fig S3).

Next, we investigated whether these clusters were associated

with differential in vivo disease progression of the corresponding

patients. We used lymphocyte doubling time (available for n = 115

samples), time to next treatment (n = 188) and CLL Proliferative

Drive (CLL-PD, n = 146) to quantify clinical progression dynamics

and proliferative capacity of the CLL cells. In line with clinical

observations (Baumann et al, 2021), the IGHV-U-enriched C1 and

C2 showed a shorter lymphocyte doubling time than the IGHV-M-

enriched C3 and C4. More strikingly, C3 showed a significantly

shorter lymphocyte doubling time than C4, indicating a higher pro-

liferative capacity (Fig 2B).

This observation was reflected in disease progression rates: the

predominantly IGHV-M C3 showed a progression dynamic similar to

the IGHV-U-enriched C1 and C2. C4, however, showed a longer time
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to next treatment than C1, C2 and C3 (Cox proportional hazards

model, P = 0.0014, < 0.001, 0.005, respectively, Fig 2C, Appendix

Tables S2 and S3). C3 had significantly shorter time to first treat-

ment than C4 (P-value < 0.001, Appendix Fig S4A). Overall survival

was not detectably different between C3 and C4 (Appendix Fig

S4B). This points towards a subset of mostly IGHV-M patients with

more aggressive disease (C3), which is characterised by its differen-

tial response to microenvironmental stimuli.

CLL Proliferative Drive (CLL-PD) is a recently discovered molec-

ular biomarker profile that captures the proliferative capacity of CLL

cells based on data from multiple omic layers (Lu et al, 2021). CLL-

PD was significantly higher in C3 samples than in C4 and higher in

C2 samples than in C1 (Appendix Fig S5A). To understand these

relationships, we looked for associations between CLL-PD and the

response to each stimulus, using multivariate regression (Appendix

Fig S5B). CLL-PD was associated with distinct pathways in IGHV-M

and U disease. In IGHV-M, CLL-PD correlated with responses to TLR

stimuli (Appendix Fig S5C and E). In IGHV-U, it correlated with

NFkB and TGF-beta stimuli (sCD40L, IL-1β, soluble anti-IgM and

TGF-β1, Appendix Fig S5D and F).

We next aimed to characterise molecular differences between

clusters. We used multinomial regression to identify associations

between genetic features and cluster assignment (Fig 2D). The

model assigned positive and negative coefficients to genetic features

associated with each cluster, indicating that the feature was

enriched or depleted. Unmutated IGHV was associated with C1 and
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Figure 1. Study outline and overview of drugs and stimuli.

A Schematic of experimental protocol. We measured tumour cell viability after exposure to 12 drugs and 17 microenvironmental stimuli, both individually and in
combination, in primary CLL samples (n = 192). Integrating these data with genomic, transcriptomic, DNA methylation and copy number variation data, we
identified pro-survival pathways, molecular modulators of drug and microenvironment responses, and drug-stimulus interactions in CLL. The combinatorial data
cube (12 × 17 × 192) can be accessed in toto (github.com/Huber-group-EMBL/CLLCytokineScreen2021) and explored interactively, via the shiny app (www.
dietrichlab.de/CLL_Microenvironment/).

B Overview of stimuli included in the screen and their primary annotated targets. In addition, we also used medium condition by the human stroma cell line HS-5.
C Table of drugs included in the screen. Drug target and category of target are also shown.
D, E Pearson correlation coefficients, taken across the 192 patient samples, of the logarithm of the relative viability after single treatment with drug (D) and stimulus (E)

treatments. Text labels indicate correlation coefficients for those pairs where the correlation was significantly different from 0 at a false discovery rate (FDR)
threshold of 0.05 (method of Benjamini & Hochberg (1995)), adjustment performed separately for drug and stimulus correlations).
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C2, whilst mutated IGHV was associated with clusters C3 and C4.

Trisomy 12 and SF3B1 mutations were associated with C2, which

showed enhanced responses to many stimuli. POT1 mutations were

enriched in C3, which may contribute to the worse survival of C3

patients. TP53, ATM, RAS/RAF mutations and gain(8q) were

depleted in C4, which was associated with slow in vivo progression.

In addition to genetic features, we also investigated the epige-

netic profiles of the clusters. We observed that C1 and C2 were

enriched for samples with low programmed (LP) DNA methylation

profiles, whilst C3 and C4 contained many samples with high pro-

grammed (HP) DNA methylation profiles (Appendix Fig S6) (Oakes

et al, 2016).

Notably, the observed difference in progression dynamics in vivo

was not explained solely by the known prognostic markers IGHV sta-

tus, trisomy 12, TP53, DNA methylation profiles and POT1 (Ramsay

et al, 2013). A multivariate Cox proportional hazards model accounting

for these features showed an independent prognostic value of the clus-

ter assignment between C3 and C4 (P = 0.03, Appendix Table S4).

To examine why C3 exhibited faster disease progression than C4,

we compared baseline pathway activity at the time of sampling,

using RNA-Sequencing (Appendix Fig S7A). GSEA revealed that key

cytokine gene sets were upregulated in C3, including TNFα sig-

nalling via NFκB, indicating higher pathway activity in vivo (Fig 2E;

Appendix Fig S7B). In addition, pathways that indicate more aggres-

sive disease relating to proliferation, metabolism and stress

response were upregulated in C3 (Appendix Fig S7C–E). Differential
gene expression between C1 and C2 is shown in Appendix Fig S8.

The clusters also demonstrated differential pathway sensitivities.

For example, we found C3 to be more sensitive towards treatment

with BAY-11-7085, a selective IκBα phosphorylation inhibitor

(Appendix Fig S9 and S10). In C3 samples, the treatment with BAY-

11-7085 led to a reduction of the pro-survival effect of BAFF, which

stimulates the NFκB pathway (Appendix Fig S11).

Taken together, the patterns of responses to our set of stimuli

distinguish two subgroups of IGHV-M CLL (C3 and C4) that are

characterised by distinct in vivo pathway activities and differential

disease progression.

Microenvironmental signals and genetic features collectively
determine malignant cell survival

Having observed heterogeneous responses to stimulation, we per-

formed univariate analyses of genetic determinants of stimulus–

response, including IGHV status, somatic gene mutations and struc-

tural variants (Fig 3A). At least one genetic feature determined stim-

ulus–response for 10/17 stimuli and at least two features for 6/17

stimuli (Student’s t-tests, FDR = 10%), indicating that CLL viability

is controlled both by cell-intrinsic genetic alterations and the cells’

microenvironment. We excluded genetic features with less than

three positive cases in our cohort as associations with rare events

are less reliable (Appendix Table S1). The most prominent features

affecting stimulus–response were IGHV status and trisomy 12.

Responses to microenvironmental stimuli were largely independent

of receptor expression (Appendix Fig S12).

To address the possible interplay of multiple genetic features, we

applied linear regression with lasso regularisation to derive a multi-

variate predictor for each stimulus, composed of genetic, IGHV and

DNA methylation covariates (Fig 3B; Appendix Fig S13). This

revealed at least one genetic predictor for five of the 17 stimuli. Tri-

somy 12 and IGHV status were again the most common features.

Stimulus–responses stratified by mutations, along with regres-

sion model fits, can be explored online (dietrichlab.de/CLL_

Microenvironment/).

Trisomy 12 is a key modulator of responses to stimuli

Our survey of genetic determinants of stimulus–response high-

lighted trisomy 12 as a modulator of responses to IL4, TGFβ, soluble
CD40L + IL4 and TLR stimuli.

TLR response has previously been shown to depend on the IGHV

mutation status (Chatzouli et al, 2014); we identified trisomy 12 as

a second major determinant of response to TLR stimulation. IGHV-

mutated CLL samples with trisomy 12 showed a strongly increased

viability after TLR stimulation with resiquimod compared to those

without trisomy 12. IGHV-unmutated CLL cells showed a strong

increase in viability upon TLR stimulation regardless of trisomy 12

status (Fig 4A). In addition, we observed that the presence of tri-

somy 12 enhanced the effects of IL4 and TGFβ stimulation (Fig 4B

and C).

We hypothesised that modulation of response to the microenvi-

ronment may play a role in the mechanism of trisomy 12

pathogenicity, which is so far incompletely understood. Previous

work has indicated that trisomy 12 CLLs show higher transcript and

protein abundance of microenvironmental pathways including BCR

(preprint: Herbst et al, 2022b) and chemokine signalling genes

(Dietrich et al, 2018).

◀ Figure 2. Ex vivo microenvironmental response profiling reveals subgroups with distinct molecular and clinical profiles.

A Heatmap showing viability measurements for the 192 samples (rows) subject to each of 17 microenvironmental stimuli (columns). The data are shown on a robust
z-score scale, that is, the logarithm of the relative viability measurements was scaled by the median absolute deviation within each row. Limits were applied to
scaling factor for optimal visualisation. Red indicates increased viability, and blue indicates decreased viability. Samples are annotated for genetic features, sex and
pre-treatment status.

B Lymphocyte doubling time, a clinical marker for disease progression, plotted for each cluster, within the subset of 115 for which this measurement was available (C1:
n = 46; C2: n = 12; C3: n = 25; C4: n = 32). P-values from Student’s t-test (non-paired, two-sided). The central bar, boxes and whiskers of the plot represent the
median, first and third quartiles, and 1.5-time interquartile range (IQR), respectively.

C Clinical outcome. Kaplan–Meier curves of time to next treatment for each cluster. P-values from univariate Cox proportional hazard models comparing C1 with C2,
and C3 with C4. Survival data were available for 188 patient samples.

D Genetics. Multinomial regression quantifies association of genetic features with each cluster. X-axis indicates genetic features, and y-axis indicates coefficient from
multinomial regression, indicating enrichment or depletion of the feature within each cluster. Text labels show the number of positive cases and the total number of
cases tested for the feature, in each cluster. Error bars represent mean � standard deviation.

E Transcriptomes. GSEA comparing the expression of genes in samples from C3 (n = 9) versus those C4 (n = 12). Normalised enrichment scores are shown for the top
10 most significant Hallmark gene sets (Liberzon et al, 2015).
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Building on these studies of the trisomy 12 CLL transcriptome

and proteome, we investigated the impact on the epigenome. We

used chromosome accessibility data from ATAC sequencing to infer

transcription factor (TF) activity based on motif accessibility. We

quantified inferred TF activity in trisomy 12 and non-trisomy 12

CLL PBMC samples (n = 4). 92 TFs demonstrated higher inferred

activity (P < 0.05) in the trisomy 12 samples (Appendix Fig S14),

reflecting a specific signalling signature in trisomy 12 CLL. Spi-B

and PU.1 were the top hits. Both are haematopoietic regulators,

which exhibit functional redundancy (Garrett-Sinha et al, 2001).

They also have similar binding motifs, which makes it difficult to

distinguish whether either or both are upregulated in trisomy 12

based on this motif-based method of inferring activity.

We validated our finding in two additional independent datasets

taken from Rendeiro et al, 2016 (nine trisomy 12 and 43 non-

trisomy 12) and Beekman et al, 2018 (13 trisomy 12 and 87 non-

trisomy 12). In the Rendeiro et al, 2016 data, nine TFs showed

higher inferred activity (P < 0.05) in the trisomy 12 samples (Fig 4

D) and in the Beekman et al, 2018 dataset, 18 TFs showed higher

inferred activity (P < 0.05) in the trisomy 12 samples (Appendix Fig

S15). Spi-B and PU.1 were the top hits in both datasets.

To check whether the results were affected by the additional

reads on chromosome 12, we repeated these analyses without

including data from chromosome 12 (Appendix Fig S16) and Spi-B

and PU.1 remained the top hits.

Spi-B and PU.1 are known to be key regulators of healthy B-cell

function (Ray-Gallet et al, 1995; Turkistany & DeKoter, 2011), con-

trolling B-cell responses to environmental cues including CD40L,

TLR ligands and IL4 (Willis et al, 2017). We hypothesised that these

TFs might modulate proliferation by coordinating transcriptional

responses to microenvironmental signals in trisomy 12 CLL.

To investigate this, we first visualised the genomic locations of

all Spi-B and PU.1 motifs that showed differential inferred activity in

trisomy 12 samples (Appendix Fig S17). This analysis indicated that

Spi-B and PU.1 binding motifs showing differential accessibility in

trisomy 12 CLL are distributed throughout the genome. We next
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Figure 3. Responses to microenvironmental signals are modulated by recurrent genetic features in CLL.

A Overview of genetic feature-stimulus associations. x-axis shows stimuli, and y-axis shows P-values from Student’s t-tests (two-sided, equal variance). Each dot repre-
sents a genetic feature-stimulus association. Tests with P-values smaller than the threshold corresponding to an FDR of 10% (method of Benjamini & Hoch-
berg (1995)) are indicated by coloured circles, where the colours represent the gene mutations and structural aberrations. All genetic features tested can be found in
Appendix Table S1.

B Predictor profiles depicting genetic feature-stimulus associations identified through Gaussian linear modelling with L1-penalty, for selected stimuli. The bar plots on
the left indicate size and sign of coefficients assigned to genetic features that are associated with response to given stimulus. Positive coefficients indicate higher via-
bility after stimulation if the feature is present. The heatmaps show mutation status in each of the patient samples. The samples were sorted by the logarithm of the
relative viability, which is shown in the scatter plots at the bottom. In total, 39 genetic alterations were tested amongst 129 patient samples with complete annota-
tion. LP, low programmed; IP, intermediate programmed; HP, high programmed (Oakes et al, 2016).
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Figure 4. Trisomy 12 modulates responses to microenvironmental signals.

A–C Logarithm of the relative viability after treatment with Resiquimod (A, n = 169), IL4 (B, n = 174) and TGFβ (C, n = 174) stratified by trisomy 12, and in (A), also by
IGHV status. P-values from Student’s t-test (two-sided, non-paired). The central bar, boxes and whiskers of the plot represent the median, first and third quartiles,
and 1.5-time IQR, respectively.

D Change in inferred TF activity (y-axis) between samples with (n = 9) and without (n = 43) trisomy 12. Plot shows a change in inferred activity for all TFs with an
adjusted P-value < 0.05. Changes in inferred activity and P-values for 638 TFs calculated using the diffTF software and data taken from (Rendeiro et al, 2016).

E Natural logarithm of the relative viability (n = 174) after treatment with IBET 762 in trisomy 12 and non-trisomy 12 CLL samples. P-value from Student’s t-test
(two-sided, non-paired). The central bar, boxes and whiskers of the plot represent the median, first and third quartiles, and 1.5-time IQR, respectively.

F Differential inferred TF activity (y-axis) comparing IBET 762 (n = 4) and control-treated CLL samples (n = 4). Plot shows inferred activity for the same TFs shown in
Fig 4D.
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approximated Spi-B and PU.1 target genes in trisomy 12 CLL by

annotating each of these motif locations with the nearest gene. We

ran over-representation tests to investigate the enrichment of

immune and control pathways amongst these gene targets. We

found that JAK–STAT signalling was enriched amongst Spi-B targets

and TCR signalling genes were enriched amongst PU.1 targets

(P < 0.01, Appendix Table S5).

To further validate our hypothesis, we additionally determined

Spi-B and PU.1 target genes through the use of a ChIPseq dataset

(Care et al, 2014), quantifying Spi-B and PU.1 binding in lym-

phoma cell lines. We found that TLR, BCR and TGFβ signalling

genes were enriched (P < 0.01) amongst the Spi-B targets based

on ChIPseq data (Appendix Table S6). No pathways were

enriched amongst the PU.1 targets. Whilst lymphoma cell lines

cannot completely capture the biology of CLL, this result supports

the hypothesis that Spi-B may control microenvironmental

response genes in malignant B-cells.

Finally, we investigated whether Spi-B and PU.1 activity and

the trisomy 12 TF signature might be targetable. Amongst the

panel of drugs included in this screen, we noted that the bromod-

omain inhibitor IBET-762 demonstrated higher efficacy in trisomy

12 CLL cells (Fig 4E). We generated an additional ATACseq

dataset consisting of four CLL PBMC samples each treated with

IBET-762 and DMSO as control. We visualised inferred TF activity

after IBET-762 treatment, for trisomy 12 signature TFs. The

inferred TF activity was decreased upon IBET-762 treatment in a

broad range of TFs, including all nine TFs with higher inferred

activity in trisomy 12 CLL (Fig 4F).

Taken together, we highlight trisomy 12 as a modulator of

response to microenvironmental signals, describe increased Spi-B

and PU.1 TF activity as a potential effector mechanism and link Spi-

B and PU.1 to microenvironmental signalling genes in CLL and lym-

phoma. BET inhibition, which has previously been suggested as a

therapeutic target in CLL (Ozer et al, 2018), could therefore be a

promising therapeutic strategy in trisomy 12 patients.

Mapping drug-microenvironment interactions reveals drug
resistance and sensitivity pathways

Guided by the observation of reduced treatment efficacy in protec-

tive niches (Ahn et al, 2018), we examined the effects of the stimuli

on drug response.

We fitted a linear model (Equation 1) to quantify how each stim-

ulus modulates drug efficacy beyond its individual effects, such as

the impact of the stimulus on baseline viability and spontaneous

apoptosis. βint, termed the interaction factor, quantifies how the

combined treatment effect differs from the sum of the individual

treatment effects.

logV ¼ βdXd þ βsXs þ βintXdXs þ ϵ (1)

V represents the viability with a given treatment, βd, βs, and βint
are coefficients for the drug, stimulus, and combinatorial terms,

respectively, Xd and Xs are indicator variables (0 or 1) for the

presence or absence of a drug/stimulus. ε is the vector of model

residuals.

Forty-five out of 204 combinations had a βint with P < 0.05. We

classified these into four categories, based on the sign of βint and

whether the combination effect was antagonistic or synergistic

(Fig 5A–C).
Positive antagonistic interactions were the most common cate-

gory, in which stimuli reversed drug action and increased viability.

These interactions could lead to treatment resistance in vivo. For

example, multiple stimuli reduced the toxicity of the chemothera-

peutic compounds fludarabine and nutlin-3a. The action of targeted

therapies (including BCR inhibitors) was also reduced by the stim-

uli, most commonly by IL4 (Fig 5D) and IFNγ (Fig 5E), in alignment

with other studies on IL4 and IFNγ (Aguilar-Hernandez et al, 2016;

Xia et al, 2020). IL4 and IFNγ reversed drug action in a common set

of drugs, suggesting that both stimuli may act via a common mecha-

nism.

A total of 6/45 interactions were categorised as negative antago-

nistic, in which drug action reversed the pro-survival effect of

microenvironmental stimulation. These interactions point to strate-

gies to overcome treatment resistance. For instance, pan-JAK inhibi-

tion reduced the increase in viability from sCD40L + IL4 stimulation

(Fig 5F).

We observed a single positive synergistic case, whereby simulta-

neous treatment with IFNγ and ralimetinib, a p38 MAPK inhibitor,

induced a synergistic increase in viability which was not observed

with either single treatment (Fig 5G), pointing towards an inhibitory

effect of p38 activity on IFNγ signalling.
Sixteen combinations showed negative synergistic interactions.

For example, TLR9 agonist CpG ODN increased the efficacy of BCR

inhibition (Fig 5H). Interestingly, in samples where TLR stimulation

increased viability, the addition of BCR inhibitors (ibrutinib and ide-

lalisib) suppressed this effect, indicating that the increase in viability

upon TLR stimulation is dependent on BCR activity. The efficacy of

luminespib, a HSP90 inhibitor, increased with various stimuli,

including soluble anti-IgM (Fig 5I).

Altogether, these results highlight the influence of the microenvi-

ronment on drug efficacy and underline the value of microenviron-

mental stimulation in ex vivo studies of drug efficacy.

Genetic features affect drug-microenvironment interactions

Next, to investigate to what extent genetic driver mutations modu-

lated the interactions between stimuli and drugs, we fit the linear

model in Equation (1) in a sample-specific manner.

This resulted in a sample-specific βint interaction coefficient for

each drug-stimulus combination. We looked for associations

between the size of βint and genetic features using multivariate

regression with L1 (lasso) regularisation, with genetic features and

IGHV status as predictors. We generated a predictor profile for each

drug-stimulus combination, depicting coefficients that were selected

in > 90% of bootstrapped model fits. In total, we found genetic mod-

ulators for 60/204 interactions (Fig 6A; Appendix Fig S18). Trisomy

12 and IGHV status modulated the largest number of interactions.

For example, we found the value of βint for fludarabine and CpG

ODN to be modulated by six genetic factors; most strongly by IGHV

status, del(11q), and trisomy 12 (Fig 6B).

In IGHV-M non-trisomy 12 samples, fludarabine efficacy

increased in the presence of TLR stimulation, whilst in the other sub-

groups TLR stimulation induced resistance to fludarabine (Fig 6C).

Our approach also identified interactions dependent on single

treatment effects. IL4 induced complete resistance to ibrutinib
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regardless of higher ibrutinib efficacy in trisomy 12 and IGHV-U

samples. This highlights the breadth of IL4-induced resistance

to ibrutinib in CLL across genetic backgrounds (Fig 6D; Appendix

Fig S19).

Overall, these findings illustrate how the presence of known

genetic alterations determines how drugs and external stimuli inter-

act with each other.

The key resistance pathways IL4 and TLR show increased activity
in CLL-infiltrated lymph nodes

Microenvironmental signalling within lymph nodes has been impli-

cated in treatment resistance (Yan et al, 2011; Hayden et al, 2012;

Mittal et al, 2014; Herndon et al, 2017), though a clear understand-

ing of the mechanisms involved remains missing. Since IL4 and TLR
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signalling was the most prominent modulators of drug response in

our study, we assessed their activity within the lymph node niche.

We stained paraffin-embedded sections of 100 CLL-infiltrated and

100 tumour-free lymph nodes for pSTAT6, an essential downstream

target of IL4 (Appendix Fig S20), and pIRAK4, a downstream target

of TLR7/8/9.

The CLL-infiltrated lymph nodes showed higher levels of pSTAT6

(Fig 7A) and pIRAK4 (Fig 7B). Examples are shown in Fig 7C–F.
To investigate the influence of microenvironmental activity in

lymph nodes on CLL disease progression, we correlated staining

intensity with time to next treatment. High activity of pSTAT6 corre-

lated with shorter time to next treatment (Fig 7G), and the same

trend could be observed with higher pIRAK4 (Fig 7H). Higher IL4

activity within the lymph node appeared to relate to shorter time to

next treatment and may provide further evidence to the hypothesis

that microenvironmental activity promotes treatment resistance

within the lymph node, eventually leading to relapse.

Discussion

Our work maps the effects of microenvironmental stimuli in the

presence of drugs and links these to underlying molecular properties

across 192 primary CLL samples. We employ all combinations of 17

stimuli with 12 drugs as a reductionist model investigating individ-

ual effects of microenvironmental modulators. We account for the

confounding effects of spontaneous apoptosis ex vivo and dissect

the effect of individual microenvironmental stimuli on baseline via-

bility and drug toxicity. The results may serve as building blocks for

a more holistic understanding of the interactions of tumour genetics,

microenvironment and drug response in complex in vivo situations.

We discover that CLL subgroups can be extracted from microen-

vironmental response phenotypes and that this classification is

linked to distinct molecular profiles and clinical outcomes. A sub-

group of IGHV-M samples with distinct ex vivo responses to

microenvironmental stimulation (C3) showed faster disease progres-

sion. This subgroup (C3) also demonstrated higher activity in vivo

of pathways involved in response to microenvironmental signals,

including NFκB, and was more susceptible to NFκB inhibition by

BAY-11-7085. Overall, this highlights the important role of these

signalling pathways in CLL pathophysiology. The question whether

the distinct response ex vivo is caused by a higher intrinsic activity

of these pathways in vivo remains open and would be an interesting

topic of further research. Further, we link microenvironmental

response phenotypes to the CLL Proliferative Drive (Lu et al, 2021),

further characterising the biology of this newly proposed patient

stratification method.

The sensitivity afforded by our approach enabled us to identify

drug-stimulus interactions, meaning instances where the effect of a

drug on the tumour cells is modulated by a microenvironmental

stimulus. Building on work on IL4- and IFN-induced drug resistance

(Aguilar-Hernandez et al, 2016; Xia et al, 2020), our assay demon-

strates the importance of both pathways in inducing resistance

across a range of BCR inhibitors and chemotherapeutics. Systematic

mapping of drug-stimulus interactions, such as generated in this

study, can be used to inform biology-based combinatorial treat-

ments across different entities.

We demonstrated the breadth of IL4-induced resistance against

kinase inhibitors and chemotherapeutics across a range of genetic

backgrounds. IL4 induced complete resistance to BCR inhibitors

across genetic subgroups, despite greater BCR inhibitor efficacy

in IGHV-U CLL. Further, we observed increased IL4 activity

within CLL-infiltrated lymph nodes compared with tumour-free

lymph nodes, which complements previous work demonstrating

higher IL4 activity in the lymph node compared with peripheral

blood (Aguilar-Hernandez et al, 2016; Herishanu et al, 2011).

Increased IL4 signalling activity was associated with faster dis-

ease progression. Our work highlights the significance of IL4

within the lymph node niche, especially since proliferation (Hern-

don et al, 2017) and resistance to BCR inhibition (Ahn et

al, 2018) is linked to lymph nodes and our recent work suggests

T follicular helper cells as a source of IL4 (Roider et al, 2020).

Targeting pathways downstream of IL4, via JAK inhibition, has

been reported to improve BCR response in non-responding CLL

patients (Spaner et al, 2019).

Underneath cell-extrinsic factors that control the apoptotic and

proliferative activity of tumour cells in response to drugs, there lies

the network of cell-intrinsic molecular components. We used multi-

variate modelling to capture the impact of molecular features on

responses to stimuli and drugs. For instance, the response to TLR

◀ Figure 5. Microenvironmental stimuli influence ex vivo drug response.

A Graphical representation of the four drug-stimulus interaction categories. Categories are defined according to the nature of the interaction (synergistic or antago-
nistic), and whether the viability is increased or decreased by the stimulus (positive or negative). x-axis shows treatment type, and y-axis shows viability with each
treatment. Red and blue points and lines depict a representative treatment response pattern for given interaction type. Blue horizontal lines represent the expected
viability for combinatorial treatment in the absence of an interaction between drug and stimulus (i.e. additive effects), and black horizontal lines represent the mea-
sured viability after combinatorial treatment. The difference between the black and blue lines indicates the impact of the interaction on expected viability.

B Bar plot of the number of interactions in each category where the P-value for the interaction term βint < 0.05.
C Heatmap of all βint values with associated P-value < 0.05, annotated with interaction category (I-IV). Rows and columns indicate drugs and stimuli, ordered accord-

ing to hierarchical clustering. Scale indicates size and sign of βint for given drug-stimulus combination. (I) Positive βint and antagonistic (microenvironmental stimu-
lation reduces drug effect). (II) Negative βint and antagonistic (drug reduces stimuli effect). (III) Positive βint and synergistic (microenvironmental stimulation and
drug have synergistic pro-survival effect). (IV) Negative βint and antagonistic (microenvironmental stimulation and drug show synergistic toxicity).

D–I Examples of drug-stimulus interactions, for each category. Plots show the natural logarithm of the relative viability of 192 CLL samples after treatment with the
respective drug and stimulus. Each line represents one patient sample linked across treatments. Black horizontal lines in each single treatment indicate the
expected viability based on linear modelling. Black and blue horizontal lines in the combinatorial treatment indicate the expected viability based on the additive
effect of the drug and stimulus (blue), and the expected viability accounting for the additive effect and the interaction (black). (D + E) Ibrutinib, a clinically used
BTK inhibitor, is blocked by IL4 and IFNγ. (F) The JAK inhibitor pyridone-6 inhibits the pro-survival effect of sCD40L + IL4 stimulation. (G) The p38 inhibitor ralime-
tinib and IFNγ show a synergistic pro-survival effect not observed in either single treatment. (H) TLR agonists, including CpG ODN (shown), increase sensitivity to
BTK inhibition by ibrutinib, despite increasing viability as single treatments. (I) Soluble anti-IgM sensitises CLL samples to HSP90 inhibition by luminespib.
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Figure 6. Integrating the effects of genetic features and stimuli on drug response.
Based on the drug-stimulus viability data of 137 CLL patient samples with complete genetic annotation, we fitted a sample-specific linear model.
A Heatmap depicting genetic predictors of drug-stimulus interactions. Each row indicates genetic features that are associated with the size of interaction between

the drug (right) and stimulus (left), that is, each row depicts the coefficients of a single multivariate model fit as in (B)). Coloured fields indicate that βint for given
drug and stimulus is modulated by corresponding genetic feature. Positive coefficients are shown in red, indicating a more positive βint if the feature is present. For
clarity, plot shows eight most common genetic features and omits drug-stimulus combinations where no coefficient was assigned to any of these eight features.
Heatmap of coefficients for all tested genetic features can be seen in Appendix Fig S18.

B Predictor profile depicting genetic features that modulate the interaction between fludarabine and CpG ODN, identified using multivariate modelling. The
horizontal bars on the left show the size of coefficients assigned to genetic features by model. The matrix in the centre indicates patient sample mutation status
for the given genetic features aligned with the scatter plot below indicating the size of βint for the same patient sample. Grey lines indicate the presence of genetic
feature/IGHV mutated.

C, D Beeswarm boxplots of the natural logarithm of the relative viability of 169 CLL samples, for (C) fludarabine + CpG ODN and (D) ibrutinib + IL4 single and
combinatorial treatments, faceted by IGHV status and trisomy 12 status. P-values from paired Student’s t-test. The central bar, boxes and whiskers of the plot rep-
resent the median, first and third quartiles and 1.5-time IQR, respectively.
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stimulation depended on IGHV status, trisomy 12, del11q, del13q

and ATM, reflecting the multiple layers of biology involved. Most

strikingly, we observed that TLR stimulation increased fludarabine

toxicity in the subgroup of IGHV-M non-trisomy 12 patient samples,

whilst it led to fludarabine resistance in all other backgrounds. This

finding combined with our observation that TLR signalling is highly

active in CLL-infiltrated lymph nodes might help explain the hetero-

geneous effects of chemotherapy in CLL, in particular that fludara-

bine therapy can achieve lasting remission in IGHV-M but not in

IGHV-U patients.

p < 2.22e−16

0.0

0.1

0.2

0.3

CLL−infiltrated
lymph nodes

Non−neoplastic
lymph nodes

M
ea

n 
pS

TA
T6

 S
ta

in
in

g 
In

te
ns

ity

A

1.2e−08

0.0

0.2

0.4

CLL−infiltrated
lymph nodes

Non−neoplastic
lymph nodes

M
ea

n 
pI

R
A

K
4 

St
ai

ni
ng

 In
te

ns
ity

B

C

D

E

F

+++
++
+
++

+++ + +

++
+ + +

++ + +

+ ++++

++ ++ +

p = 0.038

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8Ti
m

e 
to

 n
ex

t t
re

at
m

en
t (

pr
ob

ab
ili

ty
)

+ +High Low

52 17 7 2 0
12 5 3 1 0Low

High

0 2 4 6 8
Time in years

G

+++
++
+
++

+++ +++
+

+ ++
++ +++

+ ++++

+

++ +

p = 0.19

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8Ti
m

e 
to

 n
ex

t t
re

at
m

en
t (

pr
ob

ab
ili

ty
)

+ +High Low

50 16 9 3 0
14 6 1 0 0Low

High

0 2 4 6 8
Time in years

H

Figure 7. IL4 and TLR signalling is upregulated in CLL-infiltrated lymph nodes.

A, B Mean (A) pSTAT6 and (B) pIRAK4 staining intensity in CLL-infiltrated (n = 100 for pSTAT and pIRAK4) and tumour-free lymph node biopsies (n = 98 for pSTAT6 and
n = 100 for pIRAK4) after background subtraction (y-axis), P-values from Student’s t-test. Each dot represents the mean of all cells in the tissue microarray cores
per patient sample. The central bar, boxes and whiskers of the plot represent the median, first and third quartiles, and 1.5-time IQR, respectively.

C–F Example images of immunohistochemistry sections: (C + D) pSTAT6 levels in (C) CLL-infiltrated and (D) tumour-free samples. (E + F) pIRAK4 levels in (E)
CLL-infiltrated and (F) tumour-free samples. Scale bar defines 20 μm in all images.

G, H Kaplan–Meier plots for time to next treatment stratified by levels (high/low) of pSTAT6 (G) and pIRAK4 (H). P-values from univariate Cox proportional hazard
models.
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Beyond TLR, trisomy 12 modulated a broad range of stimu-

lus–responses and drug-stimulus interactions, comparable to

the impact of IGHV status. Molecularly, we link the observed

trisomy 12 phenotype to upregulated microenvironmental sig-

nalling and higher inferred activity of Spi-B and PU.1, essential

regulators of environmental sensing in B-cells (Willis et

al, 2017). The TF signature associated with trisomy 12 can be

reversed by bromodomain inhibition and trisomy 12 samples

exhibit increased sensitivity to bromodomain inhibition, indi-

cating this as potential therapeutic strategy in trisomy 12 CLL.

This is in line with previous epigenetic studies, suggesting

BET inhibition as a viable therapeutic strategy in CLL (Ozer

et al, 2018).

We present a data resource for the study of drug response in the

context of cell-intrinsic and cell-extrinsic modulators. The data may

inform targeted mechanistic investigations and direct efforts for

combination therapies. The entire dataset, including the repro-

ducible analysis, can be downloaded in toto from the online reposi-

tory (github.com/Huber-group-EMBL/CLLCytokineScreen2021), or

explored interactively (dietrichlab.de/CLL_Microenvironment/).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source
Identifier or
Catalog Number

Experimental Models

Information on patient samples is provided in Table EV1

Antibodies

pIRAK4 Abcam; Lot: GR3228799-1; Clone: polyklonal; Host: rabbit; Dilution: 1:50 ab216513

pSTAT6 Abcam; Lot: GR45152-32; Clone: polyklonal; Host: rabbit; Dilution: 1:50 ab28829

Chemicals, enzymes and other reagents

Drugs

Ibrutinib Selleck Chemicals; Concentration 1: 500 nM; Concentration 2: 50 nM S2680

Idelalisib Selleck Chemicals; Concentration 1: 500 nM; Concentration 2: 50 nM S2226

Fludarabine Selleck Chemicals; Concentration 1: 2,000 nM; Concentration 2: 200 nM S1491

Nutlin-3a Selleck Chemicals; Concentration 1: 10,000 nM; Concentration 2: 1,000 nM S8059

Selumetinib Selleck Chemicals; Concentration 1: 1,000 nM; Concentration 2: 100 nM S1008

BAY-11-7085 Selleck Chemicals; Concentration 1: 2,000 nM; Concentration 2: 200 nM S7352

Everolimus Selleck Chemicals; Concentration 1: 500 nM; Concentration 2: 50 nM S1120

PRT062607 Selleck Chemicals; Concentration 1: 500 nM; Concentration 2: 50 nM S8032

Pyridone-6 MedChemExpress; Concentration 1: 500 nM; Concentration 2: 50 nM 457021-03-7

Ralimetinib Selleck Chemicals; Concentration 1: 1,500 nM; Concentration 2: 150 nM S1494

Luminespib Selleck Chemicals; Concentration 1: 200 nM; Concentration 2: 20 nM S1069

I-BET 762 Selleck Chemicals; Concentration 1: 1,000 nM; Concentration 2: 100 nM S7189

Microenvironmental stimuli

IL4 human recombinant animal component free Sigma-Aldrich; Concentration: 10 ng/ml; Lot: 0712AFC14 SRP3093

IL10 human Animal component free Sigma-Aldrich; Concentration: 10 ng/ml; Lot: 1012AFC21 SRP3312

IL2 human recombinant animal component free Sigma-Aldrich; Concentration: 10 ng/ml; Lot: 0416AFC12 SRP3085

R-848 Enzo Life Siences; Concentration: 1,000 ng/ml; Lot: 10211615 ALX-420-038-M025

Human IL-21 Peprotech; Concentration: 10 ng/ml; Lot: 414226 200-21

Human BAFF Peprotech; Concentration: 250 ng/ml; Lot: 0706CY194 310-13

Human IL-1 beta Peprotech; Concentration: 10 ng/ml; Lot: 0606B95 200-01

Human sCD40 Ligand Peprotech; Concentration: 1,000 ng/ml; Lot: 1214145 310-02

Goat F(AB’)2 Fragment to human IgM MP Biomedicals; Concentration: 20,000 ng/ml; Lot: 7227 55055

Human TGFβ1 Peprotech; Concentration: 10 ng/ml; Lot: 1117209 100-21

Human IL15 Peprotech; Concentration: 10 ng/ml; Lot: 91624 200-15
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source
Identifier or
Catalog Number

Human IL6 Peprotech; Concentration: 10 ng/ml; Lot: 031316-2 200-06

ODN 2006 (ODN 7909) Invivogen; Concentration: 1,000 ng/ml; Lot: 3901-09T tlrl-2006-1

Human SDF1 alpha (CXCL12) Peprotech; Concentration: 200 ng/ml; Lot: 101492 300-28A

Human Interferon gamma Peprotech; Concentration: 5 ng/ml; Lot: 121527 300-02

HS-5 conditioned medium this study; Concentration: 20%

Other reagents

RPMI Gibco® 21875-034

Pen/Strep Gibco® 15140-122

L-Glutamine Gibco® 25030-024

FBS PAN BIOTECHTM P30-3302

Human Serum PAN BIOTECHTM P40-2701

Software

R 4.1.0

R Studio 2022.02.0 Build 443

Qupath 0.1.2

HOCOMOCO 10

diffTF 1.8

broom 0.8.0

ChIPseeker 1.30.3

clusterProfiler 4.2.2

ConsensusClusterPlus 1.56.0

cowplot 1.1.1

DESeq2 1.34.0

DESeq2

dplyr 1.0.7

genomation 1.24.0

ggbeeswarm 0.6.0

ggfortify 0.4.14

ggplot2 3.3.5

ggpubr 0.4.0

ggrepel 0.9.1

glmnet 4.1-2

gridExtra 2.3

gtable 0.3.0

Hmisc 4.6-0

magick 2.7.3

magrittr 2.0.2

maxstat 0.7-25

msigdbr 7.5.1

org.Hs.eg.db 3.13.0

patchwork 1.1.1

pheatmap 1.0.12

plyr 1.8.6

png 0.1-7

RColorBrewer 1.1-3
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source
Identifier or
Catalog Number

scales 1.2.0

survival 3.2-12

survminer 0.4.9

tidyr 1.1.3

tidyverse 1.3.1

TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2

Other

40 μm Cell Strainer Falcon® 352340

CellTiter-Glo Promega® G7573

384-well deepwell plates Greiner Bio-One 781270

Aluminium Plate Seals Greiner Bio-One 676090

384-well culture plates Greiner Bio-One 781904

6–well plates Greiner Bio-One 657160

Methods and protocols

Sample preparation and drug-stimulation profiling
Informed consent was obtained from all patients before isolation

and storage of CLL cells in line with the Declaration of Helsinki and

the Department of Health and Human Services Belmont Report. The

study was approved by the ethics committee of the Medical Faculty

Heidelberg, Germany. Mononuclear cells were isolated from periph-

eral blood of CLL patients by a Ficoll gradient and cryopreserved as

previously described (Dietrich et al, 2018). Cells were incubated for

48 h with or without drugs and stimuli. We selected drugs that pro-

duced diverse patterns of responses across patient samples and that

covered targets important to the biology of CLL. For each drug, we

selected two concentrations, one inducing subtle, sublethal effects,

the other killing a large fraction of cells. This was done to enable

observation of both synergistic and protective effects with additional

exposition to stimuli. All drugs were dissolved in dimethyl sulfoxide

(DMSO) and stored at −20°C. The stimuli were chosen based on lit-

erature review of small scale in vitro studies in CLL. Concentrations

were based on previously reported studies and on our own experi-

ments. HS-5-conditioned medium was produced by incubating HS-5

stromal cell line to > 80% confluency and cell removal by centrifu-

gation. The viability was measured by a luminescent ATP readout

(CellTiter-Glo, Promega®). The detailed methodology is described

below.

(i) Preparation of drug-stimulus combinations in 384-well plates

a. All drugs were diluted in DMSO to 333-fold target concentra-

tion in the culture (see Reagents and Tools table). These dilu-

tions were performed manually and pipetted into a 384-well

deep-well plate (Greiner Bio-One cat.no. 781270).

b. 1.5 μl of drug solution was pipetted per well into 384-well

plates (Greiner Bio-One cat.no. 781904). These plates were

sealed with aluminium foil (Greiner Bio-One cat.no. 676090)

and stored at −20°C.
c. For each day of screening, two 384-well drug plates were

thawed.

d. Stimuli were diluted and stored according to the protocols

defined by the manufacturers (Reagents and Tools table). On

each screening day, all stimuli were thawed and diluted in

RPMI + 1% Pen/Strep + 1% Glutamine.

e. 98.5 μl of stimuli solution was pipetted into the 384-well drug

plates containing 1.5 μl of drug solution per well.

f. Using a high-throughput liquid handling device (Integra

Viaflo), 5 μl of drug-stimulus mixture was added into 384-well

culture plates. Two culture plates were used per patient sample.

(ii) Patient samples

a. Mononuclear cells were isolated from peripheral blood and

cryopreserved as previously described (Dietrich et al, 2018).

b. Samples were removed from liquid nitrogen and transported

on dry ice to the cell culture facility. The samples were incu-

bated in a water bath at 37°C until they were thawed. The sam-

ples were then transferred to 50 ml centrifugation tubes with

10 ml of RPMI + 10% FBS + 1% Pen/Strep + 1% Glutamine.

c. Samples were centrifuged at 400 g for 5 min.

d. The supernatant was removed quickly, taking care not to dis-

turb the cell pellet.

e. 10 ml of RPMI + 10% human serum + 1% Pen/Strep + 1%

Glutamine were added, and the cell pellet was resuspended.

f. Cells were incubated for 3 h on a roll mixer. This step allowed for

reconstitution of cellular metabolism after freezing and thawing.

Additionally, dead cells clumped together and could be filtered

out, ensuring high viability at the beginning of each experiment.

g. Cell suspensions were filtered through 40 μm filters.

h. 10 μl of cell suspension was stained with trypan blue, and cells

were counted in a Neubauer chamber to calculate the dilution

for the next step.

i. Cells were diluted in RPMI + 10% human serum + 1% Pen/

Strep + 1% Glutamine to 1 × 106 cells/ml.

(iii) Viability screening

a. 20 μl of cell suspension was added onto previously prepared

culture plates containing drugs and stimuli.

b. Patient samples were incubated with drugs and stimuli in cul-

ture plates at 37°C and 5% CO2 for 48 h.
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c. CellTiter-Glo was used to measure cell viability. Prior to

screening, CellTiter-Glo was dissolved and stored according to

the manufacturer’s protocol and was thawed and equilibrated

to room temperature on screening days.

d. 7 μl of CellTiter-Glo was added to each well and left to incu-

bate for 20 min at room temperature in a dark environment.

e. Luminescence was measured on a Perkin Elmer EnVision using

a measurement time of 100 ms.

ATAC sequencing
CLL cells were isolated from four patients as described above and

MACS sorted for CD19 positive cells (Miltenyi autoMACS). 5 ml of

cell suspension was cultured in 6–well plates and incubated at 37°C
and 5% CO2 for 6 h in DMSO or IBET 762. The final cell concentra-

tion was 2 × 106 cells/ml. Cell viability and purity was assessed

using FACS. All samples had a viability over 90% and over 95% of

CD19+/CD5+/CD3− cells.

ATAC sequencing library generation
ATAC sequencing libraries were generated as described previously

(Buenrostro et al, 2015). Cell preparation and transposition was per-

formed according to the protocol, starting with 5 × 104 cells per

sample. Purified DNA was stored at −20°C until library preparation

was performed. To generate multiplexed libraries, the transposed

DNA was initially amplified for 5x PCR cycles using 2.5 μl each of

25 μM PCR Primer 1 and 2.5 μl of 25 μM Barcoded PCR Primer 2

(Illumina), 25 μl of NEBNext High-Fidelity 2x PCR Master Mix (New

England Biolabs) in a total volume of 50 μl. A 5 μl of the amplified

DNA was used to determine the required number of additional PCR

cycles for each library using qPCR by plotting the line of Rn versus

cycle and extrapolating to one-third of the maximum fluorescent

intensity. The largest number of additional cycles thus determined

was 13. Finally, amplification was performed on the remaining 45 μl
of the PCR reaction. The amplified fragments were purified with two

rounds of SPRI bead clean-up (1.4x). The size distribution of the

libraries was assessed on a Bioanalyzer with a DNA High Sensitivity

kit (Agilent Technologies), and concentration was measured with

Qubit® DNA High Sensitivity kit in Qubit® 2.0 Fluorometer (Life

Technologies). Sequencing was performed on NextSeq 500 (Illu-

mina) using 75 bp paired-end sequencing, generating approx. A 450

million paired reads per run, with an average of 55 million reads per

sample.

Immunohistochemistry
Lymph node biopsies of CLL-infiltrated and tumour-free samples

were formalin-fixed, paraffin-embedded, arranged in Tissue

Microarrays and stained for pSTAT6 (ab28829, Abcam) and pIRAK4

(ab216513, Abcam). The slides were analysed using Qupath (Bank-

head et al, 2017) and the recommended protocol.

Data processing and statistical analysis
To quantify the responses to drugs and stimuli, we used a mea-

sure of viability relative to the control, namely the natural loga-

rithm of the ratio between CellTiter-Glo luminescence readout of

the respective treatment and the median of luminescence readouts

of the DMSO control wells on the same plate, excluding controls

on the outer plate edges. Downstream data analysis was

performed using R version 4 and using packages including DESeq2

(Love et al, 2014), survival (Therneau & Grambsch, 2000), Glmnet

(Friedman et al, 2010), ConsensusClusterPlus (Wilkerson &

Hayes, 2010), clusterProfiler (Yu et al, 2012), ChIPseeker (Yu

et al, 2015), and genomation (Akalin et al, 2015) to perform

univariate association tests, multivariate regression with and

without lasso penalisation, Cox regression, generalised linear mod-

elling and clustering. The complete analysis is described along

with computer-executable transcripts at github.com/Huber-group-

EMBL/CLLCytokineScreen2021.

For Fig 2A, the data are shown on a robust z-score scale, that is,

the logarithm of the relative viability measurements was scaled by

the median absolute deviation within each row. Limits were applied

to scaling factor for optimal visualisation. To generate the column-

wise clusters, we performed repeated hierarchical clustering with

the Euclidean metric over 10,000 repetitions with randomly selected

sample subsets of 80% using ConsensusClusterPlus (Wilkerson &

Hayes, 2010).

For Fig 2B, lymphocyte doubling time was calculated as

described in (Lu et al, 2021). For Fig 2C, TTT represents the period

between the date of sample collection and the data of treatment ini-

tiation. To calculate significance, univariate Cox proportional haz-

ards regression models were fitted using the coxph function, using

C1 as reference for the comparison C1 versus C2 and C4 as reference

for C3 versus C4. To determine whether the prognostic value of

cluster assignment between C3 and C4 was independent of other

prognostic markers, a multivariate Cox proportional hazards regres-

sion model was fit, with the design formula ~ Cluster + IGHV.sta-

tus + trisomy 12 + TP53 + Methylation cluster + POT1, with

Cluster 3 as reference. In Fig 2D, multinomial regression with lasso

penalisation with a matrix of genetic features (n = 39) and IGHV

status (encoded as M = 1 and U = 0) was used to identify multivari-

ate predictors of cluster assignment. The resulting coefficients are

the mean of 50 bootstrapped repeats, where coefficients were fil-

tered if they were selected in < 60% of cases or were < 0.35. Error

bars represent the mean � standard deviation from bootstrapped

repeats. Genetic features with > 20% missing values were excluded,

and only patients with complete annotation were included in the

model (n = 129). For Fig 2E and Appendix Figs S7 and S8, to quan-

tify differential gene expression between C1 (n = 17) and C2

(n = 11), and C3 (n = 9) and C4 (n = 12), genes encoding compo-

nents of the BCR were first filtered, including genes at the heavy,

light and kappa immunoglobulin loci. Differential expression was

quantified using DESeq2 (Love et al, 2014) with design formula

~ IGHV.status + Cluster. For the GSEA, genes were ranked accord-

ing to the resulting Wald statistics and GSEA was performed using

the fgsea algorithm and using Hallmark gene sets.

Significance testing for genetic determinants of microenviron-

mental response shown in Fig 3A was performed for somatic muta-

tions and copy number aberrations present in ≥ 3 patients, and

IGHV status (n = 54). For multivariate modelling with lasso penali-

sation shown in Fig 3B, to generate the feature matrix, genetic fea-

tures with < 20% missing values were considered, KRAS, BRAF and

NRAS mutations were summarised as RAS/RAF alterations and only

patient samples with complete genetic annotation were tested. In

total, 39 genetic features as well as IGHV status (encoded as M = 1

and U = 0), and Methylation Cluster (encoded as LP = 0, IP = 0.5,

HP = 1) and 129 patients were included in this analysis. The model

was fit for 30 bootstrapped repeats, and the resulting coefficients
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are the mean of those coefficients that were selected in > 75%

model fits.

For the ATAC sequencing and inferred TF activity analyses

described in Fig 4, we first generated bam and peak files from fastqs

and subsequently ran the diffTF software (Berest et al, 2019) to

infer TF activity as follows.

In Fig 4D, we selected raw sequencing files from (Rendeiro et

al, 2016) to include one sample per patient passing quality checks

(n = 52) and obtained bam files mapped to the hg19 genome and

adjusted for CG bias as previously outlined (Berest et al, 2019). In

Appendix Fig S15, we selected raw sequencing files from (Beekman

et al, 2018) to include 100 samples and obtained bam files mapped

to the hg19 genome as previously outlined (Berest et al, 2019) with

the exception that we did not adjust for GC-bias.

In both datasets, as trisomy 12 status was not already annotated,

we called trisomy 12 in samples that contained > 1.4 times more

reads per peak on average in chromosome 12, compared with peaks

on other chromosomes, based on the consensus set of peaks that we

used to run diffTF. We used diffTF in permutation mode (Berest

et al, 2019) to infer the differential TF activity between trisomy 12

and non-trisomy 12 samples using TF motifs from HOCOMOCO v10

(Kulakovskiy et al, 2016). For the (Rendeiro et al, 2016) data, we

used minOverlap = 2 and design formula: “~ sample_processing_

batch + sex + IGHV status + trisomy 12” and for the (Beekman

et al, 2018) data, we used minOverlap = 5 and design formula

“~ sex + IGHV status + trisomy 12.”

In Appendix Fig S14, raw ATACseq data generated from our CLL

samples were processed as described by (Berest et al, 2019), with

the exception that we did not use CG bias correction. We used ana-

lytical mode of diffTF with TF motifs from HOCOMOCO v10 data-

base (Kulakovskiy et al, 2016) using the following parameters:

minOverlap = 1; design formula = “~ Patient + trisomy 12 status.”

In both datasets, the analysis was repeated by first removing all

peaks located on chromosome 12 from the input peak file provided

to diffTF, to test the dependency of the results on the third copy of

chromosome 12.

For Fig 4F, raw ATACseq data generated from IBET-762 and

DMSO-treated CLL samples were processed as described in Berest et

al, 2019, mapped to hg38. We then ran diffTF in analytical mode

with TF motifs from HOCOMOCO v11 database (Kulakovskiy et

al, 2016) using the following parameters: minOverlap = 2; design

formula = “~ patient sample + treatment (IBET-762 or DMSO con-

trol).” The inferred TF activity values of the separate diffTF analyses

(trisomy 12 vs. non-trisomy 12 and IBET-762 vs. DMSO-treated

cells) are not directly comparable. Significantly different TFs from

the trisomy 12 vs. non-trisomy 12 analysis are shown.

For the analysis of Spi-B and PU.1 gene targets in Appendix

Table S5, we began with the summary files from running diffTF on

the ATACseq data from (Rendeiro et al, 2016), as described above.

The summary files contained Log2 fold changes and associated P-

values for all motif locations of Spi-B and PU.1 (motifs were defined

using the HOCOMOCO database). Spi-B and PU.1 motif locations

were selected where the absolute Log2 fold change between trisomy

12 and non-trisomy 12 samples > 1 and the associated adjusted

P-value < 0.1. These motif locations are plotted in Appendix Fig

S17. We next defined Spi-B and PU.1 targets as the closest gene to

each of these motif locations. In Appendix Table S6, Spi-B and PU.1

gene targets were defined as the closest gene to each significant

ChIP peak (q value < 0.05) and within �1 kb of transcription start

site. For both analyses, over-representation tests of immune path-

ways taken from the KEGG and Reactome databases, plus control

pathways, were run using the clusterProfiler package (Yu et

al, 2012). The method corresponds to a one-sided version of

Fisher’s exact test.

To generate predictor profiles for Fig 6A, the linear model in

Equation (1) was first fitted separately for each patient sample to

calculate drug-stimulus interaction coefficients (βint) for each sam-

ple. Associations between the size of these sample-specific βint and

genetic features were next identified using multivariate regression

with lasso regularisation with genetic alterations (n = 39) and IGHV

status (U = 0, M = 1) as feature matrix and selecting coefficients

that were chosen in > 90% of bootstrapped model fits.

For Fig 7G and H, pSTAT6 and pIRAK4 groups were defined

using maximally selected rank statistics based on staining intensi-

ties. The same 64 CLL lymph node samples for which survival data

were available were used for both Kaplan–Meier plots.

Analysed data from previous studies
We obtained CLL ATACseq data (Rendeiro et al, 2016; Beekman

et al, 2018) from the EGA (EGAD00001002110, EGAD00001004046)

and ChIPseq data for Spi-B and PU.1 binding (Care et al, 2014)

from the NCBI GEO database (Edgar et al, 2002) (GSE56857,

GSM1370276, GSM1370275).

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Viability data including patient annotation and immunohistochem-

istry results: BioStudies (Sarkans et al, 2018) accession number S-

BSST824 (https://www.ebi.ac.uk/biostudies/studies/S-BSST824).

• ATAC sequencing data: European Genome-Phenome Archive

(EGA) accession number EGAD00001008723 (https://ega-archive.

org/datasets/EGAD00001008723).

• Reproducible data analysis scripts: GitHub (github.com/Huber-

group-EMBL/CLLCytokineScreen2021).

• An online application is provided at dietrichlab.de/CLL_

Microenvironment/ for rapid data exploration of the viability data.

Expanded View for this article is available online.
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