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Abstract

Infections impair neurological outcome and increase mortality after spinal cord injury (SCI). 

Emerging data show that pathogens more easily infect individuals with SCI because SCI disrupts 

neural and humoral control of immune cells, culminating with the development of “SCI-Induced 

Immune Deficiency Syndrome” (SCI-IDS). Here, we review data that implicate autonomic 

dysfunction and impaired neuroendocrine signaling as key determinants of SCI-IDS. Although 

it is widely appreciated that mature leukocyte dysfunction is a canonical feature of SCI-IDS, 

new data indicate that SCI impairs the development and mobilization of immune cell precursors 

in bone marrow. Thus, this review will also explore how the post-injury acquisition of a “bone 

marrow failure syndrome” may be the earliest manifestation of SCI-IDS.
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Introduction

Individuals with spinal cord injury (SCI) are at high-risk for contracting infections [1]. 

Because infections impair neurological outcome and increase mortality after SCI, it is 

important to understand why SCI increases susceptibility to infections [1–6]. Although the 

risk of exposure to infectious agents is increased due to complications associated with 

paralysis (e.g., mechanical ventilation, dysphagia, urine retention and catheterization) and 

extended hospitalization (e.g., nosocomial pathogens), emerging data indicate that SCI also 

hinders the immune system’s ability to eliminate bacteria and viruses that infect the body. 

This phenomenon, known as “SCI-Induced Immune Deficiency Syndrome” (SCI-IDS) [7,8], 

and the primary mechanisms underlying SCI-IDS, namely injury-induced impairment of 

both neuroendocrine signaling and the sympathetic nervous system control over lymphoid 

tissues, are the focus of this review.

SCI increases infection risk and worsens post-infection sequalae

The devastation of SCI goes beyond paralysis and loss of sensation. Immune function is 

also impaired by SCI, and this increases the risk of acquiring infections [6–9]. Indeed, 

infections are common after SCI and infectious complications adversely affect recovery 

of function and contribute to mortality [2,4,6,10]. Why then, despite significant advances 

in treatment for other SCI-related complications and comorbidities, has less progress been 

made in preventing infections [11–13]?

It is likely that infections evade early identification and empiric treatment by both health 

care professionals and SCI patients because common infection symptoms such as pain and 

fever are concealed by other, more emergent medical complications. Or, these symptoms 

are masked due to post-injury defects in temperature regulation and loss of sensation 

[14,15]. Clinical decision- making is further impaired by diagnostic ambiguity in the early 

identification and treatment of acquired infections, such as SCI-associated pneumonia (SCI-
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AP) [16]. Even after recovery and discharge from the hospital, SCI patients experience 

frequent medical complications that require rehospitalization [17]. Nosocomial infections 

can affect the lung, gastrointestinal tract and genitourinary tract through esophageal and 

endotracheal tubes and urinary catheters [18,19]. Dermatological complications associated 

with SCI (e.g., decubital ulcers) also manifest during prolonged hospitalization and because 

pathogens thrive in skin wounds these infections can be severe, with some cases resulting in 

osteomyelitis [15,20].

Still, injury to the spinal cord itself is now recognized as an independent risk factor 

for developing infections [5]. Thus, there is hope that new therapies may be developed 

that target injury-dependent mechanisms that place individuals at risk for developing 

infections after SCI. One such mechanism appears to be neurogenic-mediated suppression 

of immunity, with the magnitude and consequences of immune suppression varying as a 

function of spinal injury level [5,8,9,21–23]. For example, SCI occurring at or above the 

thoracic 6 (T6) spinal level causes greater immunological impairment with more frequent 

and severe infections than if a spinal injury were to occur below T6 [8,21,24]. These 

spinal-level dependent differences implicate a break in autonomic control over immune 

function as a principal component of SCI-IDS [25].

SCI-induced autonomic neuroplasticity and hyperreflexia cause immune 

dysfunction

The sympathetic branch of the autonomic nervous system plays an important role in 

regulating immune function [26,27]. Unlike the parasympathetic vagus nerve, which 

is a cranial (non-spinal cord derived) nerve that also regulates immunity, sympathetic 

preganglionic neurons (SPNs) are distributed throughout the intermediate gray matter of the 

thoracic and upper lumbar spinal cord. SPNs project to and control secondary noradrenergic 

post-ganglionic neurons in chain ganglia (i.e., pre- or paravertebral) located outside the 

spinal cord. Noradrenergic post-ganglionic neurons directly innervate viscera, including 

primary and secondary lymphoid tissues (e.g., adrenal glands, spleen, lymph nodes, and 

bone marrow, and gastrointestinal tract) [28–34].

Normally, bulbospinal neurons in the ventrolateral medulla and other supraspinal centers 

tonically inhibit SPNs, titrating sympathetic control over the viscera and lymphoid tissues. 

After severe, high-level SCI (above T6 spinal level), most or all supraspinal input to SPNs is 

abolished. Over time, these nascent autonomous spinal sympathetic circuits become “hyper-

responsive”, and the net effect of spinal sympathetic reflex activity becomes pathological, 

creating dysfunction in most viscera including immune organs. The extent and severity 

of autonomic dysfunction, including suppression of immunity, is exacerbated when SCI 

occurs at high-spinal levels. That is because most lymphoid tissues are innervated by SPNs 

located at or below T6 spinal level, including the spleen (Fig 1) [33]. Thus, when SCI 

occurs at or above T6, more SPNs are removed from supraspinal control compared to 

injury at lower levels. Several reports in both animal models and humans illustrate these 

spinal level-dependent effects on immune function. Specifically, the incidence and severity 

of pneumonia, lymphoid tissue atrophy, and suppression of innate and adaptive immune 
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function are consistently worse when SCI occurs at or above T3 when compared with 

SCI at or below T9 spinal level [8,9,21,35]. In humans, incomplete lesions often spare 

autonomic innervation whereas motor complete lesions cause >80% at- level ‘sympathetic 

decentralization’ [36]. Compared to motor complete injuries, incomplete lesions at or above 

T4 significantly reduce the risk of pneumonia, suggesting that sparing supraspinal input to 

SPNs critically reduces immunological impairment after high-level SCI [21].

Although immunological impairment develops quickly after SCI, SCI-IDS is protracted 

with many indices of immune dysfunction worsening at longer survival times post-injury. 

Experimental data indicate that immune suppression into chronic phases is caused, in part, 

by structural remodeling and formation of new spinal sympathetic networks controlling the 

function of peripheral immune organs and the adrenal glands (Fig 1A). In rodent models of 

SCI, this occurs in three stages. In stage 1, supraspinal axons die back and dendritic arbors 

on intraspinal neurons temporarily retract causing the loss of synapses on interneurons 

and nearby SPNs [37–40]. Stage 2 begins at approximately two weeks post-injury and 

signals a period of reactive growth and sprouting, accompanied by increased expression of 

growth-associated proteins in axon terminals that ultimately form new synapses on SPNs 

and surrounding interneuronal networks [41]. Then, during stage 3, new synapse formation 

and axon growth continues until at least 6 weeks post-injury when supernumerary excitatory 

synapses occupy previously vacant synaptic sites throughout the intermediate gray matter 

including on SPN soma (Fig 1A) [42]. The cellular and molecular determinants, as well 

as the functional significance of this structural remodeling, are best documented for spinal 

circuitry that controls a major secondary lymphoid organ - the spleen (Fig 1A,C) [43].

Injecting GFP-tagged pseudorabies virus (PRV), a trans-synaptic retrograde neuronal tracer, 

into the spleen of mice with a high (T3) or mid-thoracic (T9) SCI, revealed marked 

changes in the anatomical boundaries and relative connectivity of spinal-splenic neuronal 

networks [43]. In the uninjured spinal cord, PRV–GFP+ cells exist only ipsilateral to the 

intrasplenic injection and labeled cells are restricted to the lateral gray matter at the T4–9 

spinal levels. This labeling pattern is unchanged after T9 SCI. However, after T3 SCI, 

PRV-GFP labeling is redistributed with more than twice as many labeled neurons found 

in intermediate and medial gray matter throughout thoracic, lumbar, and sacral spinal cord 

[43]. This newly formed and expanded spinal-splenic circuit contains large numbers of 

excitatory glutamatergic (VGlut2+) interneurons that form new synaptic contacts with and 

influence the activity of SPNs.

Precisely how SCI induces neuroplastic changes in VGlut2+ neurons in autonomic circuitry 

is unclear, although cytokines and growth factors released at the injury site have been 

implicated as key mediators of this process [44–47]. More recently, it was shown that the 

neuronal voltage-gated calcium channel subunit α2δ−1 enhances synaptogenesis within 

spinal autonomic circuitry after SCI [42,48–50]. α2δ−1 is the cognate receptor for 

gabapentin [51], an FDA-approved drug commonly used to treat neuropathic pain. When 

injected into mice with high-level SCI beginning at 1 dpi (prior to stage 1 remodeling), 

gabapentin blocked the onset of multi-segmental excitatory synaptogenesis and remodeling 

of the neuronal networks that are responsible for cardiovascular and immune dysfunction 

[42].
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Even before aberrant remodeling of intraspinal autonomic circuitry begins, SCI disrupts 

autonomic and neuroendocrine mechanisms that control immune cell survival and function 

(Fig 1). Specifically, because SCI removes tonic inhibition by supraspinal neurons, 

normal visceral or somatic stimuli (e.g., bowel/bladder filling) trigger exaggerated spinal 

autonomic reflexes which increases the release of norepinephrine from post-ganglionic 

adrenergic neurons into lymphoid tissues and other end organs (Fig 1). In SCI mice, excess 

norepinephrine in immune organs (e.g., spleen) triggers apoptosis in immune cells with 

suppression of antibody production within the first two weeks post-injury [8]. Transection of 

the splenic nerve or pharmacological blockade of β2 adrenergic receptors (β2ARs) prevents 

acute leukopenia, prevents splenic atrophy, and restores antibody production, confirming 

that aberrant noradrenergic signaling in lymphoid tissues contributes to early immune 

dysfunction after SCI (Fig 1C) [21,52].

The physical trauma/stress of SCI also activates neuroendocrine signaling (e.g., 

hypothalamic-pituitary-adrenal axis; HPA axis), marked by an abrupt but transient elevation 

of circulating norepinephrine and adrenal steroids that exert profound immunomodulatory 

effects [8,35,52,53]. Indeed, in the context of SCI, the adrenal glands are often overlooked as 

potent and systemic regulators of immunity.

Adrenal gland dysfunction after SCI

The adrenal glands are located at the top of each kidney and are comprised of two distinct 

anatomical regions- the cortex and medulla. The adrenal cortices, derived from embryonic 

mesoderm, produce steroid hormones including glucocorticoids, while the adrenal medullae 

are derived from the neuroectoderm (neural crest) and function as sympathetic post-

ganglionic neurons that synthesize and release catecholamines (e.g., norepinephrine, 

dopamine, and epinephrine) [54,55]. Although usually considered anatomically and 

functionally independent, anatomical specializations may support local signaling networks 

between the adrenal medullae and cortices. Specifically, adrenal cortical cells extend 

filopodia to nearby chromaffin cells and medullary chromaffin cell islands are dispersed 

throughout the adrenal cortex [55,56].

The adrenal glands are essential organs that maintain body homeostasis. Diseases like 

Addison’s disease or Cushing’s disease that either impair or cause excess adrenal hormone 

production, respectively, profoundly disrupt metabolism, blood pressure and immune 

function [57]. The adrenal glands also play a critical role in regulating the body’s 

response to stress. During stress, endocrine and neural signaling pathways converge in 

the adrenal glands to stimulate release of catecholamines and glucocorticoids. Endocrine 

signaling, mediated via the HPA axis, is initiated when the hypothalamus, sensing 

stressors, secretes corticotrophin releasing hormone which in turn triggers the secretion of 

adrenocorticotrophin hormone (ACTH) from the anterior pituitary. ACTH ultimately elicits 

the synthesis and release of glucocorticoids from the adrenal cortices (Fig 1B) [58]. Neural 

control over adrenal hormone production is also regulated by the autonomic nervous system. 

The adrenal capsule, all three cortical layers, and the medullae, are richly innervated by both 

parasympathetic and sympathetic nerve fibers, although the sympathoadrenal axis is likely to 

be most affected after SCI [30,59–64].
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Sympathetic nervous system regulation of adrenal output requires integration between 

supraspinal, intraspinal, and adrenal networks (Fig 1). Pre-sympathetic supraspinal 

projections from the paraventricular nucleus of the hypothalamus and brainstem (e.g., 

rostral ventrolateral and medial medulla, raphe nuclei) project to thoracic spinal cord gray 

matter where they regulate the activity of SPNs that innervate the adrenal glands (Fig 1B) 

[30,59–64]. Sympathetic innervation of the adrenal cortices controls the diurnal sensitivity 

of cortical cells to ACTH, which in turn regulates circadian production and release of 

glucocorticoids [65]. At the same time, sympathetic input to the adrenal medullae controls 

the production and release of catecholamines (Fig 1B) [65]. After SCI, the sympathoadrenal 

axis is compromised and stress-mediated activation of endocrine signaling is defunct 

[35,66].

Indeed, a break in diurnal rhythms becomes evident within hours post-SCI and is 

associated with progressive accumulation of glucocorticoids in the circulation over several 

weeks, months and even years post-injury [5,8,35,67,68]. Post-SCI hypercortisolism 

occurs without increased plasma ACTH, suggesting an adrenal-autonomous (i.e., primary 

hypercortisolism) or neurogenic mechanism (e.g., via the sympathoadrenal axis) is causing 

aberrant glucocorticoid release (Fig 1B) [21,35,69]. Just as SCI causes VGlut2+ spinal 

interneurons to become structurally and functionally integrated with neurons that comprise 

the spinal-splenic sympathetic network (Fig 1C), creating de novo circuitry that subserves 

exaggerated spinal autonomic reflexes, recent data indicate that an amplified spinal-adrenal 

circuit also forms after SCI (Fig 1B) [70]. Although unproven, it is possible that autonomic 

nerve terminals within the adrenal gland undergo plasticity and remodeling, just as they do 

in diseased cardiac muscle [71] or in secondary lymphoid tissues in response to immune 

challenges [72].

Ultimately, loss of adrenal gland homeostasis after SCI has profound effects on immune 

function. Excess or sustained elevation of glucocorticoids can impair inflammatory signaling 

in immune cells by blocking key transcription factors (e.g., Activating Protein-1 and Nuclear 

Factor kappa beta). Glucocorticoids also enhance the effects of the sympathetic nervous 

system; glucocorticoids increase the expression and binding affinity of β2ARs and prevent 

downregulation of these receptors. In leukocytes, glucocorticoid-induced amplification of 

β2AR signaling causes mitochondrial dysfunction and programmed cell death [73]. In 

SCI mice, blocking norepinephrine and glucocorticoid signaling in leukocytes improves 

leukocyte survival and restores immune function, providing hope that similar interventions 

could be used to prevent the onset of SCI-IDS in humans, or mitigate the immune 

suppressive effects of aberrant spinal autonomic reflexes in chronic SCI [25,52].

Hematopoietic dysfunction after spinal cord injury

Aberrant autonomic and neuroendocrine signaling after SCI might also impair immune 

function directly at the source of all immune cells, i.e., the bone marrow [74]. All blood 

cells, including innate and adaptive immune cells, are born in the bone marrow from 

hematopoietic stem and progenitor cells (HSPCs) during the process of hematopoiesis. At 

the top of the hematopoietic pyramid are long-term hematopoietic stem cells (LT-HSCs). 

LT-HSCs are multi-potent stem cells that differentiate into lineage-committed hematopoietic 
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progenitor cells (HPCs) or self-renew without differentiating. HPCs mature into distinct 

functional immune cells. Despite the well-documented effects of SCI on mature immune 

cells in secondary lymphoid tissue (e.g., spleen, lymph nodes), less is known about how SCI 

affects HSPCs in bone marrow, although data from two independent studies indicate that in 

humans, SCI may permanently disrupt hematopoiesis [75,76].

A recent study in mice revealed that SCI causes an acquired “bone marrow 

failure syndrome” (BMFS) marked by excess proliferation of bone marrow lineage- 

(Lin-)Sca1+cKit+ (LSK) HSPCs within 3 days post-SCI (Fig 1D, Fig 2) [77]. Rather than 

be released as a normal part of hematopoiesis, these highly proliferative HSPCs remained 

sequestered indefinitely in bone marrow after SCI, even after challenging the host with a 

potent inflammatory stimulus [77]. The aberrant sequestration phenomenon, caused in part 

by an increase in chemokine-dependent signaling (CXCR4-CXCL12) in LSKs (Fig 2), could 

be overcome by injecting SCI mice with AMD3100, an FDA-approved drug and CXCR4 

antagonist used to mobilize HSPCs and reduce infection risk during chemotherapy [77]. 

Bone marrow failure after SCI can again be attributed to injury-dependent autonomic and 

neuroendocrine dysfunction.

Normally, the release of HSPCs from the bone marrow is cyclical, waxing and waning 

throughout day and night. This circadian control is regulated by the sympathetic nervous 

system [78,79]. Norepinephrine, released cyclically in bone marrow by sympathetic nerve 

terminals, downregulates CXCL12 production by bone marrow stromal cells [80–82]. As 

CXCL12 gradients decrease, CXCR4+ HSPCs and mature leukocytes are released from 

the bone marrow microenvironment into the circulation. After SCI, circadian rhythmicity 

is impaired and this could disrupt hematopoiesis and HSPC egress indefinitely. Indeed, 

injecting endotoxin, a potent mobilizer of HSPCs, failed to mobilize HSPCs or mature 

lymphocytes from the bone marrow of chronic SCI mice [77].

Cell-intrinsic defects may also develop in HSPCs and mature leukocytes after SCI. In 

support of this hypothesis, bone marrow cells isolated from mice three days after SCI were 

ineffective in engrafting the lethally irradiated bone marrow of recipient mice, signaling 

a defect in the self-renewal capacity of LT-HSCs [77]. It is unclear why SCI impairs 

the long-term function of these cells or how this occurs so rapidly (within 3 days) after 

SCI. DNA damage to rapidly proliferating HSPCs is unlikely since γH2AX, a marker of 

DNA damage, was unchanged in chronic SCI mice [77]. However, both catecholamines 

and glucocorticoids, released because of aberrant sympathetic or neuroendocrine signaling, 

could cause epigenetic modifications in HSPCs, imprinting them with new functional 

identities [83,84]. Future research is needed to determine if epigenetic mechanisms 

contribute to SCI-induced bone marrow failure and the extent to which hematopoietic 

defects are responsible for acute or chronic immune dysfunction.

Conclusion

Infections are common after SCI and propagate morbidity and mortality. Understanding how 

to prevent infections or treat them more effectively is essential for improving health care 

and quality of life for individuals with SCI. In this review, we describe how SCI adversely 
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affects autonomic and neuroendocrine control over lymphoid tissues, adrenal glands, and 

bone marrow, leading to the onset and persistence of SCI-IDS. Although the consequences 

of SCI-IDS are described in the literature as SCI-induced changes in mature leukocytes in 

blood or secondary lymphoid tissues, new data indicate that SCI impairs the development 

and mobilization of leukocyte precursors from their primary site of production in bone 

marrow. A better understanding of the predominant mechanism(s) underlying SCI-IDS is 

likely to yield new interventions for treating or preventing infections after SCI.
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Highlights

• Acquired infections are the leading cause of death after SCI.

• Infections are caused by abnormal autonomic and neuroendocrine control 

over the adrenal glands and lymphoid tissues.

• Intraspinal remodeling of sympathetic circuitry contributes to immune 

deficiency.

• SCI induces bone marrow dysfunction with early deficits in hematopoiesis.

• Modulation of sympathetic-neuroendocrine signaling may prevent infections 

after SCI.
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Fig 1. SCI-Induced Immune Deficiency Syndrome is caused by changes in autonomic and 
neuroendocrine control over the adrenal gland and lymphoid tissues.
(A) Structural remodeling of intraspinal circuitry occurs below the level of injury after 

SCI. This “plasticity” is often referred to as being maladaptive because the new circuitry 

causes pathological changes in multiple organs. Experimental data have proved that 

these maladaptive circuits affect the spleen and adrenal glands. (B) After SCI, primary 

hypercortisolism develops (i.e., it is not triggered by ACTH) together with a defect in 

production or release of catecholamines. (C) Exaggerated spinal-splenic reflexes develop 

after SCI, cause post-ganglionic release and accumulation of catecholamines in the 

spleen. Overstimulation by glucocorticoids and catecholamines has been shown to trigger 

lymphocyte death and impair antibody-production after SCI. (D) SCI causes an acquired 

“bone marrow failure syndrome” that persists indefinitely. Defects in the bone marrow niche 

and in hematopoietic progenitor cells occur after SCI.
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Fig 2. SCI induces bone marrow failure.
As early as 3 days post-injury, aberrant proliferation and sequestration of HSPCs occurs in 

the bone marrow. This phenomenon is associated with enhanced CXCR4-CXCL12 signaling 

and a reduction in lymphocyte maturation [77].
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