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Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegen-
erative disorders that have been studied for more than 100 years. Although an 
increased level of amyloid precursor protein is considered a key contributor to the 
development of AD, the exact pathogenic mechanism remains known. Multiple 
factors are related to AD, such as genetic factors, aging, lifestyle, and nutrients. 
Both epidemiological and clinical evidence has shown that the levels of micronu-
trients, such as copper, zinc, and iron, are closely related to the development of 
AD. In this review, we summarize the roles of eight micronutrients, including 
copper, zinc, iron, selenium, silicon, manganese, arsenic, and vitamin D in AD 
based on recently published studies.
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Core Tip: Significant advances have been made in characterizing the relationship 
between Alzheimer's disease (AD) and micronutrients copper, zinc, iron, selenium, 
silicon, manganese, and arsenic. This study provides a new perspective and direction for 
future scientific research, development of new drugs, and routine preventive measures 
against AD.
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INTRODUCTION
Alzheimer's disease (AD) is a common age-related neurodegenerative disease[1,2]. Owing to 
progressive population aging, the incidence of AD will continue to increase[3,4]. In China, an estimated 
14% of the general population over the age of 65 years and approximately 30% general population over 
the age of 85 years were affected by AD. In China, the estimated annual cost of medical care for AD 
approaches one hundred billion RMB, as the conventional diagnosis of AD is based on expensive invest-
igations such as magnetic resonance imaging, positron emission tomography, and analysis of 
cerebrospinal fluid[5].

Individuals with AD typically suffer from loss of learning ability and memory, impaired judgment 
and reasoning[6,7], and loss of analytical ability[8], which can seriously affect their quality of life. This 
imposes a heavy economic and psychosocial burden on the affected families and the society. Clinical 
treatment of AD is typically challenging[9]. Currently, clinical research on AD in China and overseas is 
only at the stage of exploration, while the basic research on AD is still at the stage of hypotheses or 
theories. Studies have shown that AD is closely related to the dynamic changes in body micronutrients, 
such as decrease in iron and zinc content, and increase in copper content[10-12]. This article reviews the 
evidence from contemporary research conducted across the world on the link between AD and 
micronutrients.

This article is primarily based on a literature search conducted in the NCBI database for studies 
investigating the link between AD and micronutrients published in the last five years.

AD AND MICRONUTRIENTS 
AD and copper
Copper is a ubiquitous element. Red meat, nuts, and vegetables are rich sources of copper. Copper is 
one of the most abundant transition metals in the human body. It is involved in collagen synthesis, 
antioxidant defense, skin pigmentation, neurotransmitter synthesis, and iron homeostasis[13]. Thus, it 
plays an important role in human physiology.

Copper is closely related to AD[14,15]. The most common neuropathic lesions in AD are plaques of 
neurofibrillary tangle, amyloid, and soluble oligomers with large amounts of copper at their core. 
Patients with AD were shown to have significantly higher levels of copper in their brain tissue than the 
general population, which promotes the formation of neurofibrillary tangle, amyloid, and other proteins
[16-18].

Copper promotes the neurofibrillary tangle of hyperphosphorylation Tau, which aggravates 
homeostatic disorders; in addition, copper promotes oxidative stress, which has been observed in the 
brain tissue of many patients with AD[19]. Rosmarinic acid is a commonly used anti-AD drug. 
Rosmarinic acid has been shown to reduce copper-induced neurotoxicity due to its antioxidant effect in 
vitro and in vivo, by preventing the binding of amyloid protein with copper[20]. The properties of 
copper-bound amyloid proteins have been employed for auxiliary positron emission tomography in the 
diagnosis of AD in mouse models[21].

Detection of copper is useful in the diagnosis and prevention of AD[22,23]. In addition, long-term 
exposure to copper is associated with cognitive decline and microglia degeneration[24]. TDMQ20 was 
shown to reduce the copper content in the cerebral cortex of mice[25], and ameliorate oxidative stress in 
the cerebral cortex of mice, further attenuating the neurotoxicity of amyloid[26]. High affinity metal ion 
chelating agents such as chitosan can be an effective treatment for AD. The therapeutic effect of chitosan 
is related to its ability to absorb copper ions[27].

AD and zinc
Zinc is one of the essential micronutrients in the body and the second most abundant micronutrient in 
the central nervous system[28,29]. Zinc is involved in growth and development, wound healing, 
immune regulation, catalytic reactions, and substance synthesis. Zinc also regulates excitatory and 
inhibitory neurotransmitters in brain tissue[30,31]. As the zinc content in the body decreases with age, 
abnormal zinc metabolism may serve as a therapeutic target for AD. In particular, zinc and selenium or 
iron and zinc have been concomitantly used to treat AD[32,33].

Studies have shown that zinc release increases with age, especially in female rats, and that zinc 
deficiency leads to neuronal death; this phenomenon is related to the involvement of zinc in the 
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recognition of neuronal receptors and ligands, which is one of the main risk factors for AD and its 
associated brain neuropathology[34]. On the contrary, zinc supplementation was shown to improve 
cognitive deficit and rescue the decline in key molecular targets of synaptic plasticity and insulin 
signaling in the hippocampus of rats with sporadic AD[35]. Oxidative stress plays a key role in neurode-
generation and impaired cognitive function. Diet rich in antioxidants is a novel strategy for prevention 
of AD. Compared with healthy individuals, patients with AD showed significantly lower serum levels 
of Se, Cu, and Zn[36].

Studies have shown that the disorder of zinc dynamic equilibrium can cause abnormal synthesis and 
increased deposition of amyloid protein in brain tissue, and increase the degree of neuronal damage. 
The underlying mechanism involves binding of zinc to histidine residues of brain tissue-amyloid 
protein leading to the formation of amorphous aggregates of-amyloid protein, which then leads to the 
formation of age spots[37]. The combination of zinc and copper was shown to accelerate the formation 
of amorphous aggregates of amyloid protein[38], and the high saturation magnetization of zinc ferrite 
was found to improve the formation of amorphous aggregates of amyloid protein[39].

An increasing body of evidence has shown that the basal level of extracellular zinc in hippocampus is 
typically in the low nanomolar range, and that the increase in zinc content aggravates the neurotoxicity 
of amyloid protein[40]. Zinc was shown to increase the expression of amyloid precursor protein in a 
mouse model of AD, which in turn increased amyloid synthesis.

Pathological dynamic equilibrium of copper, iron, and zinc promotes the deposition of amyloid 
proteins in brain tissue and affects structural changes in Tau Proteins. S100B is one of the most abundant 
proteins in the brain[41], which is involved in the regulation of amyloid deposition and zinc 
homeostasis. Use of zinc chelating agents can improve amyloid deposition levels by interfering with 
S100B[42]. Klotho protein is a zinc-rich protein which has neuroprotective, anti-inflammatory, anti-
oxidant, and promyelination effects. Increasing serum Klotho protein can play a role in neuroprotection, 
anti-inflammation, and anti-oxidation[43]. Evidence suggests that AD is associated with increased levels 
of Tau, which is related to the presence of multiple zinc binding sites in the Tau protein. Low zinc levels 
stimulate Tau, leading to increased neurofibrillary tangle in the neurons[44]. The antioxidant zinc 
carboxylate inhibits the activity of acetylcholine esterase (ACHE) and butylcholinesterase and plays an 
anticholinesterase role, which indicates the benefit of zinc carboxylate in the treatment of AD[45]. Zinc 
homeostasis is involved in the pathogenesis of AD. Zinc can significantly increase the activity of 
carnosine, which is beneficial in the treatment of AD[46].

Zinc deficiency can lead to a decrease in learning ability and memory in AD. Zinc supplementation (3 
mg/kg) was shown to improve learning and memory in a mouse model of AD, which may be related to 
the decrease in inflammatory activity in NLRP3[47]. Zinc can promote the aggregation of SFPQ in 
cultured neurons by regulating the nuclear SFPQ protein, which is an important marker of AD[48].

AD and iron
Iron is one of the essential trace metal elements which is widely distributed in the human body. Iron is 
involved in material transportation, growth and development, cell differentiation, gene expression, and 
lipid peroxidation. Abnormal heme content and deranged iron homeostasis are more common in AD
[49].

Accumulation of iron in the brain is a common phenomenon in many neurodegenerative disorders. 
Postmortem studies have documented markedly increased concentration of ferritin and hemosiderin 
aggregates in the brain tissues of patients with severe AD[50]. Inadequate iron intake during pregnancy 
may cause iron deficiency in fetal brain tissue, increasing the risk of neurological defects. With the 
increase in age, accumulation of iron in brain tissue can also occur because of brain tissue-amyloid 
protein deposition and plaque, which in turn promotes further iron deposition[51].

A growing body of evidence suggests that iron dysregulation in brain neurons plays a key role in AD
[52]. Studies have documented high iron concentrations in deep gray matter structures of brain tissue in 
patients with AD[53]. Iron deposition promotes increased Tau levels in brain tissue and neurofibrillary 
Tangle Tau formation[10,54]. Iron also accelerates the deposition of amyloid proteins in brain tissue[55]. 
Increased concentration of iron-rich pollutants in the air predisposes people to AD[56].

Studies have shown that-amyloid precursor protein can be hydrolyzed to-amyloid, which is 
dependent on iron transporter transmembrane transport[57]. CISD2 gene encodes CDGSH FT-
DOMAIN Protein 2, and up-regulation of CDGSH FT-DOMAIN PROTEIN 2 can improve mitochondrial 
structure and synaptic function, which plays a neuroprotective role[58].

Research has shown that oxidative stress promotes iron deposition in brain tissue, which plays an 
important role in the development of AD. In a study, scanning electron microscope and transmission 
electron microscope were used to examine specific iron-rich areas in the hippocampus of anatomical 
specimens of brain tissue from patients with AD. The authors found a significant increase in both Tau 
and amyloid proteins in brain tissue, which suggests that the effect of oxidative stress on AD is related 
to the oxidation of iron[59].

Endothelial cells in brain tissue can promote the formation of new blood vessels in the environment 
of embryonic development, and they rely on specific metabolic pathways to achieve different cellular 
functions. Pilin-1, a transmembrane protein of endothelial cells, regulates mitochondrial function and 
iron homeostasis, thus affecting the development of AD[60]. Use of iron chelating agents such as desfer-
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rioxamine mesylate (desferrioxamine) was shown to reduce the iron content in brain tissue in animal 
models of AD. This effect was related to the ease with which desferrioxamine crosses the blood brain 
barrier[61].

Multi-functional nanoparticles w20xd4-spions may contribute to the diagnosis and treatment of AD. 
This is related to the ability of multi-functional nanoparticles w20xd4-spions to readily cross the blood-
brain barrier and enhance microglia phagocytosis[62]. Iron oxide nanoparticles have been used in 
clinical studies to improve AD, owing to their ability to cross the blood-brain barrier[63]. Iron 
deposition is a pathway that regulates cell death, initiated by glutathione and lipid peroxidation signals
[64].

Ferroptosis, a recently discovered form of cell death caused by accumulation of byproducts of lipid 
peroxidation, is also involved in the pathogenesis of AD. Excess iron was shown to exacerbate oxidative 
damage and cognitive deficit in a mouse model of AD. Use of specific iron deposition inhibitors was 
shown to alleviate the degree of neuronal death and memory damage in mice, especially in the 
hippocampus[65]. Brain iron metabolism disorder is one of the main characteristics of AD. 
Hemagglutinin neutralizes heme toxicity, maintains iron homeostasis, enhances antioxidant capacity by 
breaking down metabolites, biliverdin and carbon monoxide, and alleviates iron-mediated lipid 
peroxidation, which improves hippocampal volume, metabolism, and cognitive function in patients 
with AD[66].

AD and selenium
Selenium is one of the most common micronutrients in the body. It is involved in biological oxidation, 
cell differentiation, protein synthesis, and gene transcription. In particular, selenium inhibits ACHE and 
butylcholinesterase, which has a positive effect on the treatment of AD[67]. Selenium is a central 
component of many antioxidant enzymes (glutathione peroxidase) that regulate redox levels in the body 
and have a positive effect on the immune system[68].

Selenium deficiency is believed to be involved in the causation of AD. Selenium deficiency impairs 
immunity and leads to overproduction of oxidized products and amyloid-beta protein. Selenium can 
interact with metals by using selenomethionine and improve the body's antioxidant capacity’[69]. 
Chondroitin sulfate selenium has been shown to improve spatial learning and memory impairment in 
mice with AD, reduce the degree of synaptic edema of hippocampal neurons, and protect the integrity 
of mitochondria. The underlying mechanism involved activation of the P38 mitogen activated protein 
kinase signaling pathway by chondroitin sulfate selenium[70].

Glutathione peroxidase 1 is a major antioxidant enzyme that has a protective effect against memory 
impairment induced by-amyloid in mice with AD; this phenomenon is related to the activation of Erk 
signal pathway by glutathione peroxidase-1[71]. Memory impairment is the most well-known symptom 
of AD. The combination of nano-selenium (0.4 mg/kg) and stem cells increased the levels of brain-
derived neurotrophic factor and reduced amyloid deposition in an Alzheimer mouse model; these 
results suggest that the combination of selenium and stem cells can reduce neurotoxicity in mice with 
AD[72].

Clinical studies have shown that AD is associated with cognitive decline. Higher blood selenium 
levels in older people were shown to be associated with higher cognitive scores; a general linear model 
was observed between blood selenium concentrations and cognitive function. It is suggested that 
selenium ameliorates the decrease of cognitive ability[73,74]. Selenium is essential for brain health. In a 
study of 984 men and 1032 women conducted between 2011 and 2014, selenium was found to be 
associated with cognitive function. The study involved assessment of whole blood selenium concen-
trations; there was no correlation between blood selenium concentration and sex. The results indicated 
that adequate selenium was positively associated with cognitive ability in the elderly[75].

Alzheimer’s and silicon
Silicon is one of the most common micronutrients in the body It is divided into amorphous silicon and 
crystalline silicon, which exists in the form of silicate or silicon dioxide. Silicon is involved in collagen 
synthesis, immune system regulation, bone mineralization, and Tau phosphorylation[76]. Silicon was 
shown to lower the risk of AD[77].

Recent studies have shown the health benefits of silicon in humans. Soluble silicic acid is a useful 
form of silicon in the human body. The absorption, distribution, and metabolic characteristics of soluble 
silicic acid in human body are closely related to human health. The unique cross-linking ability of 
soluble silicic acid and its antagonism to toxic aluminum may protect against AD[78].

Studies have shown an increase in the incidence of degenerative diseases in Western countries. Diet 
has a positive effect on AD. Beer, which is rich in silicon and hops, plays an important role in preventing 
brain disorders. This is primarily related to the ability of beer to regulate inflammation, oxidation, and 
cholinesterase activity[79]. Nerve growth factor (NGF) plays an important role in reducing the number 
of cholinergic neurons in AD. Studies have demonstrated the neuroprotective effect of NGF on rat 
pheochromocytoma PCL2 cells by using biodegradable porous silicon oxide carriers[80].



Fei HX et al. Role of micronutrients in AD

WJCC https://www.wjgnet.com 7635 August 6, 2022 Volume 10 Issue 22

AD and manganese
Manganese is one of the essential micronutrients in the body. It is involved in oxidation-reduction, lipid 
synthesis and, protein degradation, which are mostly related to the alkylation of manganese. Various 
aromatic, heterocyclic aromatic, and aliphatic secondary amines, such as indole and resveratrol-derived 
amines, can be obtained by alkylation reaction[81]. Most studies have found that AD can occur with 
decreased or normal levels of manganese[82].

With rapid industrialization and the increasing environmental pollution, excessive intake of heavy 
metal manganese will have a neurotoxic effect and promote neurodegeneration. Astrocyte is the main 
stable cell type in the central nervous system. Excessive intake of manganese can affect the structure and 
function of astrocytes, as well as the synthesis and degradation of glutamate. Effective control of 
manganese neurotoxicity may be a potential strategy for preventing or slowing AD[83]. Abnormal 
conformation of prion proteins in normal cells can lead to their transformation into pathogenic prion 
proteins, which can bind to manganese, copper, zinc, and other micronutrients, and thus induce AD[84].

Studies have shown the role of manganese in the diagnosis of AD. Manganese enhanced magnetic 
resonance imaging can be used to assess the level of pathological Tau accumulation[85]. Treatment with 
Manganese chelating agents may play a role in neurodegenerative diseases such as AD, providing a 
new strategy for the clinical treatment of AD[86].

AD is associated with a decline in learning and memory. Use of naringin reduces amyloid accumu-
lation, a manganese-induced form of AD in rats. It is suggested that naringin has a neuroprotective 
effect, which is closely related to the anti-oxidant, anti-inflammatory and anti-amyloid degeneration 
effect of naringin[87]. Manganese-rich nanocapsules were shown to improve cognitive ability in animal 
models with AD, which is related to the decrease of Tau protein in animal brain tissue[88].

AD and arsenic
Arsenic is an essential micronutrient of the body. It is widely found in nature in the form of Ash, black, 
and yellow arsenic. Arsenic is highly toxic, but in small amounts it is beneficial. Arsenic participates in 
biotransformation, protein synthesis, and material metabolism.

Sodium arsenite (1–10 mol/L) was shown to increase Tau phosphorylation and promote the 
formation of neurofibrils in human neuroblastoma SH-SY5Y cells, which are used to study AD. This 
effect was related to the activation of Erk Pathway by sodium arsenite[89].

Animal studies have shown that arsenic in drinking water can cause abnormal circadian rhythm and 
movement behavior in mice with AD, as well as accumulation of amyloid proteins in the frontal cortex 
and hippocampus. This was found to be related to arsenic-induced lipid peroxidation in mice[90]. 
Sodium arsenite was shown to cause behavioral disorders and memory change in male rats with AD, 
which was alleviated by gallic acid (100 mg/kg); this indicated the neuroprotective effect of gallic acid
[91].

In a clinical study, arsenic levels were measured in the nails and hair of 40 individuals with AD using 
inductively coupled plasma mass spectrometry. Arsenic levels in AD were higher than those in controls. 
This implies that individuals with AD often have elevated levels of arsenic[92].

Alzheimer's and vitamin D
Vitamin D is an antioxidant hormone. There is a close linkage between vitamin D, human microbiome, 
and the immune system. Vitamin D can regulate innate and adaptive immune responses[93].

Vitamin D enhances the immune function and may delay aging; thus, it may play a role in the 
treatment of AD[94].

The key findings of the aforementioned micronutrients related to AD are summarized in Table 1.

CONCLUSION
AD is the most common type of dementia with an elusive etiology. An increasing number of studies 
have explored the effects of micronutrients on the pathogenesis and development of AD[95]. Abnormal 
copper homeostasis plays an essential role in the development of many neurodegenerative diseases, 
including AD[14]. Zinc status affects the progression of AD, as evidenced by cognitive decline observed 
under conditions of zinc deficiency[52]. Excessive iron contributes to the deposition of β-amyloid and 
the formation of neurofibrillary tangles in AD, as well as other neurodegenerative diseases[96]. 
Selenium may have a protective role against the development of AD[97]. Silicon may lower the risk of 
AD by protecting against accumulation of toxic substances in the brain[98]. Manganese is critical for 
neurodevelopment but has also been implicated in the pathophysiology of several neurological diseases, 
including AD[99]. Chronic manganese exposure increases the risk of amyloid plaques and the 
development of AD[100]. Increased level of arsenic was shown to be associated with brain damage and 
neurobehavioral changes, which may exacerbate AD symptoms[90]. Vitamin D and its receptors are 
fundamentally involved in neurodegenerative mechanisms and vitamin D deficiency is recognized as a 
risk factor for AD[101]. Collectively, these findings suggest that aberrant homeostasis of these micronu-
trients is a key contributor to AD progression.
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Table 1 Roles of different micronutrients in Alzheimer’s disease

Micronutrient Key findings related to AD

Plaques of neurofibrillary tangle, amyloid, and soluble oligomers have large amounts of copper at their core[18]

AD patients have significantly higher levels of copper in brain tissues[19-21]

Copper promotes neurofibrillary tangle of hyperphosphorylation Tau and oxidative stress[22]

Copper

Copper is useful marker for the diagnostic and prevention of AD[27]

Zinc and selenium or iron and zinc have been concomitantly used to treat AD[35,36]

Combination of zinc and copper accelerates the formation of amorphous aggregates of amyloid protein[40]

High saturation magnetization of zinc ferrite improves the formation of amorphous aggregates of amyloid protein[41]

Zinc increases the expression of amyloid precursor protein in a mouse model of AD[43]

Zinc

Zinc deficiency leads to a decrease in the learning ability and memory of AD mice[51]

Markedly increased concentration of ferritin and hemosiderin aggregates in the brain tissues of patients with severe AD[55]

Iron dysregulation in brain neurons plays a key role in AD[57]

Iron deposition increases Tau levels in brain tissue and promotes neurofibrillary Tangle Tau formation[10,59]

Iron accelerates the deposition of amyloid proteins in brain tissues[60]

Iron

Iron oxide nanoparticles have been used in clinical studies to improve AD[68]

Chondroitin sulfate selenium improves spatial learning and memory impairment in mice with AD[75]

The combination of nano-selenium and stem cells increases the levels of brain-derived neurotrophic factor and reduces amyloid 
deposition in AD mice[77]

Selenium

Selenium ameliorates the decrease of cognitive ability[78,79]

Silicon may lower the risk of AD[82]Silicon

The unique cross-linking ability of soluble silicic acid and its antagonism to toxic aluminum may protect against AD[83]

Excessive intake of manganese can affect the structure and function of astrocytes, as well as the synthesis and degradation of glutamate. 
Effective control of manganese neurotoxicity may be a potential strategy for preventing or slowing AD[88]

Abnormal conformation of prion proteins in normal cells can lead to their transformation into pathogenic prion proteins, which can bind 
to manganese, copper, and zinc, and thus induce AD[89]

Manganese

Manganese-rich nanocapsules improve cognitive ability in animal models with AD[93]

Sodium arsenite increases Tau phosphorylation and promotes the formation of neurofibrils in human neuroblastoma cells[94]

Presence of arsenic in drinking water induces accumulation of amyloid proteins in the frontal cortex and hippocampus of AD mice[95]

Sodium arsenite causes behavioral disorders and memory change in male AD rats[96]

Arsenic

The levels of arsenic in the nails and hair of AD patients were higher than that in healthy controls[97]

Vitamin D regulates innate and adaptive immune responses, which may play a role in the development of AD[98]Vitamin D

Vitamin D enhances the immune function and may delay aging; thus, it may be used in AD treatment[99]

AD: Alzheimer’s disease.

Some limitations of this review warrant mention. First, this is a narrative review, which lacks 
predetermined research question or specific search strategy. Future studies with a systemic design and a 
specified protocol are required for a more in-depth characterization of the roles of these micronutrients 
in AD. Secondly, the animals studies included in this review only used rodent AD models. The results 
from other animal AD models should be taken into account in future analysis.

In conclusion, this review summarizes the recent findings on the relationships between AD and 
micronutrients, which may provide a new perspective and direction for future scientific research, 
development of new drugs, and preventive measures against AD. Although significant advances have 
been made in characterizing the relationships between AD and these micronutrients, further studies are 
required to provide more robust evidence.
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