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Summary

Life’s events are scattered throughout time, yet we often recall different events in the context of 

an integrated narrative. Prior research suggests that the hippocampus, which supports memory 

for past events, can support the integration of overlapping associations or separate events in 

memory. However, the conditions which lead to hippocampus-dependent memory integration 

are unclear. We used functional brain imaging to test whether the opportunity to form a larger 

narrative (narrative coherence) drives hippocampal memory integration. During encoding of 

fictional stories, patterns of hippocampal activity, including activity at boundaries between events, 

were more similar between distant events that formed one coherent narrative, compared with 

overlapping events taken from unrelated narratives. One day later, the hippocampus preferentially 

supported detailed recall of coherent narrative events, through reinstatement of hippocampal 

activity patterns from encoding. These findings demonstrate a key function of the hippocampus: 

the integration of events into a narrative structure for memory.
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Introduction

It is well-established that although experience unfolds over a continuous timeline, memory 

for one’s experience, or episodic memory 1, can be segmented into individual units of 

time called “events” 2–8. However, there is reason to think that real-life memory might 

be organized at a level above and beyond events. For example, in one event, you might 

encounter your neighbor Melvin, who tells you that he is locked out of his house while a 

pizza is baking in the oven. The next day, Melvin might call and tell you that his kitchen 

is covered in ash. Although Melvin appears in temporally separated events, they coalesce 

to form a narrative: a larger unit of information which encompasses multiple events, and in 

which one’s understanding of each event is dependent on information from other events 9–14.

Organizing events into a narrative can be beneficial for memory 12,15–18. We recently 

demonstrated that, when temporally separated events could be assimilated into a larger 

narrative, they were recalled in greater detail than events involving an overlapping character 

in different narratives 10. Furthermore, narratives are more than the semantic information 

conveyed in words and sentences alone 11–13,16. Although some models have suggested that 

semantic associations can bind words or sentences in memory 19, we found that the memory 

advantage for events that formed a larger narrative was over and above any advantage at the 

word or sentence level 10. Our findings suggested that episodic memory might be organized 

above and beyond words, sentences, or events, on the basis of narrative coherence: the 

degree to which individual units of information can be interrelated within a single narrative 
9,11. In the present study, we assessed whether narrative coherence shapes the way the brain 

encodes and retrieves events in memory.

Little is known about how the brain assembles narratives from individual events, but there 

is reason to think that the hippocampus plays a critical role. Many studies suggest that the 

hippocampus can build memories that integrate information across overlapping experiences 
20–26, although this might not depend on narrative coherence. For instance, when one 

encounters any information that overlaps with a previous event (e.g. a recurring “B” item 

in separated “A-B” and “B-C” pairs), this overlap may trigger the hippocampus to form 

associations between temporally distant experiences 22,23,25,26. Furthermore, some findings 

suggest that encountering a new event can trigger the hippocampus to reinstate activity 

patterns which correspond with a prior, overlapping event, thereby embedding information 

from the prior event into memory for the new event 20,25,27. If the hippocampus can combine 

information across events during memory encoding, this might facilitate subsequent recall of 

multiple events.

However, overlapping information does not always result in memory integration. In fact, 

longstanding evidence suggests that events that share overlapping features can compete with 

each other during memory retrieval, thus making these events more difficult to remember 
28,29. Furthermore, some findings suggest that the hippocampus can hyper-differentiate 

representations of overlapping events 30,31, and results from another study suggest that the 

hippocampus can simultaneously support the ability to segregate and integrate overlapping 

associations 22. Recent models have attempted to delineate which conditions lead to 

hippocampus-dependent memory integration versus differentiation 20,30,32–34. These models 
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generally focus on simple associations between items and do not address any role for 

narrative coherence. Narrative coherence may play an important role in real-life memory

—and, as our recent behavioral findings suggest 10, narrative coherence might determine 

whether or not events become integrated.

Recent evidence suggests that narrative coherence modulates hippocampal activity35,36. 

Milivojevic et al. 36 used functional magnetic resonance imaging (fMRI) to analyze patterns 

of hippocampal activity evoked by repeated pairs of temporally adjacent events. Although 

events were initially unrelated, some event pairs could form a narrative with a subsequently-

presented, linker event—when events could become linked, hippocampal activity patterns 

became more similar between paired events 36. This suggested that, after one initially 

encodes events, hippocampal activity patterns might become modified to support a larger 

narrative. Related findings 35 suggested that overlapping hippocampal activity patterns 

might only be observed in participants who consciously recognize links between events. 

However, overlapping activity patterns are not equivalent to memory integration per se. 

If pattern overlap reflects memory integration, then hippocampal pattern overlap should 

also support the ability to retrieve information from memory (i.e. during recall). Critically, 

no study to date has demonstrated whether narrative coherence modulates hippocampus-

dependent memory integration across temporally distant events.

An additional possibility is that the hippocampus might integrate events into a narrative, but 

only at specific moments. Many recent findings 37–41 suggest that the hippocampus becomes 

particularly active when people perceive transitions between events, or event boundaries 2,42. 

Although the significance of boundary-evoked activation is unclear, several models suggest 

that, at event boundaries, the hippocampus retrieves information from past events in order 

to construct a working model of a new event 27,43–45. A key prediction from these models 

is that, at the moment when one perceives an event boundary, one might begin to integrate 

distant events into a narrative. For instance, re-encountering Melvin might not only mark the 

onset of a new event, but also lead you to retrieve Melvin’s previous event and integrate it 

with the new event 2,16,27,46.

Building on prior work showing that narratives modulate activity in the hippocampus 
35,36,47, we investigated whether the hippocampus supports memory integration for 

temporally distant events that form a larger, coherent narrative, by examining hippocampal 

activity patterns during encoding and recall of realistic events. Functional magnetic 

resonance imaging (fMRI) was used to image hippocampal activity while participants 

listened to fictional stories (Figure 1A), in which recurring characters appeared in pairs 

of temporally separated events. Critically, stories were written to include pairs of events that 

could form one Coherent Narrative (CN), and pairs involving an overlapping character in 

Unrelated Narratives (UN; examples in Figure 1B). These events were embedded in longer 

stories which did not involve these recurring characters. For example, one four-minute story 

(Figure 1A, Story 2) followed a protagonist who, by chance, encountered the characters 

Sandra and Johnny, and in a subsequent story (Figure 1A, Story 4), a different protagonist 

encountered Sandra and Johnny. In one version of these stories, events involving Sandra 

could be integrated into a coherent narrative (e.g., two events that describe a single dating 

experience) whereas events involving Johnny were parts of unrelated narratives (e.g., losing 
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a family recipe in Event 1, evading financial troubles in Event 2). However, both CN and 

UN events were distinct from the surrounding plot, such that events involving recurring 

characters could only form a larger narrative in the CN condition. Importantly, different 

versions of events were pseudo-randomly assigned to different subjects (STAR Methods), to 

minimize content-driven differences between CN and UN events. Participants returned one 

day later, and they were scanned during detailed recall of events involving each recurring 

character (Figure 1C).

We hypothesized that the hippocampus would play a disproportionate role in supporting 

memory for CN events, as compared with UN events. We tested this hypothesis by 

determining whether hippocampal activity patterns during memory encoding, including 

activity at event boundaries, carried shared information across CN events, and whether 

activity patterns during memory encoding were reinstated during recall of CN events, as 

compared to reinstatement during recall of UN events. As follows, our results suggest 

that the hippocampus supports the construction of coherent narratives that integrate distant 

events in memory.

Results

Hippocampal activity bridges coherent narrative events during memory encoding

Our overarching hypothesis was that hippocampal activity might bridge distant events 

in memory, if the events can form a coherent narrative. To assess this possibility, we 

first identified the unique pattern of hippocampal activity (voxel pattern) corresponding to 

each story event (STAR Methods; Figure 2A), and we tested whether voxel patterns were 

more highly shared between CN events than UN events (i.e. higher pattern similarity). 

Alternatively, if the hippocampus supported the integration of any overlapping events (i.e. 

via a shared character), we would not expect any difference in pattern similarity between CN 

and UN events.

Additionally, drawing from models of event cognition and narrative processing 2,16,43,45,46, 

we predicted that hippocampal activity which is evoked by the onset of an event—at an 

event boundary—would support memory integration. Each story was written to include 

a priori event boundaries (Figure 1A), which reliably evoked the perception of event 

boundaries in an independent sample (point-biserial r=0.85, p<0.0001; Figure S1A; STAR 

Methods). As in previous studies 37,39,40, a priori boundaries evoked increased activation in 

the right and left hippocampus (Figure S1B). The time period which corresponded to the 

onset and duration of boundary-evoked activation in the hippocampus (TRs 5-11, 6.1-14.64 

seconds following an event’s onset; Figure S1B) is subsequently referred to as the Boundary 

epoch (Figure 2A). The Boundary epoch accounted for the lag between the real-time 

onset of an event, and increased fMRI activation (i.e. the hemodynamic response lag). 

For comparison, we also defined a Post-Boundary epoch (Figure 2A), in order to examine 

activity during the remainder of an event. Because each event spanned 33 timepoints, 

the Post-Boundary epoch encompassed 26 timepoints following the Boundary epoch (TRs 

12-37, 14.64-46.36 seconds following an event’s onset).
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Within the right and left hippocampus, we computed voxel pattern similarity between 

the Boundary and Post-Boundary epochs of paired events (Figure 2A), and subsequently 

analyzed pattern similarity values using a multi-level mixed effects model (STAR Methods, 

Formula 1). This model tested whether Narrative Coherence [CN vs UN] modulated pattern 

similarity across events, and whether any effects of Narrative Coherence were specifically 

driven by similarity between Boundary epochs (i.e. an interaction between Narrative 

Coherence and Epoch). Furthermore, the mixed model statistically accounted for potential 

confounds: particular subjects, specific events which were presented to subjects, and overall 

activation at boundaries.

As shown in Figure 2B, within the right hippocampus, this model (Akaike Information 

Criterion: AIC = −1039) revealed a significant effect of Narrative Coherence 

(F(1,11.33)=6.97, p=.02), indicating that pattern similarity in the right hippocampus was 

higher for CN events, compared with UN events. However, there was no significant 

interaction between Narrative Coherence and Epoch (F(2,257.71)=0.09, p=.92; ps≥0.10 

for other fixed effects). Because the interaction was not significant, we cannot conclude 

that the Narrative Coherence effect was driven by the Boundary epoch alone. These 

findings suggested that, throughout encoding of an event (either Boundary or Post-Boundary 

epochs), activity patterns in the right hippocampus might bridge distant events that form 

a coherent narrative. A follow-up analysis of timepoint-by-timepoint correlations between 

events revealed similar findings (Figure S2).

This pattern of findings was not evident in the left hippocampus (Figures S2–3), wherein 

the mixed model (AIC = −1103) revealed only a significant effect of overall boundary 

activation on pattern similarity (F(1,289.69)=12.18, p<.001; for other fixed effects, ps>.36). 

Interestingly, an exploratory analysis suggested that narrative coherence effects within the 

right hippocampus were significant within the right posterior hippocampus, but not the 

right anterior hippocampus (Figure S3B–C). Although the implications of these findings 

are unclear, a related study suggested that anterior and posterior hippocampus provide 

differential support for memory integration. 22

Additionally, we assessed whether effects of narrative coherence were driven by low-level 

text characteristics. If the hippocampus supports information about words and sentences 
48–50, then hippocampal pattern similarity might simply reflect the degree to which word- or 

sentence-level semantic information overlaps across events. We therefore quantified textual 

similarity between events using the Universal Sentence Encoder 51, and we statistically 

accounted for textual similarity within models of hippocampal pattern similarity (STAR 

Methods, Formula 2). Within the right hippocampus, this model (AIC = −1037) revealed 

that, even after accounting for lower-level semantic similarity between events, there was 

a significant effect of Narrative Coherence (F(1,12.06)=5.56, p=.036; other ps>0.14). This 

suggested that, within the right hippocampus, the degree to which narrative coherence 

modulated pattern similarity across events was not purely driven by lower-level semantic 

overlap between events. This pattern of findings was not evident within the left hippocampus 

(AIC = −1101; effect of overall boundary activation, F(1,288.70)=12.17, p<.001; all other 

effects, ps>.58).
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Hippocampal activity that bridges coherent narrative events is reinstated during recall

One day after memory encoding, participants were scanned while they freely recalled 

information about each pair of CN and UN events (Figure 1C). Participants were oriented 

to recall as many details as possible from any of the events involving each CN or UN 

character, in order to encourage participants to recall events in an integrated manner. If 

activity patterns in the right hippocampus provided a basis for integrating CN events during 

memory encoding, we would expect that these activity patterns would facilitate subsequent 

memory retrieval for CN events.

We therefore investigated the degree to which right hippocampal voxel patterns from 

encoding were reinstated during recall (i.e. “encoding-retrieval similarity”; Figure 3A). 

Because preceding analyses revealed pattern similarity effects across both Boundary and 

Post-Boundary epochs, we pooled timepoints from both epochs to measure reinstatement 

of whole-event activity patterns from encoding (Figure 3A). We hypothesized that pattern 

reinstatement would be disproportionately higher for CN events compared with UN events.

However, in order to accurately predict how reinstatement might work, it is important 

to consider how integration may have unfolded during encoding. During encoding, there 

were two events involving each CN and UN character (Event 1 and Event 2; Figure 1A–

B). Because events were presented sequentially, Event 2 was the event which determined 

whether there was any relationship between the two events – that is, whether or not the two 

events could form a coherent narrative. In other words, if narratives spanning Events 1 and 2 

were bound together, this binding should occur during Event 2. We therefore predicted that 

Event 2 served as a key period for memory integration, specifically in the CN condition, and 

that activity patterns which were present during this interval would be beneficial for recall 

of multiple events. In contrast, UN Event 2 would not provide an opportunity to form a 

single coherent narrative. Thus, we predicted disproportionately higher reinstatement for CN 

Event 2 relative to UN Event 2. Alternatively, if overlapping associations (e.g. a recurring 

character) can drive the hippocampus to reinstate activity patterns across events25 regardless 

of narrative coherence, we might expect no difference in reinstatement between CN Event 2 

and UN Event 2.

To test our hypothesis, we analyzed the degree to which right hippocampal voxel patterns 

during Event 2 encoding were reinstated during recall (Figure 3A). We also analyzed 

reinstatement of activity patterns from Event 1—however, because we theorized that Event 

2 served as the critical period for integration, we did not expect any difference in Event 

1 pattern reinstatement between CN and UN events during the recall task. To assess the 

overall pattern of reinstatement findings, we performed a multi-level mixed effects model 

(STAR Methods, Formula 3) which tested whether encoding-retrieval similarity would 

be modulated by Narrative Coherence [CN vs UN], and whether an effect of Narrative 

Coherence would be limited to reinstatement of Event 2 (i.e. an interaction between 

Narrative Coherence and Event Number). The model statistically accounted for several 

nuisance variables: recall duration (28-299 TRs, ~ 0.5-6 minutes per recall cue), particular 

subjects, and particular event content.
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This model (AIC = −1334.7) revealed a trending main effect of Narrative Coherence 

(F(1,303.98)=3.60, p=0.059), which was qualified by a significant interaction between 

Narrative Coherence and Event Number (F(1,343.46)=7.72, p=0.006); no other effects were 

significant (ps>.48). As shown in Figure 3B, model estimates revealed that the significant 

interaction was driven by higher reinstatement for CN than UN Events, and that this 

effect was specific to Event 2. Additionally, model estimates revealed significantly higher 

reinstatement of CN Event 2 than CN Event 1. This does not signify that there was zero 

reinstatement for other events, but that reinstatement was disproportionately higher for CN 

Event 2. This pattern of findings remained even after accounting for pattern similarity 

effects during memory encoding (see STAR Methods). Interestingly, an exploratory analysis 

revealed similar findings when applying an identical model to predict reinstatement from 

Boundary epochs alone (AIC=−1427.5; significant interaction of Narrative Coherence and 

Event Number, F(1,343.00)=7.58, p=.006).

These findings suggested that, in the right hippocampus, activity patterns from Event 

2 encoding were preferentially reinstated during recall of CN events. In line with our 

hypothesis, this suggests that Event 2 provided an opportunity for memory integration, and 

that hippocampal activity patterns during Event 2 may have provided a basis for integrating 

CN events in memory.

Narrative coherence modulates the relationship between hippocampal pattern 
reinstatement and detailed recall

Having established that information from Event 2 was preferentially reinstated during recall 

of CN events, our next analyses assessed whether this reinstatement effect was behaviorally 

relevant. In previous work, we found that, across three experiments, participants were able to 

recall more details about CN than UN events 10. In the present study, the number of details 

recalled from CN events (mean=10.71 details per cue, SD=9.4, max=41.5) was numerically 

higher than recall from UN events (mean=8.65 details per cue, SD=9.1, max=40.0), though 

this effect did not meet the threshold for statistical significance (t(24) =1.98, p=.059, 

Cohen’s d=0.22). Examination of the data revealed a large degree of inter-subject variance 

in recall performance, and we considered that this variance might be better explained by 

accounting for inter-subject differences in hippocampal activity. If so, we would expect that 

recall of CN events should be predicted by reinstatement of right hippocampus activity 

patterns during recall.

Following up on our previous analyses (Figure 3B), we tested whether reinstatement of 

right hippocampus activity patterns from CN Event 2 was predictive of how many details 

participants recalled about CN events. In line with our prediction, there was a significant 

positive correlation between mean CN Event 2 reinstatement and mean recalled details for 

CN events (r=0.41, p=0.048). That is, the degree to which Event 2 patterns were reinstated 

during recall predicted the degree to which participants recalled CN events in detail. For 

comparison, we also tested whether UN Event 2 reinstatement would predict detailed recall. 

In contrast, there was no significant correlation between mean UN Event 2 reinstatement 

and mean recall of UN events (r=−0.23, p=0.28). This initially suggested that narrative 

coherence might modulate the relationship between right hippocampal pattern reinstatement 
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and detailed recall. To formally assess this possibility, we designed a rigorous mixed-effects 

model which could discern between several theoretical predictions at the level of individual 

events.

In line with our pattern reinstatement findings (Figure 3B), we reasoned that Event 2 

provided an opportunity to integrate CN events, but not UN events, in memory. If so, 

detailed recall would be predicted by a statistical interaction between Event 2 pattern 

reinstatement and narrative coherence. Furthermore, the recall task was designed to elicit 

recall of multiple events—as described previously 10,29, the ability to recall details from 

overlapping events depends on whether or not they can be easily integrated. As such, if 

memory integration took place during encoding of CN Event 2, then pattern reinstatement 

from CN Event 2 should not only predict how well Event 2 was recalled, but also how 

well Event 1 was recalled, reflecting that these events became integrated. In contrast, we 

did not expect that UN Event 2 provided a clear opportunity for memory integration, and as 

such, we predicted that pattern reinstatement from UN Event 2 would be less predictive of 

recall from multiple overlapping events. Alternatively, it was also possible that no memory 

integration took place during encoding of either CN or UN Event 2—if so, we might expect 

that CN or UN Event 2 pattern reinstatement would predict recall of details from CN or 

UN Event 2, respectively, but not details from Event 1 (i.e. an interaction between Event 2 

reinstatement and which event was recalled).

With these hypotheses in mind, we designed a mixed effects model (STAR Methods, 

Formula 5) to test whether and how recalled details would be predicted by Event 2 

pattern reinstatement. Critically, this model tested whether the relationship between recall 

and pattern reinstatement would be modulated by Narrative Coherence. Furthermore, the 

model also tested whether Event 2 pattern reinstatement would differentially predict the 

number of details recalled about Event 1 versus Event 2. After accounting for nuisance 

regressors (recall duration, individual subjects, specific events), this model (AIC=1120.5) 

revealed a significant main effect of Narrative Coherence (F(1,160.17)=4.40, p=0.037). 

Interestingly, this suggested that, after accounting for a full pattern of mixed effects, there 

was significantly higher recall for CN than UN events.

Moreover, the main effect of Narrative Coherence was qualified by a significant interaction 

between Narrative Coherence and Event 2 Reinstatement (F(1,156.42)=5.20, p=0.024). As 

shown in Figure 3C, this interaction reflected that in the right hippocampus, the predicted 

relationship between Event 2 pattern reinstatement and recalled details (from either event) 

was significantly more positive for CN events than for UN events (t(156)=2.28, p=0.024). 

That is, reinstatement of hippocampal activity patterns from CN Event 2 was associated 

with a greater behavioral benefit for recalling multiple events than reinstatement from UN 

Event 2. Consistent with our hypothesis, this suggests that hippocampal activity from Event 

2 preferentially supported memory integration for CN events. Similar findings were revealed 

after removing potential outliers (see STAR Methods). Interestingly, similar findings were 

also revealed when examining reinstatement from Boundary epochs alone (AIC=1114.7; 

significant interaction of Event 2 Reinstatement by Narrative Coherence, F(1,160.15)=10.56, 

p=.001).
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No other fixed effects or interactions were significant (ps>.34). For one, there were no 

overall differences in recall of Event 1 versus Event 2. Furthermore, Event 2 Reinstatement 

did not differentially predict recalled details for Event 1 versus Event 2, even in the case of 

UN events (i.e. UN Event 2 reinstatement did not predict UN Event 2 recall). This null effect 

likely reflects the nature of the recall task (see Discussion).

Post-hoc analyses of cortical networks

Our study was specifically designed to test a priori hypotheses about hippocampal 

contributions to memory. It is also possible to generate testable hypotheses about many other 

brain areas that might be involved in this task. For completeness, we have included post-

hoc analyses (see STAR Methods) which test for narrative coherence effects, within two 

key cortical networks that interact with the hippocampus52–55: the Posterior Medial (PM) 

network, which supports information about event contexts (e.g. types of situations); and the 

Anterior Temporal (AT) network, which supports information about particular entities within 

events (e.g. people or objects). Because stories were presented aurally, we also investigated 

auditory cortex.

If, for instance, narrative coherence findings within the hippocampus were driven by 

contextual similarity between events, one might also expect narrative coherence effects 

within the PM network. However, there were no significant effects of narrative coherence 

within the PM network. Interestingly, there were significant effects of narrative coherence 

within the AT network and auditory cortex. These findings are inconclusive, and further 

work is needed to understand how cortical networks contribute to memory integration for 

coherent narrative events.

Discussion

In the current study, we investigated whether the hippocampus supports a narrative-level 

organization for episodic memories, by integrating distant events into a larger narrative. 

Consistent with this hypothesis, activity patterns in the right hippocampus during memory 

encoding were more similar across two temporally separated events that formed a coherent 

narrative, compared with unrelated events that shared an overlapping character. Activity 

patterns elicited during encoding of coherent narrative events were preferentially reinstated 

when these events were recalled one day later. In particular, activity reinstatement was 

disproportionately higher for the second of two events that formed a coherent narrative

—that is, the event which provided the clearest opportunity to meaningfully integrate 

information across events. Furthermore, narrative coherence determined the degree to which 

reinstatement of hippocampal activity patterns from the second event predicted the ability to 

recall details about both events within a narrative.

Taken together, these findings suggest that, rather than simply integrating memories of 

overlapping experiences, the hippocampus supports the construction of narratives that 

integrate distant events in memory. A considerable body of evidence suggests that 

hippocampus-dependent processes can support memory integration21–23,25,26 — the ability 

to put together information across two simple associations with an overlapping element 

—though it is also the case that the hippocampus can assign highly differentiated 
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representations to overlapping associations 30,31. In fact, some findings have suggested 

that the hippocampus keeps event representations distinct during memory encoding, instead 

supporting integration of overlapping associations on the fly during memory retrieval 33,56.

Although important questions remain about dynamics of memory integration in these 

studies, it is important to clarify differences between the present study and previous work 

on memory integration. Studies of memory integration typically focus on overlapping 

associations that share the same element—for instance, two houses or scenes that are 

associated with the same face 24,57. In the present study, both CN and UN events shared 

overlapping characters, yet hippocampal pattern similarity was significantly higher across 

CN events, and CN event patterns were preferentially reinstated during subsequent recall. 

Thus, overlap across events, while potentially necessary, was not sufficient to integrate 

information across distant events. Furthermore, in contrast with prior work, this study 

investigated memory integration in the context of complex, realistic events and narratives.

A few studies have shown that hippocampal activity during encoding of temporally 

adjacent events can be sensitive to narrative coherence 35,36. Building on these studies, 

the present findings directly support a relationship between narrative coherence effects 

in the hippocampus and detailed recall of temporally distant events. In other words, the 

present findings suggest that narrative coherence does more than modulate hippocampal 

activity across repeatedly presented events—rather, they directly support the hypothesis that 

narrative coherence drives hippocampal memory integration, and that this integration can 

even take place across events that are encountered at disparate times.

Aside from the present results, only a few studies 35,36,47,58 have implicated the 

hippocampus in narrative construction, and most neuroimaging studies of narrative 

processing have focused on cortical areas, particularly within the PM network 37,58–62. 

Notably, there are important methodological differences between prior work, and the present 

study, in which post-hoc analyses did not reveal significant PM network effects. Most fMRI 

studies of narrative structure have analyzed activity patterns averaged over the course of an 

entire event 37,54,61,63. Although PM network activity patterns are often stable throughout 

an event 37,61, hippocampal activity tends to be more dynamic 39. For instance, Reagh & 

Ranganath54 compared activity patterns across repetitions of a 40-second film, and results 

showed that hippocampal patterns primarily carried information about the time period 

immediately after the onset of the film54. This finding is interesting, because some of the key 

hippocampal findings in the present study were seen during the Boundary epoch.

To be clear, we can neither conclude, nor rule out, that event boundaries played a unique or 

disproportionate role in integrating distant events. Our hypothesis-driven analyses revealed 

that pattern similarity was higher across CN events than across UN events during the 

Boundary epoch, and between the Boundary epoch and Post-Boundary epoch. In other 

words, hippocampal activity during the Boundary epoch carried similar information across 

coherent narrative events. Notably, several models suggest that when a new event begins 

(i.e. at an event boundary), people can update their current representation of an event, 

by retrieving information about relevant past events 7,27,43–45. In one recent model, Lu et 

al.45 demonstrated that it is computationally advantageous to restrict hippocampal encoding 
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and retrieval of cortical states to periods around an event boundary, and this fits with the 

established idea that people often rely on episodic retrieval to build mental representations of 

an ongoing event 7,27,43,44,46,64. That is, even if event boundaries serve as “walls” between 

temporally adjacent events, hippocampal retrieval at boundaries might construct “bridges” 

across temporally distant events.

Interestingly, other recent findings have suggested that boundary-evoked hippocampal 

activity supports storage of events that precede an event boundary 37,39,41. These findings 

are not incompatible with findings of the present study. In fact, event boundaries mark both 

the onset of an event and the offset of a preceding event. Our single-trial modeling approach 

(STAR Methods) enabled us to statistically separate the components of hippocampal activity 

which correspond to an ongoing event, from the signal corresponding to temporally adjacent 

events, enabling us to specifically test hypotheses about boundary-evoked hippocampal 

activity patterns at the start of an event. Future work should determine whether the 

correspondence of hippocampal activity at event boundaries with memory for preceding and 

subsequent events reflects one common, underlying process (e.g. updating representations in 

response to high prediction error41,44,45,65) or multiple processes (e.g. memory storage vs 

retrieval).

Another key finding is that hippocampal activity patterns during CN events were 

preferentially reinstated during memory retrieval, and this reinstatement was more predictive 

of individual differences in memory for CN than UN events. In our previous behavioral 

study10, memory performance was significantly higher for events that formed a coherent 

narrative than for overlapping, but unrelated events. In order to adapt this paradigm for 

fMRI pattern analyses, we increased the number of trials per condition by presenting stories 

twice during memory encoding. It is likely that repeated presentation enabled participants 

to encode more information about UN events, which would explain why detailed recall was 

numerically, but not significantly higher for CN than UN events. Nonetheless, participants 

showed preferential reinstatement of information from Event 2—precisely when integration 

would be expected to occur—during recall of CN events. If hippocampal activity simply 

reflected successful encoding of Event 2, we would expect to see that reinstatement would 

be equally predictive of memory performance for CN and UN events, since memory 

performance was not significantly different across these conditions. In fact, reinstatement 

of information during this key period when participants could build a coherent narrative 

was predictive of memory for CN events, whereas reinstatement of information from an 

independent event did not significantly predict memory performance.

Importantly, the recall task cued memory for multiple events, rather than one event at a 

time, in order to assess effects of memory integration. Notably, previous work suggests that 

re-encountering a feature of a prior event (i.e. during Event 2) can act as a reminder which 

enables online retrieval of memory for the prior event, and therefore embeds information 

about the prior event within memory for the new event 46,66. This kind of reminder-evoked 

integration can be useful for narrative comprehension16,67, and it may have provided a 

mechanism for integrating CN events, explaining the correspondence between Event 2 

pattern reinstatement and recall of both CN events. However, reminders do not always lead 

to integration, and can also lead to differentiation or competition between events 46,64,68. 
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This may explain why reinstatement from UN Event 2, in which reminders would not 

easily lead to integration, did not provide a clear benefit for recall of multiple overlapping 

events. We also speculate that adjusting the recall task to cue recall of one event at a time 

might reveal a more specific, timepoint-by-timepoint correspondence between neural pattern 

reinstatement and recall of details from specific events.

Finally, it might be of interest that significant effects of narrative coherence were observed 

within the right hippocampus, but not the left hippocampus. It is unclear whether the right 

hippocampus plays a disproportionately important role in narrative construction. Notably, 

other studies have implicated the right hippocampus in the integration of information across 

overlapping events 20,47, but it is also the case that fMRI studies of hippocampal function 

often report significant effects in only one hemisphere 69. Further hypothesis-driven research 

is needed to understand the relative contributions of the right and left hippocampus to 

episodic memory.

In closing, even though life’s events occur at disparate times, the hippocampus can form 

memories that integrate events into a larger, coherent narrative. By bridging the divide 

between distant events, the hippocampus may support a narrative-level architecture for 

episodic memory.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Brendan Cohn-Sheehy 

(bcohnsheehy@ucdavis.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Upon publication, behavioral and neuroimaging data, 

analysis code, and other materials will be available via the Open Science Framework: 

https://osf.io/7zsxd/. Any additional information required to reanalyze the data reported in 

this paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—Human subjects protocols were approved by the UC Davis Institutional 

Review Board.

Functional MRI study:  Thirty-six right-handed participants aged 18-32 years-old (mean 

age= 24.4, SD= 3.6; 24 female, 12 male) were recruited to participate in the imaging study. 

Among other criteria, participants were screened for native English language fluency. After 

informed consent was obtained, additional screening at the time of scanning revealed that 

two of these participants had contraindications for MRI scanning, and thus could not be 

included. Of the thirty-four remaining participants scanned on Day 1, seven participants 

were excluded because they did not return for the recall session on Day 2 (due to 

unanticipated issues with scanner or peripherals, or substantial motion or imaging artifacts 
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on Day 1). For one additional subject, a scanner error precluded imaging during two of 

the eight story presentation scans on Day 1, however this participant was able to complete 

the story listening task (without concurrent scanning during the final two blocks), and was 

therefore retained for participation on Day 2. As a result, twenty-seven participants were 

scanned on Day 2. Two of these subjects were excluded because they were unable to 

successfully recall any details during the recall task. In all, twenty-five participants (mean 

age = 25.2, SD = 3.7; 15 female, 10 male) were included in the analyses reported in this 

paper, twenty-four of whom had sufficient data quality during recall to be included in 

encoding-retrieval similarity analyses.

Event boundary ratings:  An independent sample of eighteen participants aged 18-26 

years-old (mean age=20.4 , SD=2.0; 12 female), screened for native English language 

fluency, provided informed consent and were recruited to provide annotations of event 

boundaries (i.e. no imaging data was collected).

METHOD DETAILS

Experimental Stimuli—The stimulus design is depicted in Figure 1A–B, and has been 

described elsewhere 10. We constructed four fictional stories in which we manipulated 

whether temporally-distant events could form a coherent narrative (Data S1). Story audio 

was scripted, recorded, and thoroughly edited by the first author (BICS) to ensure equivalent 

lengths for all sentences (5s each), events (8 sentences/40s each), and stories (6 events/240s 

each), and to avoid any differences in perceptual distinctiveness (i.e. similar audio quality 

and smooth transitions between sentences). Importantly, most 40s events were initiated 

and terminated by shifts in information that are known to trigger the perception of event 

boundaries (e.g. characters entering or exiting, temporal shifts like “20 minutes later”) 4,70. 

Two additional boundaries marked the start and end of each story, respectively. These seven 

a priori event boundaries for each story (green bars in Figure 1A; confirmed by human 

raters, Figure S1A) provided the basis for subsequent fMRI analysis.

Two of the stories are centered on a character named Charles, who is attempting to get a big 

scoop for a newspaper, and two are centered on a character named Karen, who is attempting 

to find employment as a chef. To examine the effects of narrative-level organization on 

memory, we incorporated events involving key “side-characters” into each story (Figure 

1A). Two stories involved “Beatrice” and “Melvin” as side-characters, and two involved 

“Sandra” and “Johnny.” Each side-character appeared in two temporally-distant, distinct 

events that occurred 6-12 minutes apart (lags matched between CN and UN conditions), in 

disparate contexts across two unrelated stories. For instance, Sandra’s first event (Event 

1) occurs in Story 2, when she calls Charles, who is sitting at a park at noon on a 

Tuesday. Sandra’s second event (Event 2) occurs in Story 4, when Karen runs into her 

at a French restaurant, at early evening the next day. Events involving the side-characters 

were tangential to adjacent main plot events which centered on Charles and Karen (i.e. they 

were “sideplots”).

Critically, for two recurring side-characters, these sideplot event pairs could form a Coherent 

Narrative (CN) about one particular situation involving that side-character. In contrast, for 
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the other two recurring side-characters, each sideplot event described a different situation 

involving that side-character, such that the two sideplot events could not easily form a 

singular coherent narrative (Unrelated Narratives, UN). Each story contained one CN event 

and one UN event (see Figure 1A). Because the stimulus design controlled for several other 

features that could support integration of sideplot events (temporal proximity, contextual 

similarity, attention to intervening main plot events), only CN events, and not UN events, 

could be easily integrated into a larger narrative.

We sought to control for any effects of specific event content or character identity that 

could confound the coherence manipulation, by randomizing CN and UN event content 

across subjects. For each side-character, we created two alternate pairs of CN events (e.g. 

Sandra Events 1 and 2, version A; Sandra Events 1 and 2, version B) which had similar 

syntax. For a given subject, two side-characters were randomly selected to be CN, and two 

side-characters were randomly selected to be UN. If a side-character was selected to be CN, 

one of the two possible CN event pairs was selected (e.g. Sandra Events 1 and 2, version A). 

If a side-character was selected to be UN, the two events were drawn from different possible 

CN event pairs, such that they belonged to unrelated narratives (e.g. Sandra Event 1, version 

A, and Event 2, version B). For instance, in one CN version for Sandra, she calls to discuss 

someone she is dating in Event 1, and the aftermath of that date occurs in Event 2. In one 

UN version for Sandra, she calls to discuss someone she is dating in Event 1, and she is seen 

hiding from art sponsors in Event 2.

This approach resulted in 32 possible arrangements of CN and UN events, which were 

pseudo-randomly assigned across subjects. For most subjects, 1 of 32 versions was 

randomly assigned by a seeded random number generator in MATLAB. After two-thirds 

of recruited subjects were scanned, it was determined that some versions had been under-

sampled, therefore we generated a randomly-selected subset of the under-sampled versions 

to determine which versions were assigned to the remaining subjects.

Behavioral Tasks—For the fMRI study, on Day 1, subjects first completed consent 

forms, demographics questionnaires, and MRI screening. Prior to entering the scanning 

facility, participants completed brief familiarization tasks that were aimed at facilitating 

their attention to the story presentation task. Then, structural and functional imaging 

was performed, including the story presentation task. On Day 2, additional structural 

and functional imaging was performed, including the recall task. Familiarization, story 

presentation, and recall tasks were administered in MATLAB (https://www.mathworks.com/

products/matlab.html) using Psychophysics Toolbox 3 (https://www.psychtoolbox.org). For 

event boundary ratings, an independent subject sample completed a one-day experiment in 

which they provided annotations of event boundaries.

Familiarization tasks (Day 1).: As described previously 10, three brief tasks were 

administered to familiarize participants with character names and relationships, to orient 

participants to the upcoming stories, and to increase the likelihood that character names 

and relationships could be used as successful recall cues. Participants were first presented 

with character names, then character relationships, and then a test on character relationships 
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(feedback provided). To encourage familiarity, these tasks incorporated face pictures for 

each character that were selected for high memorability 71.

Story presentation (Day 1).: Stories were presented aurally using MRI-compatible 

Sensimetrics model S14 earbuds for binaural audio (https://www.sens.com/products/model-

s14/). Stories 1-4 were, respectively, presented in scanning runs 1-4, and were presented 

again in the same order (Stories 1-4 in runs 5-8; Figure 1A). Stories were repeated in order 

to increase the number of available trials and timepoints for pattern similarity analyses. Prior 

to the task, participants were instructed verbally and onscreen that they would hear fictional 

clips involving characters from the familiarization tasks, and that they should devote their 

full attention and imagination to the clips as if they were listening to a book they enjoyed. 

Furthermore, they would later be asked to remember these stories in detail. Each story 

run began with 7 empty scanning timepoints, after which stories were presented binaurally 

through over-ear headphones, followed by 7 additional empty scanning timepoints. Only a 

white fixation cross was present onscreen during each story.

Recall task (Day 2).: Prior to performing the scanned recall task, participants were 

instructed that, after seeing the name of each character, they were to recall everything they 

could remember involving the particular character, from all stories, in as much detail as 

possible 10. They were encouraged to attempt to recall as many details as possible for at least 

five minutes, and, if they were able to remember additional information, they were allowed 

to continue beyond five minutes. We did not instruct participants to recall events in any 

particular order, nor did we explicitly instruct participants to integrate information between 

events. Within one extended scanning run (Figure 1C), participants were cued with the four 

CN and UN side-characters, in a randomized order. Each cue was presented onscreen, and 

included their relations to main protagonists (e.g. “Melvin Doyle (Charles Bort’s neighbor, 

Karen Joyce’s friend)”). This cueing approach was designed to encourage recall of both 

Events 1 and 2, thus providing an opportunity for participants to naturally integrate CN 

events during recall (or not, as hypothesized for UN events). After cueing CN and UN 

characters, cues were shown for the two main protagonists, in a randomized order. Each 

cue was preceded and followed by 7 empty scanning timepoints, with a white fixation cross 

onscreen. Spoken recall was recorded using an Optoacoustics FOMRI-III MRI-compatible 

microphone (http://www.optoacoustics.com/medical/fomri-iii)

Event boundary ratings:  An independent sample completed the Story Presentation task at 

a desktop computer (i.e. without brain imaging), with an additional instruction. Participants 

were presented with one of two versions of the story, and during listening, were asked to 

press the spacebar whenever they perceived that one event had ended, and another event had 

begun.

Recall scoring—Free recall performance was scored using a procedure developed in 

our previous behavioral experiments with a similar paradigm 10, and which adapted a 

well-characterized scoring method from the Autobiographical Memory Interview 72. Recall 

data were scored in a blinded fashion by segmenting each participant’s typed recall into 

meaningful detail units, and then determining how many of these details could be verified 
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within specific story events (Data S2–3). Briefly, each recall transcript was segmented 

into the smallest meaningful unit possible (“details”), and details were assigned labels that 

describe their content. We primarily sought to label details that could be verified within the 

story text (“verifiable details”). Verifiable details are details that specifically refer to events 

that center on the cued character (i.e. neither inferences about cued events, nor “external 

details” about other characters or events), which are recalled with some degree of certainty 

(e.g. not preceded by “I think” or “Maybe”), and which do not merely restate recall cues or 

other previously recalled details for a given cue.

We were also interested to discern recall performance for each CN or UN event (Events 

1 or 2). For each CN or UN cue, verifiable details that referred to one particular event 

were labeled as “Event 1” or “Event 2.” If a verifiable detail could have originated from 

either Event 1 or Event 2, it was scored as “Either”; these details were rare (X = 0.06
details per cue, SD=0.24 details/cue, max=1.5 details/cue). Finally, if a verifiable detail 

merged information from both Event 1 and Event 2, it was marked as “Integrated”; these 

details were both rare and only observed for CN events (X = 0.14 details/cue, SD=0.56 

details/cue, max=4.5 details/cue). To ensure that analyzed details were event-specific, Either 

and Integrated details were excluded from all reported analyses.

Audio transcription (AG, EM, JD, MD) and recall scoring (EM, JD, MD) was performed 

by individuals who were blinded to the experimental hypotheses and coherence conditions. 

Each participant’s recall transcript was first segmented by two raters, who were required 

to agree on the particular start and end times for each segment. Each rater subsequently 

scored the recall segments for verifiable details. Interrater reliability (IRR) for CN and UN 

events was high (mean Pearson’s r=0.95), and took into account how many verifiable details 

were scored per event label (1, 2, Either, Integrated), per character, and per participant. All 

reported comparisons between imaging and recalled details are based on counts of verifiable 

details for CN or UN events, averaged across raters.

MRI acquisition—Scans were acquired at the UC Davis Imaging Research Center on 

a Siemens Skyra 3T scanner with a 32-channel head coil. Functional magnetic resonance 

imaging (fMRI) was performed using multi-band gradient-echo echo planar imaging 

(TR=1220 ms, TE=24ms, FA=67, MB Factor=2, FOV=19.2cm, matrix: 64 x 64, voxel size: 

3.0mm isotropic, 38 slices). In order to isolate functional activity within particular structures 

of the brain, we also collected high-resolution structural imaging using a T1-weighted 

magnetization prepared rapid acquisition gradient echo (MPRAGE) pulse sequence (1 mm3 

isotropic voxels). To ensure proper alignment between functional images from encoding and 

recall, we collected structural scans on both days.

On both Day 1 and Day 2, we first collected a brief localizer, and then the MPRAGE. We 

then adjusted the field of view for subsequent functional imaging to prioritize full inclusion 

of the temporal lobes (i.e. excluding some dorsal cortex, if necessary) and to align to the 

AC-PC axis. Initial shimming was then performed during a brief, task-free functional scan, 

after which we checked for artifacts (e.g. ghosting, aliasing) and determined whether the 

field of view needed to be adjusted (if so, this scan was repeated, with re-shimming). These 

preliminary scans were followed by functional imaging—story presentation scans on Day 1, 
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and recall scans on Day 2. As time permitted, we additionally collected task-free functional 

imaging (Day 1), diffusion tensor imaging (Day 1 or Day 2), or additional task-concurrent 

imaging (Day 2, following the recall task). These additional scans are beyond the scope of 

the current experiment, and will be reported elsewhere.

MRI preprocessing—Images were processed in SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spml2/), including slice-time correction and 

realignment. After realignment, we checked for data quality using the MemoLab QA 

Toolbox (https://github.com/memobc/memolab-fmri-qa), which identifies excess motion and 

suspect timepoints or voxels within scanning runs using base functions in MATLAB, SPM, 

and ArtRepair (https://www.nitrc.org/projects/art_repair/), as well as detailed plots of signal 

intensity across all brain voxels and timepoints for each scanning run 73. Furthermore, the 

QA Toolbox uses realignment parameters to create 6-directional motion regressors for each 

scan, which we implemented in subsequent models.

We excluded scanning runs if they exceeded 3mm motion in any direction cumulatively 

across the scanning session, or if >20% of timepoints were identified as suspect based 

on framewise displacement >0.5mm or large deviations in signal intensity. We then 

merged realigned images into 4-dimensional files and used “film mode” in FslView (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView/UserGuide) to inspect whether realignment failed – 

that is, whether there were any visible “jumps” between volumes after realignment. As 

previously mentioned, these approaches led us to exclude some subjects from participation 

in Day 2 (see Participants, above). When checking data quality for recall scans, we identified 

poor realignment due to large framewise displacement in two subjects. We attempted to 

salvage all data that preceded these moments of framewise displacement, by excluding 

subsequent volumes and re-performing realignment. This approach enabled us to salvage 

most of the recall scan for one subject (including all CN and UN recall), however, 

realignment still failed for the other subject. As such, one out of the twenty-five subjects 

could not be incorporated into encoding-retrieval similarity analyses.

Functional EPIs were co-registered with structural MPRAGE scans from the same day 

(Day 1 or Day 2). In order to compare functional volumes across days, we aligned images 

from Day 1 and Day 2, using the following approach. We co-registered Day 2 MPRAGEs 

to Day 1 MPRAGEs, and we applied these co-registration parameters to the realigned 

Day 2 images. This enabled the Day 2 functional images to directly overlap with Day 1 

functional images. Additionally, we performed tissue segmentation on coregistered Day 1 

MPRAGE scans, which we used to create brainmasks out of grey matter, white matter, 

and cerebrospinal fluid segmentations. For multi-voxel fMRI analyses (see below), these 

brainmasks were used to mask out extraneous voxels from first-level models of encoding 

and retrieval.

Furthermore, this enabled us to use the same structurally-defined regions of interest (ROIs) 

for both encoding and recall. We used a published probabilistic atlas of the medial temporal 

lobe (https://neurovault.org/collections/3731/) 74 to define the hippocampus, perirhinal 

cortex, and parahippocampal cortex, within each subject’s structural MPRAGE, by reverse 

transforming these ROIs from template space (in MNI space) to native space (per subject) 
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using Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/). Each ROI was 

visually inspected against the native space scan. Because this parcellation separately defines 

the head, body, and tail of the hippocampus, we obtained whole-hippocampus ROIs by 

merging the head, body, and tail into one ROI on each side of the brain (left and right). As 

previously described 40, for exploratory analyses of right hippocampal subregions (Figure 

S3), we merged the right hippocampal body and tail ROIs to create a right posterior 

hippocampus ROI, and used the right hippocampal head as the right anterior hippocampus 

ROI; these ROIs had similar counts of voxels. Other cortical ROIs which were implemented 

in post-hoc analyses (see Ancillary analyses, below) were derived from individual subject 

parcellations in Freesurfer (https://surfer.nmr.mgh.harvard.edu), using the Destrieux atlas 75. 

ROIs were then co-registered and resliced to functional images.

Univariate measures of boundary-evoked activation

Boundary vs. Mid-Event timepoints:  For univariate analysis of fMRI activation at event 

boundaries, structurally aligned BOLD data were smoothed with a 6mm-FWHM smoothing 

kernel and filtered with a 128s high-pass temporal filter prior to analysis. We modeled 

hippocampal activation at event boundaries using subject-level generalized linear models 

(GLMs) in SPM12. In order to control movement related confounds, all models include 6 

rigid-body motion regressors (3 translational, 3 rotational). In line with published analyses 

of event boundary activation 39, these models incorporated finite impulse response functions 

(FIRs) to model activation at event boundaries in a timepoint-by-timepoint fashion. The 

FIR approach enabled us to not only replicate the previous finding that hippocampal 

activation increases at event boundaries. It also enabled us to determine the lag between 

the onset of an event and the fMRI response to an event boundary. Furthermore, this enabled 

us to determine how long the hippocampus exhibits activation at event boundaries, such 

that we could use this epoch to constrain subsequent multivoxel fMRI analyses (modeled 

separately).

Event boundaries were defined a priori—they were intrinsic to the stimulus design (starts 

and ends of 40s events; Figure 1A). Within the GLMs, we modeled activation at event 

boundaries (Boundary-Adjacent timepoints) versus Mid-Event timepoints (20s into each 

event), which did not contain any shifts in information that were expected to trigger event 

boundaries (see story text, Data S1). Importantly, we did not distinguish between specific 

types of events in this model (e.g. CN, UN, main plot). FIRs were modeled from −2 to +16 

TRs around each timepoint—we selected this window in order to model all available event 

timepoints with minimal overlap between Boundary-Adjacent and Mid-Event windows. As 

such, the GLM resulted in beta images for each regressor, for each subject, which we then 

masked using the left and right hippocampus ROIs, averaging betas within each ROI, for 

each condition and each timepoint (e.g. Boundary-Adjacent TR +3, Mid-Event TR +14, 

etc.).

These averaged betas were then imported into RStudio for visualization and statistical 

analysis. Analyses of variance were performed using the Afex package in R 

(https://github.com/singmann/afex), including Greenhouse-Geisser corrections for any 

non-sphericity. For bilateral hippocampus, permutation tests were performed using 
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Permuco (https://cran.r-project.org/web/packages/permuco/), testing for main effects at 

every timepoint using 100,000 permutations and a p<0.05 threshold for selecting clusters of 

significant timepoints, and then corrected for significance based on the mass of each cluster 
76. For post-hoc analyses of cortical networks (see Ancillary analyses, below), the cluster 

threshold was adjusted for the number of models performed (3 models, therefore p<0.017). 

This approach enabled us to account for interdependency between adjacent timepoints, in 

line with well-documented approaches for time-series analysis of neuroimaging data 77.

Activation during CN and UN events:  To supplement the multivoxel fMRI analyses 

described below, we separately quantified univariate activation for CN and UN events, and 

incorporated this measure (“overall boundary activation”) as a fixed effect in mixed models 

of hippocampal pattern similarity during memory encoding (see Multi-level mixed effects 

models, below). In contrast to the univariate analysis reported above, this was performed 

using beta volumes which were initially modeled for multivoxel fMRI analysis (see Single 

trial models, below), and then smoothed with a 6mm-FWHM smoothing kernel for use in 

univariate analysis. We then extracted beta values during the Boundary epoch, and averaged 

these beta values within left and right hippocampus ROIs.

Multivoxel fMRI analysis

Single trial models.: We isolated the unique patterns of activity evoked by each CN 

or UN event during encoding, and each CN or UN cue during recall, using single-trial 

modeling (LS-S approach) 78,79. Specifically, we used finite impulse response functions 

(FIRs) to extract timepoint-by-timepoint activity in each voxel, for each modeled event for 

a given subject. These models were performed on unsmoothed data, in order to optimally 

characterize spatially-distributed patterns of activity 80. For each story event (CN or UN), 

we modeled each timepoint (−2 TRs to + 45 TRs around the event onset) with a separate 

regressor, and used additional regressors to model each timepoint for all other story events 

within a given scanning run. This approach enabled the activity within each timepoint 

of a given event to be distinguished from activity from corresponding timepoints for 

all other events within a scanning run. The −2 to +45 TR window was designated to 

include extra available timepoints around the starts and ends of an event in order to: (1) 

differentiate activity corresponding with the event of interest from activity corresponding to 

adjacent events; and (2) capture the hemodynamic lag in the BOLD response around event 

boundaries (seen in the Univariate analysis of boundary-evoked activation, above).

For recall, we used a similar approach to model activity at each timepoint during a specific 

character cue, however, the number of available timepoints varied from cue to cue. For each 

recall cue, we therefore modeled timepoint regressors from −2 TRs before the onset of a 

recall cue to 7 TRs after the offset of that recall cue (corresponding with inter-cue times 

during scanning), and an equivalent number of regressors was designated to model activity 

from any other recall cue in the extended scanning run. For all models, we incorporated a 

128s high-pass filter as well as 6 rigid-body motion regressors (3 translational, 3 rotational). 

This approach enabled us to distinguish patterns of activity that were evoked by each recall 

cue.
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Representational similarity analysis:  Once we isolated the unique patterns of activity 

associated with each story event and recall cue, we sought to test our hypotheses by 

comparing these patterns of activity across events. This type of analysis is referred to as 

Representational Similarity Analysis (RSA) 81. In brief, RSA involves extracting the pattern 

of activity that is spread across a group of voxels in a given part of the brain (a “voxel 

pattern”), and computing correlations between voxel patterns that are evoked by different 

trials in an experiment. If voxel patterns are more highly correlated between trials in one 

experimental condition versus another, this provides evidence to suggest that whichever 

information distinguishes between those conditions is supported by that particular area of 

the brain.

To this end, we adapted several functions from the RSA Toolbox (http://www.mrc-

cbu.cam.ac.uk/methods-and-resources/toolboxes/) and developed custom code in MATLAB. 

Voxel patterns were extracted within each ROI for a given subject, for every modeled 

timepoint for every trial (story event or recall cue). For each subject, and within each 

ROI, we then constructed a representational similarity matrix (RSM), by correlating voxel 

patterns (Pearson’s r) from every modeled timepoint with every modeled timepoint.

To test our hypotheses about how activity patterns are shared between CN versus UN events, 

and between these events and recall, we selectively averaged correlations from the overall 

RSM. For analyses of encoding, we selected all correlations between timepoints from two 

events involving the same CN or UN character (e.g. Beatrice Event 1 vs Beatrice Event 

2). For encoding-retrieval similarity, we selected all correlations between timepoints from 

a CN or UN encoding event and timepoints corresponding to the recall cue for the same 

CN or UN character (e.g. Beatrice Event 1 vs Beatrice recall cue). Importantly, all of these 

correlations were computed across scanning runs (at least two scans apart), such that any 

effects of temporal autocorrelation would be minimized. After selecting these specific sets 

of correlations, we averaged them to derive one condition-specific, timepoint-by-timepoint 

correlation matrix for each ROI, for each subject. As described below, within each condition, 

we then averaged pattern similarity values (mean Pearson’s r) within empirically-defined 

epochs (e.g. Boundary epoch).

Across-event similarity epochs:  To test our specific hypotheses about representational 

similarity involving event boundaries, we computed selective averages of each condition-

specific RSA matrix (described above) based on empirically-derived Boundary and Post-

Boundary epochs, which were then imported into RStudio for statistical analysis. Within 

each across-event similarity matrix, for each subject and ROI, we selectively averaged 

timepoint-by-timepoint correlations between events (Figure 2): Boundary-Boundary 

similarity, between TRs +5 to +11 from one event, and the same TRs from the other event; 

Boundary-Post-Boundary similarity, between TRs +5 to +11 from one event, and TRs +12 

to +37 from the other event; and Post-Boundary-Post-Boundary similarity, between TRs +12 

to +37 from one event, and the same TRs from the other event. These three measures of 

epoch-by-epoch pattern similarity constitute the three levels of the “Epoch” factor within 

mixed models of across-event pattern similarity (see Multi-level mixed effects models, 

below).
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Follow-up timepoint-by-timepoint analysis:  As shown in Figure S2, we also analyzed 

timepoint-by-timepoint pattern similarity between pairs of events at encoding, to follow-

up on epoch-based analyses (i.e. to see which timepoints had CN>UN similarity). To 

assess statistical significance for narrative coherence effects, and to correct for multiple 

comparisons, we used cluster-based permutation tests76 with 1000 permutations, with a 

cluster defining threshold of p=0.05 (one-tailed, to test for CN>UN similarity) and a cluster 

mass threshold of p=0.05. Each pixel of a statistical comparison (t-value) was converted into 

a Z value by normalizing it to the mean and standard error generated from our permutation 

distributions. Above-threshold (Z>1.96) pixels and above-threshold clusters are plotted in 

Figure S2C–D.

Encoding-retrieval similarity:  Within the right hippocampus, for each encoding event 

(Event 1 or 2), we selectively averaged timepoint-by-timepoint correlations between 

timepoints spanning both Boundary and Post-Boundary epochs at encoding (i.e. the whole 

event), and any timepoints during recall of the same CN or UN character (Figure 3). This 

yielded two measures of encoding-retrieval similarity: Event 1 Reinstatement and Event 

2 Reinstatement. These measures were specified by a factor of Event Number [Event 1 

Reinstatement, Event 2 Reinstatement] within mixed models (see Multi-level mixed effects 

models, below). For ancillary analyses, we also selectively averaged correlations between 

recall and the Boundary epoch alone.

Textual similarity analysis—We modeled textual similarity between sentences from 

different story events using the freely available, “transformer” version of the Universal 

Sentence Encoder (USE), a text embedding model designed to convert text into 

numerical vectors 51 (see also, https://ai.googleblog.com/2018/05/advances-in-semantic-

textual-similarity.html). Briefly, the USE uses pre-weighted layers, pre-trained on an 

expansive textual database, to transform inputted sentences into 512-dimensional embedding 

vectors that account for the combination of words, and the respective positions of words, 

within each sentence. Then, cosine similarity is calculated between each sentence vector, 

yielding pairwise measures of textual similarity for all sentences. As such, USE similarity 

quantifies word- and sentence-level semantic relatedness for text.

For each subject, we created a textual-similarity matrix for cosine similarity between all 

sentences from all stories. In order to compare textual similarity with fMRI voxel pattern 

similarity, we used custom MATLAB code to align the whole USE similarity matrix with 

the whole RSM for each subject. Because all sentences were of equivalent lengths (5s 

each), we were able to align the time-course of sentences with the time-course of fMRI 

scans (1.22s for each timepoint). However, in order to align the 8-sentence window with 

the 40s window for each event, it was necessary to only include fMRI timepoints that 

corresponded with that 40s window. Therefore, we excluded any timepoints that did not 

correspond with Boundary or Post-Boundary event epochs (i.e. including only TRs +5 to 

+37, 40s total). The whole USE similarity matrix was upsampled and interpolated from a 

5s/sentence timescale to match the 1.22s/TR timescale of the whole RSM. Finally, USE 

similarity was selectively averaged within each condition of interest (CN vs UN) and time-

window (Boundary-Boundary, Boundary-Post-Boundary, Post-Boundary-Post-Boundary). 
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These averaged USE similarity values were subsequently incorporated into mixed-effects 

models (see Statistical Analysis, Formula 2, below).

Ancillary analyses

Accounting for pattern similarity during encoding within pattern reinstatement 
findings:  As an additional control, we evaluated whether findings from reinstatement 

analyses (Figure 3B) were biased by the degree to which activity patterns overlapped across 

events during memory encoding (Figure 2B). Even after accounting for pattern similarity at 

encoding within the mixed model formula (see Statistical Analysis, Formula 4, below; AIC 

= −1349.1), reinstatement was predicted by a significant main effect of Narrative Coherence 

(F(1,291.90)=6.28, p=.013) and a significant interaction of Narrative Coherence and Event 

Number (F(1,342.25)=8.15, p=.005; also a significant main effect of encoding-only pattern 

similarity, F(1,322.83)=16.68, p<0.001).

Accounting for potential outliers within reinstatement-versus-recall findings:  As an 

additional control, we evaluated whether the relationship between CN Event 2 reinstatement 

and recall of CN events (Figure 3C) was driven by potential outliers. A similar pattern 

of findings was revealed when excluding events with zero recalled details from the model 

(see Statistical Analysis, Formula 5, below; AIC=796.91; significant interaction of Narrative 

Coherence and Event 2 Reinstatement, F(1,99.01)=4.45, p=0.037). An additional follow-up 

model excluded potential outliers based on Event 2 reinstatement or recalled details (+/− 

3 standard deviations from the mean), and applied a square-root transform to recalled 

details to better approximate normality – this approach also revealed a similar pattern 

of findings (AIC=598.65; significant effect of Narrative Coherence, F(1,154.17)=6.43, 

p=0.012; significant interaction of Narrative Coherence and Event 2 Reinstatement, 

F(1,154.63)=5.31, p=0.023).

Post-hoc analyses of cortical networks:  Post-hoc models (see Statistical Analysis, 

Formula 6, below) accounted for specific epochs and regions of interest within the 

PM network (parahippocampal cortex, angular gyrus, posterior medial cortex, medial 

prefrontal cortex), AT network (perirhinal cortex, temporal pole, orbitofrontal cortex), 

and bilateral auditory cortex (left and right transverse temporal gyrus). Within the PM 

network, post-hoc modeling which accounted for statistical interactions with specific 

epochs and regions of interest (AIC= −4372.2) did not reveal a significant effect of 

Narrative Coherence (F(1,12.35)=2.20, p=0.16). Within the AT network, post-hoc modeling 

(AIC=−5159.5) revealed a significant interaction between Narrative Coherence and Epoch 

(F(2,1727.42)=6.95, p<.001), and this interaction was driven by significantly higher pattern 

similarity across CN than UN events within the Post-Boundary-Post-Boundary epoch alone 

(Holm-corrected t(24.2)=3.48, p=.02; other ts>.065). Within bilateral auditory cortex, post-

hoc modeling (AIC=−608.1) revealed a significant main effect of Narrative Coherence 

(F(1,8.81)=13.21, p=0.006).

Additionally, in line with analyses of boundary-evoked hippocampal activation (see Figure 

S1B), we assessed whether these cortical networks exhibited activation increases at event 

boundaries (see Univariate measures of boundary-evoked activation, above). Only the PM 
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network exhibited significant boundary-evoked activation (TRs +4 to +14; cluster-defining 

threshold corrected for multiple comparisons, p<0.017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed in R using standard functions t-tests, as well as Afex (https://

github.com/singmann/afex) for mixed models and ANOVAs, and Permuco (https://cran.r-

project.org/web/packages/permuco/) for permutation tests. For ANOVAs, Greenhouse-

Geisser corrections were implemented for any non-sphericity. For visualization (Figure S1), 

within-subjects standard error was calculated using Rmisc (https://cran.r-project.org/web/

packages/Rmisc/index.html), by normalizing data to remove between-subject variability, and 

computing variance from this normalized data 82.

Multi-level mixed effects models:

Mixed model formulas are described within the Results text. Fixed effects specifications 

were based on experimental hypotheses, and random effects structures accounted for effects 

of individual subjects (“Subject”) and the content of particular events (“Event Content”). 

For models of across-event similarity at encoding, effects of Event Content (i.e. “item” 

effects) were operationalized as the particular pair of events which were presented for a 

particular CN or UN character (e.g. Beatrice Event 1A and Event 2B, Melvin Event 1B and 

Event 2B; “A” and “B” refer to different possible event versions, based on randomization 

– see Experimental Stimuli, above). For models of encoding-retrieval similarity or recalled 

details, Event Content was operationalized as which particular event was being recalled 

(e.g. Beatrice Event 1A, Beatrice Event 2B, Melvin Event 1B, or Melvin Event 2B). 

Random effects structures were specified by first attempting to fit a maximal random 

effects structure justified by the experimental design (including random slopes) 83, followed 

by systematically pruning the random effects structure until the model converged while 

avoiding a singular solution (i.e. overfitting) 84. Because models which included random 

slopes either did not converge or reached a singular solution, reported models only included 

intercepts for random effects. This approach resulted in the following model formulas:

Formula 1 (Fig. 2B): Pattern similarity ~ Narrative Coherence * Epoch + Overall Boundary 

Activation + (1 | Subject) + (1 | Event Content)

Formula 2: Pattern similarity ~ Narrative Coherence * Epoch + Overall Boundary Activation 

+ USE similarity + (1 | Subject) + (1 | Event Content)

Formula 3 (Fig. 3B): Encoding-retrieval similarity ~ Narrative Coherence * Event Number + 

Recall Duration + (1 | Subject) + (1 | Event Content)

Formula 4 (Supplemental Analysis 1): Encoding-retrieval similarity ~ Narrative Coherence 

* Event Number + Encoding-only pattern similarity + Recall Duration + (1 | Subject) + (1 | 

Event Content)

Formula 5 (Fig. 3C): Recalled details ~ Event 2 Reinstatement * Narrative Coherence * 

Event Recalled + Recall duration + (1 | Subject) + (1 | Event Content)
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Formula 6 (post-hoc cortical analyses; Supplemental Analysis 3): Pattern similarity ~ 

Narrative Coherence * Epoch * Region of interest (ROI) + (1 | Subject) + (1 | Event Content)

Model fits were quantified using the Akaike Information Criterion (AIC), and significance 

for fixed effects was calculated using the Kenward-Roger approximation for degrees of 

freedom, which is useful for unbalanced mixed designs 84. To follow up on significant 

fixed effects and interactions, we used the emmeans package (https://cran.r-project.org/web/

packages/emmeans/index.html) to conduct pairwise comparisons and visualization of factors 

(emmeans; Figures 2–3, Figure S3) and interactions between factors and continuous 

variables (emtrends and emmip; Figure 3C).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Experimental paradigm.
(A) Narrative stimuli presented during functional MRI: On Day 1, four fictional stories 

were presented serially during scanning, as audio clips (240s each), which were punctuated 

by discrete event boundaries (green bars). Events involving recurring characters (Beatrice, 

Melvin, Sandra, Johnny; 40s each) did not relate to the more continuous plot events 

surrounding them. For two of these recurring characters (Blue boxes and dashed lines), 

two temporally-distant events could form one Coherent Narrative (e.g. Sandra Events 1 and 

2). In contrast, for two other recurring characters (Red boxes), Events 1 and 2 belonged 

to Unrelated Narratives (e.g. Johnny). For each participant, side-characters were randomly 

assigned to either the Coherent Narrative or Unrelated Narratives conditions (i.e. this is one 

example; see STAR Methods). (B) Examples of narrative events: Synopses are provided for 

possible pairs of Coherent Narrative and Unrelated Narrative events. (C) Recall assessment 

during functional MRI: During scanning on Day 2, participants were asked to recall events 

involving each recurring character from the stories presented on Day 1 (Coherent Narratives 

= Blue; Unrelated Narratives = Red). The amount of time spent on recall, and the amount 

of details recalled, varied from character to character. Recall excerpts are presented within 

speech bubbles.
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Figure 2: Right hippocampus activity patterns bridge events that form a coherent narrative.
(A) Across-event pattern similarity analysis: within the left and right hippocampus (plotted 

on an individual subject’s structural MRI, in green), the unique spatial pattern of activity 

(“voxel pattern”, represented by cubes) was modeled for Boundary (dark green rectangles, 

TRs +5 to +11) and Post-Boundary epochs (grey rectangles, TRs +12 to +37). Black bars 

represent the real-time beginning and ending of each Coherent Narrative and Unrelated 

Narrative event during scanning—epoch definitions account for the lagged BOLD response. 

Pattern similarity (Pearson’s r) was calculated between voxel patterns at Event 1 and 

Event 2, and selectively averaged to yield three epoch-by-epoch measures of similarity: 

Boundary-Boundary (dark green line), Boundary-Post-Boundary (light green lines), and 

Post-Boundary-Post-Boundary (grey line). See also Figure S1. (B) Right hippocampus 

pattern similarity: Pearson’s correlations between Event 1 and 2 epochs were computed for 

Coherent Narrative and Unrelated Narrative events. Mean pattern similarity for individual 

subjects (colored dots) is plotted on the basis of which epoch was being examined, and 

whether events could form Coherent Narratives or not (Unrelated Narratives). Mixed 

model fits predicting pattern similarity are visualized as 95% confidence intervals (see 

text for model details). Note: pattern similarity is on a continuous scale, and zero or 

negative values simply reflect relatively lower similarity than positive values (i.e. not 

“no similarity” or “negative similarity”). Key: Blue=Coherent Narratives, Red=Unrelated 

Narratives, *=p<0.05, + = p<0.10. See also Figures S2–3.
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Figure 3: Reinstatement of hippocampal activity from memory encoding supports recall of 
Coherent Narrative events.
(A) Encoding-retrieval similarity: Pattern similarity (Pearson’s r) was calculated between 

activity from each event involving a recurring character at encoding (Event 1 or 2), 

and activity during delayed recall of events involving that character. (B) Event 2 pattern 

reinstatement is higher for Coherent Narrative recall: Mean encoding-retrieval similarity 

for each subject (colored dots) is plotted for each epoch of each event during recall. 

95% confidence intervals represent mixed model estimates (see text for model details). 

Note: pattern similarity is on a continuous scale, and zero or negative values simply 

reflect relatively lower similarity than positive values (i.e. not “no similarity” or “negative 

similarity”). (C) Event recall predicted by Event 2 pattern reinstatement: Recalled details 

from Event 1 (circles) and Event 2 (triangles) are plotted for each specific event for 

each subject, predicted by Event 2 pattern reinstatement. Colored lines represent mixed 

model estimates (see text for model details). Key: Blue=Coherent Narrative, Red=Unrelated 

Narratives, +=p<.10 *=p<.05, **=p<.01.
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