Skip to main content
. 2022 Jul 31;2022:7612276. doi: 10.1155/2022/7612276

Table 1.

A general comparison of similar methods in recent years.

References Method Language Dataset General result
Pathak et al. [47] Deep learning + topic modeling English Facebook, Ethereum, Bitcoin, SemEval-2017 Facebook-0.79, Ethereum-0.844, Bitcoin-0.817, SemEval-2017-0.889
Tang et al.[62] Topic modeling English Amazon, Yelp Amazon-0.82, Yelp-0.84
Kalarani and Selva Brunda [49] Joint sentiment-topic features + POS tagging + SVM and ANN English Balanced dataset, unbalanced data SVM-0.84, ANN-0.87
Farkhod et al. [50] Topic modeling English IMDB IMDB-F1 score-70.0
Fatemi and Safayani [51] Topic modeling + restricted Boltzmann machine English 20-Newsgroups (20NG), movie review (MR), multidomain sentiment (MDS) Perplexity: MR: 406.74
Pathik and Shukla [53] Deep learning + topic modeling English Yelp, Amazon, IMDB Yelp- 0.75, Amazon-0.76, IMDB- 0.82
Sengupta et al.[54] Topic modeling English Movies, Twitter Perplexity: Movies- 3834.7, Twitter- 280.75
Huang et al.[56] Deep learning English IMDB, Yelp IMDB-0.963, Yelp-0.735
Özyurt and Akcayol [57] Topic modeling English + Turkish User reviews in Turkish language about smartphones, SemEval-2016, Task-5 Turkish restaurant reviews Precision-81.36
Recall-83.43
F-score-82.39
Zhao et al. [58] Deep learning English Amazon review CNN-87.7, LSTM-87.9
Rao et al. [59] Deep learning English Yelp 2014, 2015, IMDb Yelp2014–63.9 Yelp2015–63.8, IMDb-44.3
Naseem et al. [60] Deep learning English Airline dataset Airline dataset = 0.95
Basiri et al. [61] Attention-based deep learning English Sentiment140, Airline, Kindle dataset, movie review Kindle dataset = 0.93, Airline = 0.92, movie review = 0.90, Sentiment140 = 0.81

The proposed models are deeply described step-by-step in the next section.