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M I C R O B I O L O G Y

Protein diffusion in Escherichia coli cytoplasm  
scales with the mass of the complexes and is  
location dependent
Wojciech M. Śmigiel1†, Luca Mantovanelli1†, Dmitrii S. Linnik1, Michiel Punter1, 
Jakob Silberberg1‡, Limin Xiang2, Ke Xu2, Bert Poolman1*

We analyze the structure of the cytoplasm by performing single-molecule displacement mapping on a diverse set 
of native cytoplasmic proteins in exponentially growing Escherichia coli. We evaluate the method for application 
in small compartments and find that confining effects of the cell membrane affect the diffusion maps. Our analy-
sis reveals that protein diffusion at the poles is consistently slower than in the center of the cell, i.e., to an extent 
greater than the confining effect of the cell membrane. We also show that the diffusion coefficient scales with the 
mass of the used probes, taking into account the oligomeric state of the proteins, while parameters such as native 
protein abundance or the number of protein-protein interactions do not correlate with the mobility of the pro-
teins. We argue that our data paint the prokaryotic cytoplasm as a compartment with subdomains in which the 
diffusion of macromolecules changes with the perceived viscosity.

INTRODUCTION
The world of microbes holds many amazing examples of the com-
plexity and completeness of the cell as a unit of life. The success of 
prokaryotes relies on a single, crowded cell to conduct the totality 
of its biochemical processes. Eukaryotic cells developed a plethora of 
membrane-bound compartments where certain metabolic reactions 
take place in separation from others. This compartmentalization 
allows for the coexistence of distinct physicochemical environ-
ments, which is beneficial or necessary for some biochemical reac-
tions to occur. In archaeal and bacterial cells, such membrane-bound 
compartments are generally absent, with the exception of the peri-
plasm in Gram-negative bacteria and, e.g., the anammoxosome in 
Planctomycetes (1). Thus, in most prokaryotes, the interior of the 
cell is one, uninterrupted solution—the cytoplasm. The replication 
and transcription of DNA, protein synthesis, and all the other cellu-
lar processes not taking place on lipid membranes or in the peri-
plasm occur in this compartment.

The dimensions of prokaryotic cytoplasmic components range 
from the subnanometer scale for ions and metabolites to the mi-
crometer scale for the chromosome, with the bulk of proteins and 
protein complexes in the range of a few to tens of nanometers (2, 3). 
It has previously been shown that tested metabolites and native or 
heterologous proteins generally distribute uniformly in the cyto-
plasm of Escherichia coli (4, 5). The cases of nonuniform distribu-
tion have been attributed to aggregation (6, 7) or interactions of 
molecules with the large cellular components, which are the chro-
mosome (8), the ribosomes (9), or the membrane (10) (Fig. 1). The 
chromosome and ribosomes can also be stably separated from each 
other, depending on whether mRNA is present to form polysomes, 
large structures of multiple ribosomes translating a single mRNA 

chain (11, 12). Together with a recent study on the heterogeneous 
distribution of ribosomes (13), we estimate that the size cutoff for 
molecules that fit into the mesh of the nucleoid is as large as ribo-
somal subunits. Similarly, aggregated and/or misfolded proteins are 
squeezed to the cell poles (14). The situation is different in osmotically 
stressed cells: Hypertonic conditions can lower the size threshold for 
nucleoid occlusion to proteins as small as 27 kDa (4). Moreover, the 
bacterial cytoplasm has glass-like properties, which are most appar-
ent under energy starvation (15, 16). Metabolically active cells appear 
to have a more fluid cytoplasm (15). The reversible transition from 
a liquid-like state to a solid-like state has been proposed as a re-
sponse mechanism to adverse conditions such as starvation (17), os-
motic stress (4), and internal pH changes (18), both in bacteria and 
eukaryotes.

Another physical phenomenon that can take place in the crowd-
ed cytoplasm is the liquid-liquid phase separation (LLPS) (Fig. 1) 
(19, 20). Pools of transiently interacting macromolecules can form 
membraneless compartments, such as droplets or less defined sub-
domains that are distinct from the surrounding lumen. By altering 
the local crowding or sequestering certain molecules, the phase-separated 
compartments can influence physiological processes, from enzy-
matic activity to the regulation of gene expression (21, 22). The re-
cent discovery of phase-separated compartments in bacteria points 
toward LLPS as yet another mechanism by which the prokaryotic 
cytoplasm could be compartmentalized. An excellent review of known 
and possible hyperstructures and their role in cell physiology is avail-
able (23, 24), with many more on protein mobility under physiological 
and stress conditions (25–28).

The reports of heterogeneities in the distribution of molecules in 
cells fueled the hypothesis of the structure of the cytoplasm (29, 30). 
Briefly, the attractive protein-protein interactions lead to the sepa-
ration of the cytoplasm into denser, protein-rich subdomains and 
less crowded pools, where metabolites and proteins can diffuse faster 
(Fig. 1) (31). This view presents the cytoplasm as nonuniformly 
mixed, either for specific complexes (such as the polysomes) or gen-
erally for dynamic, protein-rich compartments intertwined with 
low-density domains. Here, we set out to challenge this and other 
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hypotheses on the compartmentalization of the cytoplasm experi-
mentally.

We probed the mobility of a diverse set of native E. coli proteins 
fused to the photoswitchable fluorescent protein mEos3.2 (32). The 
selected proteins vary in molecular weight, oligomeric state, abun-
dance, and in the number of known interactions with other macro-
molecules. Moreover, the chosen targets have no reported interactions 
with the large cytoplasmic components such as DNA, RNA, ribo-
somes, or the membrane, and they are not known to be a part of 
LLPSs. To test the hypothesis that interactions required for the for-
mation of the structure of the cytoplasm need time to evolve, we in-
cluded two additional, non-native proteins that are homologs of 
E. coli’s TrxA present in the Gram-positive bacterium Lactococcus 
lactis and the archaeon Haloferax volcanii.

We chose the diffusion coefficient as a reporter of the physical 
state of the cytoplasm because of its dependence on the complex 
mass and sensitivity to the environment of the probe. Changes in 
crowding, molecular composition, or transition from the liquid to 
the glassy state of the cytoplasm should be reflected as a change in the 
lateral diffusion coefficient (4, 5, 9, 15). The diffusion measurements 
allow us to test the hypothesis that proteins with a high number of 

interaction partners are more likely to participate in the structure 
of the cytoplasm than the ones with a low number of interaction 
partners. We have adjusted the recently developed single-molecule 
displacement mapping (SMdM) technique (33) to construct diffusiv-
ity maps of the E. coli cytoplasm at the scale of hundreds to tens of 
nanometers and a time resolution in the low millisecond range.

RESULTS
Target selection
To probe the structure of the cytoplasm, we selected a set of target 
proteins on the basis of the following criteria (fig. S1): The proteins 
are native to the organism and cytoplasmic, and they do not interact 
with the chromosome, mRNA, ribosomes, or the cell membrane. 
The molecular state, oligomeric weight, abundance, and potential 
interaction partners are known. We then selected a set of proteins 
varying in molecular weight, oligomeric state, and abundance. Last, 
we determined whether the proteins are suitable for C-terminal flu-
orescent protein tagging and overexpression, that is, targets that 
formed obvious aggregates at the cell poles were discarded from 
further experiments.

Fig. 1. Schematic of the structure of the cytoplasm. The left, top, and right panels represent hyperstructures in the cytoplasm that could impair protein diffusion. The 
bottom panel shows the hypothetical undercrowded regions (green), where molecules can diffuse more rapidly, and overcrowded regions, where most of the macromol-
ecules would be concentrated. The structure of the cytoplasm hypothesis is based on the notion that colloidal stability of the cytoplasm is brought about by hydrogen 
bonding with water molecules, excluded volume forces, and screened electrostatic interactions, which act over commensurate ranges of distances. The macromolecules 
would divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools.
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We chose E. coli BW25113, a widely studied derivative of the 
K-12 strain, as the host, and the genes were expressed from the 
arabinose promoter (pBAD). The subcellular localization and abun-
dance of a substantial fraction of the E. coli proteins are known, and 
their interactions with other cellular components have also been 
documented (34). For most proteins, the oligomeric state is either 
confirmed experimentally or inferred from data on homologs. More-
over, quantitative, condition-dependent data on the proteome of 
E. coli BW25113 have been published (2, 3).

We focus on investigating proteins with a relatively high copy 
number to prevent oversaturation of the native binding sites of the 
interacting partners. We reason that overexpressing proteins with a 
native copy number above 1000 per cell is more likely to produce 
representative data of the structure of the cytoplasm than overex-
pressing proteins that have a basal level of tens or hundreds of copies 
per cell. Relatively high expression is also necessary because SMdM 
requires a large number of foci to obtain diffusion maps of satisfac-
tory resolution. The abundance data are from Schmidt et al. (3) for 
the growth conditions closest to our experimental setup (M9 media 
with glycerol as the carbon and energy source). Under these condi-
tions, there are 573 proteins in E. coli with at least 1000 protein cop-
ies per cell, and these constitute, in total, 93.6% of the total protein 
content of the cell. We then cross-referenced the abundance data 
with binary interaction data from IntAct: 544 of the proteins had at 
least one known binary interaction with another E. coli protein, 
while 29 had none. Next, we excluded periplasmic, membrane, and 
ribosomal proteins and proteins with known or predicted interac-
tions with the large cellular components (chromosome, mRNA, ri-
bosomes, and the cell membrane) or involved in LLPS. We then 
manually selected 18 native E. coli proteins representing a wide 
range of molecular weights, oligomeric states, abundances, and 
loneliness values (table S1). Loneliness represents the ratio of abun-
dance of the protein of interest to the sum of abundances of known 
interaction partners. The loneliness parameter does not represent 
the propensity of proteins to interact with their binding partners or 
the strength of the interaction; rather, it is an abstraction of the 
number of potential interactors per protein, and it is defined as

	​ Loneliness  = ​  
Copy number of protein of interest per cell

    ─────────────────────────   ∑ Copy number of interactors per cell  ​​	

For example, a protein of loneliness 10 has 10 copies per sum of all 
known interactors; a loneliness of 0.1 corresponds to one protein 
per 10 interaction partners.

Single-molecule displacement mapping
SMdM is an imaging technique that is based on the accumulation of 
a large number of displacements of particles at a fixed time step 
(Fig. 2A). Stroboscopic illumination of the sample with short, high-
intensity laser pulses is timed so that the particles emit at the end of 
odd and the beginning of even frames. In this way, one loses the 
ability to track the particles over more than a single displacement, 
but the time step between the two recorded particle positions can be 
varied, which gives access to slow and fast diffusion regimes.

The top panel of Fig.  2B shows a typical field of view of cells 
uniformly expressing the gene encoding Icd fused to mEos3.2, which 
is representative for most of the tested constructs. For some pro-
teins, we consistently observed aggregation of the proteins at the cell 
poles: In some cases, the aggregation occurred sporadically, whereas 

in others, dark foci were observed at the poles in most cells (Fig. 2B, 
bottom). We reason that the aggregation is the result of protein 
misfolding due to overexpression of the fusion construct and not a 
sign of native protein behavior. First, in most of the cells with signs 
of aggregation, we find foci of aggregates in one of the poles (Fig. 2B, 
bottom) instead of a symmetrical distribution of native large parti-
cles such as polysomes (11). Second, the foci were pushed to the cell 
poles and do not occupy the space between the replicated chromo-
somes in later stages of cell growth (11). Third, the aggregate struc-
tures were immobile over a period of 45 to 60 min. Hence, the cases 
shown in the bottom of Fig.  2B were excluded from the further 
analysis.

We analyzed each field of view as follows. The cells were auto-
matically selected via Voronoi clustering and individually inspected 
and optimized for SMdM (Fig. 2C). First, each set of points repre-
senting a cell was rotated, so that the long axis of the cell was paral-
lel to the x axis of the map (Fig. 2D). This was done to achieve better 
data density of the final diffusion map. The cells oriented in this way 
allow maximization of the number of fluorescent spots per pixel, as 
the longest flat feature of the cell can be aligned with the pixel grid. 
In this way, we obtain images with the displacement origin density 
for each cell (Fig. 2D). We then inspected each of the identified cells 
to see whether (i) the data are complete (the cell was not cut off by 
the edge of the field of view); (ii) the cell is not too close to other 
cells, to avoid clustering errors; (iii) there is no obvious cell division; 
and (iv) there is no visible protein aggregation. Cells that meet these 
criteria were further filtered on the basis of the total number of dis-
placements (see the “Cell detection and rotation” section in Materials 
and Methods) and then mapped using a single-component, two-
dimensional diffusion equation at the lowest feasible pixel size. By 
accumulating a large number of individual displacements, one can 
obtain enough data for fitting with an adjusted probability density 
function (PDF) equation (Eq. 1) and estimate the diffusion coeffi-
cient for a particular area (Fig. 2E). An explanation for the deriva-
tion of the equation is given in Materials and Methods

	​​ p(r, t ) = ​  1 ─  
1 − ​e​​ −​​r​max​ 2 ​  _ 4Dt ​​ + ​ k _ 2​ ​r​max​ 2 ​

 ​​
(

​​ ​  2r ─ 4Dt ​ ​e​​ −​ ​r​​ 2​ _ 4Dt​​ + kr​
)

​​ 0  ≤  r  ≤ ​ r​ max​​​​	 (1)

The end result of SMdM is a diffusion map, the spatial resolution 
of which is determined by the number of accumulated displacements 
(Fig. 2F). To create diffusion maps, we varied the pixel size. Cells with 
low density of displacements require larger pixels and vice versa. 
Hence, we used pixel sizes of 50, 100, 150, or 200 nm, which yield 
maps of different spatial resolution (Fig. 2F, left). For the details of 
the experimental and analysis setup, we refer to Materials and Methods. 
Regardless of the cell size, displacement density, or diffusion coeffi-
cient (target protein), the center of the cell displays consistently a 
higher diffusion coefficient than the regions adjacent to the mem-
brane or the poles (Fig. 2F, right); the pole regions are taken as ~20% 
of the cell length (see the “Cell area selection” section in Materials 
and Methods). In general, higher-resolution maps provide more spa-
tial information but suffer from more variation in the calculated dif-
fusion coefficients because of the lower number of displacements per 
pixel (33). The maps obtained by using a pixel size of 100 nm were 
then used to qualitatively inspect the diffusion of proteins. These 
maps are obtained by analyzing pixels that have at least 45 displace-
ments, which ensures an SD of less than 15% (33).
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Fig. 2. Overview of image acquisition and data processing. (A) Schematic of the SMdM method. The purple bar represents a short, low-intensity 405-nm laser impulse; 
the two green bars represent two consecutive short, high-intensity 561-nm laser pulses. The 405-nm pulse photoconverts mEos3.2 from green to red, which can then be 
excited by the 561-nm laser, and its emission is immediately detected. The second 561-nm pulse at the beginning of frame 2 excites again the same protein, allowing for 
a second observation of the same molecule, which has diffused to a new position over the time period of 1.5 ms. The laser intensity was chosen such that mEos3.2 typi-
cally bleaches after two 561-nm pulses, avoiding a misdetection in the following pair of frames. FOV, field of view; a.u., arbitrary units. (B) Fields of view depicted as a 
two-dimensional histogram where the intensity of each bin represents the number of fluorescent spots detected (see the “Single-molecule detection” section in Materials 
and Methods); examples of uniformly distributed (top) and aggregating (bottom) populations are shown. Zones of aggregation are visible as darker spots in the bottom 
panel. (C) An example of data clustering using Voronoi diagrams (56), which was applied on a field of view similar to that shown in (B). (D) Example of a cell before (orange) 
and after (blue) rotation. The point cloud describing the cell represents displacements, which are binned on the basis of their own starting position. (E) The diffusion 
coefficient is calculated for each pixel by fitting the data to a two-dimensional diffusion equation using maximum likelihood estimation, which results in a diffusion map. 
(F) Left: Displacement density maps at 50-, 100-, 150-, and 200-nm resolution. The color map represents the number of displacements per pixel. Right: Corresponding 
diffusion map obtained by fitting the data of each pixel with Eq. 1.
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Quantitative implications of confinement
To understand the apparent diffusion slowdown close to the cell 
boundary (35), we determined the limitations of the diffusion map-
ping process. The basis for SMdM is the two-dimensional diffusion 
equation, which is continuous in both time and space. In our mea-
surements, however, both time and space are discrete as we track 
the position of the molecules at a fixed time interval of 1.5 ms. Fit-
ting the discrete displacements with the diffusion equation yields 
reliable data if the particles move randomly in an unobstructed 
space from the start to the end point of the displacement. This con-
dition does not hold for particles near the cell membrane, and the 
observed displacement can be shorter than in the unobstructed area 
because of reflecting off of the boundary (Fig. 3A, top). Thus, it is 
possible that the apparent heterogeneities in the diffusion maps are 
caused by the confinement imposed by the cell membrane rather 
than an actual slowdown of the diffusing particle.

To investigate the basis for the apparent heterogeneities in the dif-
fusion maps, we conducted in silico simulations of particles diffusing 
in spherocylinders with dimensions approximating those of an E. coli 
cell (Fig. 3B), using Smoldyn (36). The motion of particles with a pre-
defined diffusion coefficient, time resolution, and compartment di-
mensions is simulated, and the model takes into account confining 
spaces with particles reflecting off of the defined boundaries. We then 
calculate the square root of the one-dimensional mean square dis-
placement for the given time step. The software then picks a normally 
distributed random displacement for each axis, for each particle at 
each time step (36). In this way, we simulate a random walk, which is 
represented by the path obtained by the succession of random steps, 
which is a good approximation of the Brownian motion at short time 
steps (37). Given that our experimental time resolution was 1.5 ms, we 
choose to use 0.1 ms as the simulation time step. We ran our simula-
tions for a total time of 2 s. Because random walk (and Brownian 

Fig. 3. Implications of confinement for the analysis of diffusion data. (A) Top: Schematic of the impact of confinement on particle displacement at a fixed time resolution. 
The black arrow indicates the movement of the particle due to confinement. The orange arrow indicates the movement the particle would have made if it had not 
encountered a barrier. Bottom: Schematic of discretization of a particle movement trace from high to low time resolution. The blue line shows the actual trajectory of the 
particle. The black and orange arrows show the displacements that would be observed in a time frame of 9 ms and six consecutive time frames of 1.5 ms, respectively. 
(B) Top: Representation of an E. coli cell by a spherocylinder with dimensions used for Smoldyn simulations. Bottom: Diffusion maps of simulated spherocylinders with 
reflective surface containing particles diffusing at 10, 5, 1, 0.1, and 0.01 m2/s. (C) Comparison of the dependence of the ratio of the apparent to input diffusion coefficient 
in a simulated spherocylinder when analyzing the centermost 100 nm by 150 nm area and the whole cylinder compartment. The orange dotted line represents a 10% 
decrease in the obtained diffusion coefficient compared to the input one, while the gray dotted line represents the ideal case in which the obtained diffusion coefficient 
is equal to the input one. The relevant range of diffusion coefficients for proteins is highlighted in green.
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motion) is a Markov process, we could use the position of every parti-
cle at each time step as a starting position and the position of every 
particle 1.5 ms later as a final position (Fig. 3A, bottom). We then con-
fined the simulated particles in spherocylinders with a length of 2.25 m 
and a radius of 0.45 m, which represented the median values of 
length and radius for all the analyzed cells (fig. S2). Precise length and 
width of all the analyzed cells can be found in table S2.

We simulated diffusion coefficients (Dsim) ranging from 0.01 to 
110 m2/s. With the resulting particle positions at each time step, 
we constructed diffusion maps of the spherocylinders analogous to 
the SMdM measurements (Fig. 3B). We observe that the maps have 
the same characteristics of the cells analyzed by microscopy, with the 
cell center appearing to be a region of faster diffusion compared to 
areas near the compartment boundary, which is most notable in the 
region of the cell poles. This observation is an effect of the discrete 
time step used in mapping the diffusion coefficients, being too long 
to resolve the diffusive motion of this speed inside a compartment 
the size of an E. coli cell. In the 1.5-ms time span, particles close to 
the compartment boundary can travel distances sufficient to reach 
and reflect off of the boundary, which results in an underestimation 
of the diffusion coefficient. The apparent slowdown increases 
with the diffusion coefficient (Fig. 3B, bottom). Hence, reflections 
distort the results of SMdM, even when the underlying diffusion 
coefficient is uniform.

Instead of creating maps for all the simulated diffusions, we cal-
culated the diffusion coefficients based on the displacements with 
starting points in the centermost 100 nm by 150 nm area of the cells. 
In this way, we only analyze displacements that are the least ex-
posed to the confining effects of the compartment boundary. The 
analyzed areas of the simulated cells are able to reproduce the input 
diffusion coefficient Dsim up to a value of approximately 2.5 m2/s 
(Fig. 3C). At values of Dsim higher than 10 m2/s, the two-dimensional 
SMdM produces an apparent diffusion coefficient (Dapp) that un-
derestimates the Dsim value by at least 10%. The underestimation of 
the Dsim value obtained from a larger area, like the whole cylinder 
part of the compartment (Fig. 3C), is even more pronounced than 
when the centermost 100 nm by 150 nm area is analyzed. Here, the 
Dapp value does not reproduce the input diffusion coefficient Dsim, 
underestimating it by at least 10% at a Dsim value of 2.5 m2/s and 
by 15% at a Dsim value of 10 m2/s (Fig. 3C).

The linear relation between the diffusion coefficient D and the 
lag time (or the time step), t, allows us to imagine the hypothetical 
scenario where the acquisition time of SMdM is substantially faster 
than 1.5 ms. The obtained diffusion coefficient Dapp in the areas 
near the cell boundaries is underestimated at input values of Dsim of 
1 m2/s or higher at t value of 1.5 ms (see Fig. 3B, bottom); for 
accurate estimates of the mobility of a particle with a Dsim value of 
10 m2/s, a t value of around 10 s would be required, especially 
for the analysis of regions close to the cell boundaries. Reduction of 
t value to the submillisecond time scale is not possible with con-
ventional light microscopy cameras, given the brightness and photo-
stability of photoactivatable fluorescent proteins, and the background 
fluorescence of the biological samples (32, 38–40). However, given the 
linear dependence of D on t, any reduction in acquisition time 
would improve the quality of the data in a predictable manner.

Handling the limitations of SMdM in confined spaces
Despite the limitations of naive SMdM analysis of small cells, it is 
possible to draw conclusions from the data if the following are kept 

in mind. (i) The apparent diffusion coefficient will be lower than the 
actual diffusion coefficient (D0) of the tracked particles. The mis-
match between Dapp and D0 will depend on D0 and the location of 
the molecule in the cell. Hence, (ii) there will be patterns in the 
maps that will be the direct consequence of the confinement at the 
particular D0 and t values. The patterns depend on the cell shape; 
therefore, (iii) we chose to compare diffusion coefficients obtained 
from cells of approximately the same dimensions (fig. S2). Last, (iv) 
the spatial resolution of the diffusion maps varies between the cells 
because of differences in data density. We therefore chose to ana-
lyze the acquired data for three arbitrary compartments— cell cen-
ter and the two cell poles—which can be easily recognized even at 
low map resolutions. The two cell poles were automatically selected 
by taking the 20% of the total length of each cell and adding it to or 
subtracting it from its outermost left and right coordinates, respec-
tively. In this way, we obtain a diffusion coefficient for a given pro-
tein that is least influenced by the confinement effects (cell center), 
and we are able to glimpse at the internal organization of a cell by 
comparing the diffusion coefficients of the cell center with those of 
the cell poles. Individual maps for every cell can be found in the 
Supplementary Materials. Confinement alone creates a difference 
between the apparent diffusion coefficient in the cell center and in 
the cell poles that will be dictated by the D0 of a given protein. While 
we are unable to estimate the D0 value accurately, we are able to 
compare the various proteins with their Dcenter/Dpole ratios, expos-
ing both trends and potential outliers. Therefore, we analyzed the 
cell center and cell poles separately (for details, see the “Cell area 
selection” section in Materials and Methods).

The Dapp
center values for the mean and SD reported in Table 1 are 

obtained from the analysis of the cell center; the actual numbers and 
the data for Dapp

poles are shown in table S3. Unless indicated other-
wise, all Dapp values are obtained by fitting the displacements with 
the adjusted PDF version of the two-dimensional diffusion equa-
tion (see the “Data fitting” section in Materials and Methods). The 
data are presented as the means of all selected cells for each con-
struct, with errors representing the SDs. We did not find a fraction 
of slowly diffusing proteins (indicative of protein clustering or small 
aggregates), which would show up in SMdM as short displacements. 
We did not observe multiple diffusion coefficients within the three 
regions of the cells (cell center and cell poles); therefore, we analyzed 
our data using a single component fit.

Correlation between diffusion coefficient and 
target parameters
We analyzed the diffusivity of the native proteins in the cell center 
region (Fig. 4, A and B) as a function of the selection parameters in 
cells with a consistent shape (fig. S2). Previously reported values for 
free diffusion of wild-type green fluorescent protein (GFP) in expo-
nentially growing E. coli (9) are consistent with the values observed 
in this study for freely diffusing mEos3.2, which shares molecular 
weight and physical chemical properties with GFP (32).

We find no apparent dependence of the diffusion coefficient on 
protein abundance (Fig. 4C) or loneliness (Fig. 4D). The depen-
dence of the diffusion coefficient on the molecular weight (Fig. 4E) 
of the diffusing particle is far less scattered when the oligomeric 
state is taken into account (Fig. 4F). Note that in our calculations, 
we assume that all subunits are tagged with mEos3.2. Our conclu-
sions are supported by the calculation of Spearman’s rank correla-
tion coefficient (r; see the “Statistical analyses” section in Materials 
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and Methods), which indicates good correlation between datasets if 
the result is higher than 0.8 for positive correlation or lower than −0.8 
for negative correlation. Analyzing the dependence of the diffusion 
coefficient on protein abundance results in r  =  −0.07; a value of 
r = −0.05 is observed for loneliness and r = −0.8 with P < 0.01 for 
molecular weight. Most significant is the dependence of diffusion 
coefficient on complex mass, which was calculated as the sum of the 
molecular weight of the monomeric protein plus the fluorescence 
reporter and multiplied by the oligomeric state number. The depen-
dence on complex mass has r = −0.88, indicating a very strong correla-
tion with P << 0.01. We note that the heterologous TrxA proteins 
are slightly offset compared to the trendline (Fig. 4D), but we find 
similar r and P values when these non-native proteins are excluded. 
We fitted the dependence of the diffusion coefficient on complex 
mass with a power law relationship D = Mcomplex

, where Mcomplex 
is the complex mass and  and  are fitting parameters (Fig. 4F), 
and analyzed the residuals (fig. S3). We observe no correlation of 
the residuals with the complex mass as parameter. We find that the 
diffusion coefficient of the native E. coli proteins scales proportion-
ally to the complex molecular mass according to a power law: D ≈ 
Mcomplex

−0.54 ± 0.05. We also performed multiparametric Spearman’s 
rank correlation coefficient analysis between all the considered vari-
ables (fig. S4), and we do not observe correlation between abundance, 
loneliness, and molecular weight, indicating that the outcome of the 
correlation between each of these variables and the diffusion coeffi-
cient is not influenced by any of the other variables.

Contribution of surface charge to protein mobility
To analyze the possible effects of protein-protein interaction on the 
diffusion of closely related proteins with nearly identical mass, we 
analyzed three homologous thioredoxins, which are the Trx proteins 
from E. coli, L. lactis, and H. volcanii. We reasoned that the native 
E. coli thioredoxin might have a lower diffusion coefficient due to a 
larger number of interaction partners than the heterologous proteins. 

We tested the distributions of the diffusion coefficients of the three 
proteins for normality using a Shapiro-Wilk test and observe that 
the three datasets did not appear to be normally distributed, with 
P < 0.05. We find that their mean diffusion coefficients differ from 
one another, with the most significant difference between the native 
thioredoxin and the homolog from L. lactis, for which the Mann-Whitney 
U rank test (see the “Statistical analyses” section in Materials and 
Methods) results in P << 0.01 (Fig. 5B). We do not confirm our 
hypothesis that the native protein may have a lower mobility due to 
a larger number of potential unique protein-protein interactions, 
which are 87 for TrxAEc with a relatively low loneliness of 0.025 (or 
about 40 interaction partners per TrxAEc molecule). The three 
proteins have a very similar molecular mass, and the apparent slow-
down may come from nonspecific interactions with the native cyto-
plasmic components. Inspecting the surface charge distribution of 
TrxAEc, TrxALl, and TrxAHfxv shows that the native protein has 
the negative and positive charges interspersed relatively uniformly 
throughout the protein surface (Fig. 5A and fig. S5). The L. lactis 
and H. volcanii thioredoxins show far more anionic surfaces, which 
are also reflected in a much higher dipole moment, which are 236, 
477, and 425 Debye for TrxAEc, TrxALl, and TrxAHfxv, respectively 
(Fig. 5A). TrxALl has the lowest diffusion coefficient (Fig. 5B) and, 
owing to a highly anionic surface opposite a neutral-positive patch, 
the largest dipole moment (Fig. 5A). We do not find a significant 
correlation between the diffusion coefficient and the dipole mo-
ment, and we conclude that the differences in surface polarization 
of the proteins may not solely explain the variation in diffusion co-
efficients (9).

Analysis of protein diffusion at the cell poles
We then compared the diffusion at the poles relative to the diffu-
sion at the cell center, which is possible because the cell shape is 
similar for all the investigated proteins (fig. S2). Hence, the charac-
teristics of macromolecular confinement are considered the same 

Table 1. Lateral diffusion coefficients and data statistics of target proteins fused to mEos3.2. The given cell numbers represent single, nondividing cells 
without visible aggregation. The columns show the target protein, number of analyzed cells, abundance, loneliness, molecular weight, oligomeric state  
(1 - monomer, 2 - homodimer, 4 - homotetramer)’, and complex mass. The complex mass was calculated as the sum of the molecular weight of the monomeric 
protein plus mEos3.2 and multiplied by the oligomeric state number. The mean and SD of Dapp

center are shown in the last two columns. The UniProt ID is 
reported for all proteins, except for mEos3.2, for which the Fpbase ID is given. An extended dataset is given in table S1. 

Construct ID
UniProt ID Protein 

name
Number of 

cells
Abundance 
(copies/cell)

Loneliness MW (kDa) Oligomeric 
state

Complex 
mass (kDa)

Dapp
center

Mean SD

1 VUXFR* mEos3.2 30 – – 25.7 1 25.7 11.4 1.6

3 P00934 ThrC 31 11,109 0.350 47.1 1 72.8 7.8 1.1

8 90AC62 GrxC 26 6,170 89.400 9.1 1 34.8 10.3 1.3

9 P05793 IlvC 22 29,065 36.200 54.0 4 318.9 2.9 0.5

11 P08997 AceB 28 8,308 10.400 60.2 1 85.9 6.9 1.1

12 P0A6A8 AcpP 38 28,863 0.120 8.6 1 34.3 9.6 1.6

13 P0ACC3 ErpA 22 3,460 0.100 12.1 2 75.5 7.8 1.1

15 P0AA25 TrxA 33 18,242 0.025 11.8 1 37.5 8.7 1.8

16 P07813 LeuS 20 1,505 0.005 97.2 1 122.9 4.1 0.8

19 P08200 Icd 23 24,591 1.020 45.7 2 142.8 5.0 0.9

15_hvo A0A558GCJ2 TrxA2_hvo 23 – – 12.1 1 37.8 8.1 1.2

15_lla A0A089XQE8 TrxA_lla 24 – – 11.7 1 37.4 6.6 1.3
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for each protein. We calculated the ratio between the diffusion co-
efficient measured at the poles and at the center of the cell for each 
analyzed protein and for each simulated diffusion coefficient, and 
we observe that, in both cases, those ratios were localized around 
constant values: 0.71 for microscopy data and 0.94 for simulated 
data (Fig. 5C). Therefore, the diffusion of each protein is slower at 
the poles than in the center of the cell. Next, we analyzed the data 
collectively and compared the ratios between the diffusion coeffi-
cient measured at the poles and center for all cells expressing the 
protein constructs and for all the simulated diffusions (Fig. 5D).

We see that the diffusion coefficients from the pole regions are 
offset by a similar fraction for all the proteins, which is much more 
prominent for the experimental SMdM than for the simulated data 
(Fig. 5D). Simulated data were obtained from the movement of par-
ticles at different diffusion coefficients, ranging from 0.5 to 20 m2/s, 
in spherocylinders of various dimensions with diameters ranging 
from 0.41 to 2.34 m and a length from 1.1 to 3.64 m, which rep-
resent the minima and the maxima for cell width and cell length, 
respectively, in the experimental dataset. In this way, we obtain some 
degree of heterogeneity in the simulated population. We tested both 

Fig. 4. Protein diffusion in the cell center. (A) Cells were divided in three main regions: the cell center and the cell poles. The displacements belonging to each region 
were then analyzed separately. (B) Fit of the displacements represented in (A). The fits of the displacements belonging to the cell center (highlighted in yellow) were used 
for the analyses represented in (C) to (F). (C to F) Dependence of the Dapp

center on (C) the native protein abundance, (D) loneliness, (E) molecular mass of the monomeric 
unit (that is, the sum of the monomeric protein target’s molecular weight and that of mEos3.2), and (F) complex molecular mass, which takes into account the oligomeric 
state. Native proteins are indicated in blue, TrxA homologs are indicated in orange, and mEos3.2 is indicated in red. The gray trendline in (F) is obtained by calculating 
the dependence of the diffusion coefficient on the complex mass without considering the heterologous proteins, while the orange trendline is obtained when the heter-
ologous proteins are included. Abundances of native protein expression were used for (C) and (D); hence, the heterologous proteins are missing from the graphs.
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distributions for normality using a Shapiro-Wilk test. The micros-
copy data are normally distributed with P > 0.05, while the simulated 
data appear to be non-normally distributed with P << 0.05. When 
analyzing the simulated data with kernel density estimation, we ob-
serve an extended tail at the higher Dapp

poles/Dapp
center ratios, with 

values above 1 (Fig. 5D), which reflects the higher diffusion coeffi-
cients (Fig. 5C). We reason that these high ratios are caused by sim-
ulating fast diffusion in the shorter cells: A particle originating from 

one pole and diffusing with a high diffusion coefficient would end 
up further away from its origin than a particle originating from the 
cell center and bouncing against one of the cell poles. In this scenario, 
the ratio between diffusion measured at the poles and diffusion at 
the cell center is characterized by values higher than 1. The SMdM 
microscopy data show a bigger spread compared to the simulation 
data, and the Dapp

poles/Dapp
center ratios are significantly lower for the 

experimental than simulated data; the Mann-Whitney U rank test 
(see the “Statistical analyses” section in Materials and Methods) 
shows P << 0.01. Thus, the lateral diffusion of proteins is substan-
tially slower at the poles compared to the cell center.

DISCUSSION
We performed single-molecule diffusion measurements using the 
recently developed SMdM technique (33). SMdM has a number of 
advantages over conventional single-particle tracking and ensemble 
diffusion measurements such as FRAP (fluorescence recovery after 
photobleaching). The short illumination pulses allow for precise de-
termination of the positions of fast-moving small proteins and large, 
relatively immobile particles at the same time, which enables investigating 
proteins potentially involved in formation of dynamic complexes. SMdM 
has a spatial resolution high enough to confidently section the small 
prokaryotic cells into zones of interest, allowing to obtain information 
on diffusion in prokaryotes at a level of detail never achieved before.

Confinement influences the SMdM readout
Application of the SMdM to E. coli cells reveals the capability of the 
method to resolve the substructure of the cytoplasm despite the 
challenge of having a small confined compartment. We show by 
simulations and experimental analyses that the relatively long lag 
time of the experimentally measured displacements, the high diffu-
sion coefficients of the cytoplasmic components, and the small size 
of the cells result in an underestimation of the apparent diffusion 
coefficients. The magnitude of this underestimation depends on the 
actual diffusion coefficient of the moving particle and is dependent 
on the compartment shape, with the apparent slowdown increasing 
near the cell boundary. However, it is possible to obtain important 
and interpretable data on the physical state of the cytoplasm. We 
obtain diffusion maps with a resolution of 50 to 200 nm, depending 
on the data density and the length of the experiment. While the Dapp 
values are skewed by the macromolecular confinement, all the mea-
surements have in common the similar cell geometry, allowing the 
data to be compared between the different cells, constructs, and 
areas within the cells.

Protein diffusion scales with the mass of protein complexes
From the analyses performed on selected target proteins, we find 
that the diffusion coefficients scale with the complex molecular mass, 
that is, the mass of the tagged polypeptide chain multiplied by the 
oligomeric state, and not with abundance or loneliness. In addition, 
for three homologous proteins with different surface charge dis-
tribution and dipole moments, we observe significant differences 
in the apparent diffusion coefficient between the E. coli and L. lactis 
TrxA. The TrxALl and TrxAHfxv proteins have similar highly anionic 
surfaces, yet they differ in cytoplasmic mobility. We conclude that 
nonspecific electrostatic interactions with other cell components 
alone cannot explain the variation in diffusion of TrxA proteins, 
unlike what has been found for cationic fluorescent proteins (9).

Fig. 5. Physical chemical effects on protein diffusion. (A) Molecular models of 
the three homologous thioredoxin proteins from E. coli, L. lactis, and H. volcanii, 
based on the Protein Data Bank structures 3DXB, 2O87, and 6KIL for E. coli, L. lactis, 
and H. volcanii and named TrxAEc, TrxALl, and TrxAHfxv, respectively. The Coulombic 
surface charge is depicted using red and blue coloring as the negative and positive 
charge, respectively. Dipole moments are depicted as black arrows. (B) Scatter-
plots of the Dcenter value of the three TrxA proteins. The means are shown as black 
dots; the error bars represent the SDs. The curves next to the scatterplots are ob-
tained via kernel density estimation. Statistical significance indicated with asterisks. 
(C) Relative slowdown of diffusion at the cell poles for both experimental SMdM 
and simulated data. The average of the two Dapp

poles for each cell is divided by the 
Dapp

center and plotted against the Dapp
center. The blue and orange areas represent 

the means ± SD of all the ratios for the microscopy and the simulated data, respec-
tively. The black dotted line represents the case when there would be no slowdown 
at the cell poles. (D) Scatterplots of the data presented in (C). The means are indi-
cated by black dots, with black bars representing the SDs. The curves next to the 
scatterplots are obtained via kernel density estimation. Statistical significance indi-
cated by asterisks. (E) Intracellular perceived viscosity as a function of the molec-
ular weight of protein complexes. The trendline is obtained by fitting the formula 
 = M0.15.
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In exponentially growing E. coli cells, at the spatial resolution of 
around 50 to 200 nm and time resolution of 1.5 ms, we do not ob-
serve dynamic subdomains in the central region of the cytoplasm, 
but we do find a slowdown of protein diffusion at the cell poles. The 
aggregation of SlyD, LeuB, OsmC, Ndk, NadE, MetK, and AceE is 
most likely an artifact of the protein overexpression, rather than a 
physiological substructure of the cytoplasm, because the structures 
are immobile and vary from cell to cell, unlike the megadalton poly-
somes (11). Last, SMdM of proteins in small compartments such as 
prokaryotic cells requires accumulation of data over time (up to an 
hour, with an average acquisition time of ~30 min); hence, dynamic 
structures that form and disassemble on a very short time scale will 
not be detected. We also note that the cytoplasm reorganizes into 
different physical states under adenosine 5′-triphosphate (ATP) de-
pletion or specific stress conditions as seen in prokaryotes and eu-
karyotes (4, 15, 17, 18), conditions that have not been probed in this 
study. In this context, it is worth noting that ATP at millimolar con-
centration has the ability to prevent the formation of and dissolve 
previously formed protein aggregates (41).

The cell cytoplasm behaves as a dilatant fluid
The observed dependence of the diffusion coefficient on the com-
plex molecular mass has a power law with D ≈ Mcomplex

−0.54, where 
 is a scaling factor and Mcomplex is the mass of the native protein 
complex. This dependence is in line with previous observations 
(42, 43), but the slope deviates from the value predicted by the 
Einstein-Stokes equation

	​​ D  = ​  ​k​ B​​ T ─ 6r ​​​	 (2)

where kB is the Boltzmann constant, T is the absolute temperature, 
 is the viscosity of the solvent, and r is the radius of the diffusing 
particle. According to the equation, the relationship between diffu-
sion coefficient and complex molecular mass is D = Mcomplex

−0.33 
(see the “On cytoplasmic viscosity” section in Supplementary Text), 
assuming that the proteins are globular and not interacting with 
other particles in the solution. We argue that the discrepancy be-
tween the observed and the theoretical value cannot be attributed 
solely to shape differences between the target proteins. In that case, 
we would not have found the relationship with the complex molec-
ular mass. A similar argument could be made for surface charge. If 
deviations from the Einstein-Stokes equation were due to differences 
in protein charge, then we would have lost the observed relation-
ship. Most likely, the stronger-than-predicted dependence on mo-
lecular mass reflects the high macromolecular crowding of the 
cytoplasm and the collisions with other macromolecules (here, we 
introduce the term “macromolecular viscosity”), which would af-
fect larger proteins more than smaller ones (30, 31).

The viscosity () of the cytoplasm of the cell is an elusive param-
eter to measure (44). The frictional force of such a complex medium 
cannot be captured in a single number because small molecules will 
experience (and impart) a different friction from large ones. Fol-
lowing the result that the observed diffusion coefficients scale with 
the complex molecular mass more markedly than predicted by the 
Einstein-Stokes equation, we hypothesize that the cytoplasm of 
E. coli is a non-Newtonian, dilatant fluid. A characteristic of dilatant 
fluids is that the viscosity increases with the stress applied to the 
fluid. Larger components inside the cell impose a higher pressure to 

the environment, which, in response, acts as being more viscous. 
We therefore argue that the viscosity of the cytoplasm should be 
considered as a function of the analyzed macromolecule, which will 
be subjected to a perceived viscosity depending on its size. We pro-
pose a new, revised version of the Einstein-Stokes equation (Eq. 3)

	​​ D  = ​   ​k​ B​​ T ─ 6 ​​ MW​​ r ​​​	 (3)

where MW represents the perceived viscosity as a function of the 
molecular weight. Given the discrepancy between the observed 
diffusion coefficients and the values predicted by the original 
Einstein-Stokes equation, we propose a simple relationship between 
intracellular viscosity and complex molecular weight, which takes the 
form  = Mcomplex

0.20 (Fig. 5E). By calculating the viscosity based 
on the observed diffusion coefficient, we propose that the perceived 
macromolecular viscosity varies from 9.02 to 15.02 centipoise (cP) for 
molecules ranging from 25.7 to 318.9 kDa. We believe that the relation-
ship will not hold for metabolites or for megadalton macromolecules, 
as the polydisperse cytoplasm behaves like a fluid for small mole-
cules, while it has glass-like properties for very big complexes (15).

Possibility of static structures and damaged proteins at 
the cell poles
Comparison of the apparent diffusion coefficients shows that the 
in vivo mobility of the target proteins is 30 to 40% slower at the cell 
poles than in the cell center. This relative difference is substantially 
higher than the 5 to 10% slowdown observed at the poles of simulated 
E. coli–sized compartments with similar geometry (Fig. 5, C and D). 
While some of this disparity could be accounted for by the mis-
match in the shape of the live cells and simulated compartments 
(i.e., live-cell poles are not perfect hemispheres), it is improbable 
that the minuscule differences in confining geometry would cause 
such a drastic difference in apparent diffusion coefficient. We con-
sider such slowdown to be physiologically relevant, and we propose 
three possible explanations for this observation (Fig. 6): (i) accumu-
lation of damaged proteins, where aggregated misfolded proteins 
are excluded from the nucleoid (6,  7) and accumulate at the cell 
poles, giving rise to large, relatively immobile obstacles. These ob-
stacles would have crowding and confining effects on proteins dif-
fusing through the pole regions of the cell, decreasing their apparent 
diffusion coefficient; (ii) the translation machinery, which is known 
to be preferentially located in the cell poles, excluded from the nu-
cleoid (11, 12); and (iii) the existence of dynamic cytoplasmic struc-
tures situated at cell poles. A combination of these scenarios could 
also be possible. In all cases, the target proteins would experience a 
more crowded environment at the cell poles, explaining the slow-
down of protein diffusion.

Concluding remarks
We extended the recently developed technique SMdM to construct 
diffusivity maps of the E. coli cytoplasm at the scale of hundreds to tens 
of nanometers, and we determined the lateral diffusion coefficients 
of proteins in specific regions inside exponentially growing cells. We 
observe that protein diffusion solely depends on the mass of the pro-
tein complexes with no apparent effect of protein interactions. We 
provide a rationale for the deviation of the diffusion coefficients from 
the Einstein-Stokes equation and propose that the cytoplasm is a 
dilatant, non-Newtonian fluid. We also find that the lateral diffusion of 
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the selected proteins is location dependent, with the cell poles display-
ing slower diffusion throughout the whole set of investigated proteins. 
The extent of the slowdown in the pole regions exceeds the confining 
effects of the cell membrane boundary, as inferred from computer 
simulations. We propose that this slowdown in diffusion is, in part, a 
consequence of macromolecular hindrance, be it from the accumula-
tion of damaged proteins, localization of the translation machinery, 
or presence of dynamic cytoplasmic structures at the cell poles.

MATERIALS AND METHODS
Databases
We searched the IntAct database (34) for all interactions annotated 
with the E. coli K12 taxonomy ID (8333) (45). Dataset download 
dates were 4 September 2018 and 8 December 2020. The abundance 
dataset was taken from Schmidt et al. (3). We selected the columns 
from the supplementary table with name, UniProt ID, functional 
annotation, and the abundance data for the cells grown in M9-glycerol 
media. The code and the data are available at https://github.com/
MembraneEnzymology/smdm (46).

Target selection
We carried out the analysis of the IntAct database twice. Dataset 
accessed on 4 September 2018 was processed for the initial selection 
of target proteins for cloning and experimentation. Dataset accessed 
on 8 December 2020 was used to generate the tables and figures pres-
ent in this publication to get the most recent context of the study.

Interactome dataset
The European Molecular Biology Laboratory European Bioinformatics 
Institute (EMBL-EBI) IntAct (34) database was accessed via website 

(www.ebi.ac.uk/intact/search), and E. coli K12 interactome was ob-
tained by searching the term “taxid:83333” and was downloaded in 
the PSI-MI TAB 2.7 format (47). The search resulted in 28,943 and 
29,417 binary interactions on 4 September 2018 and 8 December 
2020, respectively.

Combining the datasets
The interactome and the abundance datasets were combined in a SQL 
(structured query language) database. The code that we used to construct 
and search the combined dataset is available at https://github.com/
MembraneEnzymology/smdm/tree/main/Bioinformatic%20analyses 
(46). Briefly, we used PostgreSQL (www.postgresql.org) locally as the 
database system. We used psycopg2 (www.psycopg.org) as the adapter 
between Python and the PostgreSQL server. Within a PostgreSQL 
database, we created a table out of the IntAct (34) search results 
downloaded in the PSI-MI TAB 2.7 format (47). We then merged 
the table with the abundance dataset from Schmidt et al. (3), using the 
UniProt IDs as the common column. The best representation of the 
merged dataset is table S1, where each row corresponds to a binary 
interaction from IntAct. In addition, the table contains protein 
abundance data for each of the interactors, if the interactor is present 
in the abundance dataset. We then selected the UniProt IDs of pro-
teins with copy number per cell of more than 1000, which resulted in 
573 proteins of the 2359 total in the dataset, covering 93.6% of all pro-
teins in the cell.

The combined dataset was used to query all 573 E. coli proteins 
with abundance above 1000 copies per cell. The following query 
conditions were used: (i) Protein UniProt ID matched with UniProt 
ID of either the interactor A or interactor B, (ii) the entry was spec-
ified as a physical interaction (MI:0914 or MI:0915), and (iii) taxon-
omy ID of at least one interactor had to be taxid:83333.

Fig. 6. Possible scenarios for slower diffusion at cell poles. (Left) Protein aggregates (in purple) create a highly crowded environment. (Middle) Polysomes and trans-
fer RNA molecules (in gray) form dynamic structures that slow down the diffusion of proteins. (Right) The hypothesis of a structured cytoplasm is depicted, where highly 
crowded regions would be responsible for the slower diffusion of proteins.

https://github.com/MembraneEnzymology/smdm
https://github.com/MembraneEnzymology/smdm
http://www.ebi.ac.uk/intact/search
https://github.com/MembraneEnzymology/smdm/tree/main/Bioinformatic%20analyses
https://github.com/MembraneEnzymology/smdm/tree/main/Bioinformatic%20analyses
http://www.postgresql.org
http://www.psycopg.org
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For each nonempty query result, we then created a table contain-
ing information for the searched UniProt ID. Among others, the 
columns include the following: (i) the number of all interactions 
found, (ii) whether the protein interacts with itself, (iii) whether the 
protein is annotated with the “cytoplasm” or “cytosol” Gene Ontology 
(GO) annotations (48, 49) (go:"GO:0005737" and go:"GO:0005829", 
respectively), (iv) whether the protein associates with the large cel-
lular components (cell membrane, DNA, RNA, and ribosomes), 
(v) whether the protein is annotated to be situated in the periplasm, 
(vi) whether the protein has a Protein Data Bank entry, (vii) the sum 
of the abundances of all of the protein’s interactors, and (viii) calcu-
lated loneliness (abundance in copies per cell divided by the sum of 
the abundances of all of the protein’s interactors). Note that all the 
information was taken from the two downloaded databases [IntAct 
(34) and Schmidt et al. (3)]. Filtering the information on GO anno-
tations (48, 49) other than the cytoplasm or cytosol was done using 
string matching, not by searching particular GO annotations. Those 
data were later evaluated manually using UniProt (45).

All query results were then combined into a master table con-
taining 546 rows of search results for each queried UniProt ID that 
returned at least one interaction; 27 proteins returned no interac-
tions. All the entries in the master table were then divided into 
deciles with regard to their “molecular weight,” “abundance,” and 
“loneliness” columns.

From the master table, we manually chose around 50 initial tar-
gets, prioritizing cytoplasmic proteins, their lack of interactions with 
the large cellular components, and their spread among the overall 
population in terms of molecular weight, abundance, and loneliness. 
All of those were then verified manually using the UniProt database 
(45). In the end, we settled on 18 proteins (table S1).

We based our final target selection on: (i) protein being cytoplas-
mic; (ii) protein not having known interactions with the large cellu-
lar components; (iii) ranking with regard to loneliness, molecular 
weight, and abundance; (iv) availability of the C terminus for tag-
ging; and (v) oligomeric state, which, in combination with the 
molecular weight, yielded the mass of the protein complex. Points 1 
to 3 were addressed automatically, and the most promising targets 
were then searched manually in UniProt (45) to address points 4 
and 5, yielding a set of 18 native E. coli proteins for subsequent ex-
perimental work. In addition, the thioredoxin genes from L. lactis 
and H. volcanii were searched in UniProt (45), and trxA2 from 
H. volcanii and trxA from L. lactis were included as non-native pro-
teins that are homologs of TrxA from E. coli.

Strains and genes
We used E. coli BW25113 [F-, (araD-araB)567, lacZ4787(::rrnB-3), 
-, rph-1, (rhaD-rhaB)568, hsdR514], unless stated otherwise. In 
addition, for cloning and storage of intermediate constructs, we 
used E. coli DH5 [F-, (argF-lac)169, φ80dlacZ58(M15), phoA8, 
glnX44(AS), -, deoR481, rfbC1, gyrA96(NalR), recA1, endA1, thiE1, 
hsdR17] and MC1061 [F-, (araA-leu)7697, [araD139]B/r, (codB-
lacI)3, galK16, galE15(GalS), -, e14-, mcrA0, relA1, rpsL150(strR), 
spoT1, spoT1, hsdR2]. All native E. coli genes were obtained by poly-
merase chain reaction (PCR) cloning from the BW25113 chromo-
some using specific primers. L. lactis NZ9000 was used as a source 
of trxALla; trxa2Hfxv and mEos3.2 genes were obtained by purchasing 
E. coli–optimized nucleotide sequences (GeneArt Service, Thermo 
Fisher Scientific). We chose mEOS3.2 (32) as the fluorescent tag 
used for SMdM. All proteins were tagged on their C terminus, and 

the mEOS3.2 protein sequence was preceded by a -Gly-Gly-Tyr-
Gly-Gly-Ser- linker, with the N-terminal methionine of mEOS3.2 
substituted for glycine.

Gene cloning
Each amplified gene was ligated into a pBAD vector carrying the 
mEos3.2 gene, using the USER cloning protocol (50). Briefly, we 
designed a general pair of primers to amplify the pBAD-mEos3.2 
vector, which we used as a backbone for every construct. We then 
designed a specific pair of primers for every gene (Table 2), so that 
they had a 5′ region overlapping for 8 to 12 nucleotides with the 5′ 
region of the primers used to amplify the vector. All primers con-
tained a single deoxyuracil residue flanking the 3′ end of the comple-
mentary region. All PCR products were treated with the restriction 
enzyme Dpn I for 1 to 2 hours at 37°C to remove any trace of methyl
ated DNA. All the DNA fragments were then purified using the 
NucleoSpin Gel and PCR clean-up kit (MACHEREY-NAGEL). Pu-
rified fragments were mixed together in a 1:3 vector-to-gene molar 
ratio, using 100 ng of the vector-DNA and the proper amount of the 
gene-DNA. USER enzyme (1 l; New England BioLabs) was added 
to the DNA mix, together with the appropriate volume of the 
Cutsmart (New England BioLabs) reaction buffer. The final reac-
tion volume was reached by filling with sterile Milli-Q to 10 l. The 
reaction was incubated between 30 and 60 min at 37°C, followed by 
a further incubation period between 30 and 60 min at room tempera-
ture. Five microliters of the reaction was then used to transform 100 l 
of chemically competent E. coli MC1061. DNA was then isolated via 
plasmid preparation, using the NucleoSpin Plasmid kit (MACHEREY-
NAGEL), and subsequently sequenced via Sanger sequencing by 
Eurofins Genomics.

Chemical competent cells were prepared according to protocol 
(51). E. coli MC1061 cells were transformed with the final product 
of USER cloning. E. coli BW25113 cells were transformed with 
DNA obtained via plasmid preparation, performed using the 
NucleoSpin Plasmid kit (MACHEREY-NAGEL). Transformation 
was performed with the heat shock method (51).

Media for cell culturing
Lysogeny broth (LB) (52) was prepared following the formula of 
10/10/5% (w/v) in MilliQ of NaCl, tryptone (Formedium), and pep-
tone (Formedium), respectively. The medium was sterilized by 
autoclaving. Mops-buffered minimal medium (MBM) was prepared 
following the formula in (53). Briefly, we prepared the macro- and 
micronutrient solutions and mixed them to obtain concentrated 
base MBM, which was adjusted to pH 7.4 with 2 M KOH. We then 
added MilliQ to obtain a 10× concentration of the final medium. 
The 10× base MBM was then sterilized by filtration using 0.2-m 
filters (Cytiva), aliquoted into 50-ml tubes, and stored at −20°C.

Final MBM used for cell growth was prepared as follows: 50 ml 
of 10× base MBM was thawed and diluted to approximately ~5×. 
We then added 5 ml of 132 mM K2HPO4 plus 7.28 ml of 4 M NaCl, 
both filter-sterilized. The NaCl was added to reach the desired final 
osmolality of approximately 0.28 osmol/kg, and the volume added 
was determined with a calibration curve. The solution was then 
filled to 500 ml with autoclaved MilliQ, giving 1× MBM. The medium 
in this form was stored at 4°C for up to 2 months. Right before cul-
turing, MBM was supplemented with sterile glycerol and ampicillin 
to final concentrations of 0.2% (v/v) and 100 g/ml, respectively. 
This MBM, supplemented with carbon source and antibiotic, gave 
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Table 2. List of all primers used to perform the cloning. Columns represent the following, from left to right: type of fragment (whether it is the backbone 
used as vector or an insert), name of the vector or of the gene of interest, source of the DNA (whether it is a plasmid or the chromosome), origin (whether it was 
ordered as a synthetic gene or extracted from the chromosome), direction of the primer, and sequence in 5′ to 3′ direction. The uracil is highlighted in bold. Fw, 
forward; Rv, reverse. 

Cloning 
fragment DNA name DNA type DNA origin Primer Primer sequence (5′ → 3′)

Backbone pBAD-
mEos3.2 Plasmid GeneArt

Fw AACTGGTGGAUCCGGTAGC

Rv ATGGTTAATUCCTCCTGTTAGCCC

Insert aceA Chromosome BW25113
Fw AATTAACCAUGAAAACCCGTACACAACAAATTGAAG

Rv ATCCACCAGTUCCACCAAACTGCGATTCTTCAGTGGAGC

Insert thrC Chromosome BW25113
Fw AATTAACCAUGAAACTCTACAATCTGAAAGATCACAACGAG

Rv ATCCACCAGTUCCACCCTGATGATTCATCATCAATTTACGCAACG

Insert nadE Chromosome BW25113
Fw AATTAACCAUGACATTGCAACAACAAATAATAAAGGC

Rv ATCCACCAGTUCCACCCTTTTTCCAGAAATCATCGAAAACGG

Insert sucC Chromosome BW25113
Fw AATTAACCAUGAACTTACATGAATATCAGGCAAAACAAC

Rv ATCCACCAGTUCCACCTTTCCCCTCCACTGCGGC

Insert slyD Chromosome BW25113
Fw AATTAACCAUGAAAGTAGCAAAAGACCTGGTGG

Rv ATCCACCAGTUCCACCGTGGCAACCGCAACCG

Insert osmC Chromosome BW25113
Fw AATTAACCAUGACAATCCATAAGAAAGGTCAGGC

Rv ATCCACCAGTUCCACCCGATTTCAACTGATAATCCAGCGTAATTTCCG

Insert grxC Chromosome BW25113
Fw AATTAACCAUGGCCAATGTTGAAATCTATACC

Rv ATCCACCAGTUCCACCTTTCAGCAGGGGATCC

Insert ilvC Chromosome BW25113
Fw AATTAACCAUGGCTAACTACTTCAATACACTG

Rv ATCCACCAGTUCCACCACCCGCAACAGC

Insert aceB Chromosome BW25113
Fw AATTAACCAUGACTGAACAGGCAACAACAACC

Rv ATCCACCAGTUCCACCCGCTAACAGGCGGTAGCC

Insert acpP Chromosome BW25113
Fw AATTAACCAUGAGCACTATCGAAGAACGCG

Rv ATCCACCAGTUCCACCCGCCTGGTGGCCGTT

Insert erpA Chromosome E. coli 
BW25113

Fw AATTAACCAUGAGTGATGACGTAGCACTGC

Rv ATCCACCAGTUCCACCGATACTAAAGGAAGAACCGCAACCG

Insert ndk Chromosome BW25113
Fw AATTAACCAUGGCTATTGAACGTACTTTTTCCATC

Rv ATCCACCAGTUCCACCACGGGTGCGCGGG

Insert trxA Chromosome BW25113
Fw AATTAACCAUGAGCGATAAAATTATTCACCTGACTGAC

Rv ATCCACCAGTUCCACCCGCCAGGTTAGCGTCGAG

Insert trxA_Lla Chromosome L. lactis 
MG1363

Fw AATTAACCAUGGAATATAATATTACTGATGCAACGTTTGATAAAG

Rv ATCCACCAGTUCCACCTGATAATTCAGCAATCACGGCTTTAAG

Insert trxA_Hvo Plasmid GeneArt
Fw AATTAACCAUGAGCACCCCGAAAACC

Rv ATCCACCAGTUCCACCTGCTGCTGCTTCAATAATATCG

Insert leuS Chromosome BW25113
Fw AATTAACCAUGCAAGAGCAATACCGCC

Rv ATCCACCAGTUCCACCGCCAACGACCAGATTGAGGAG

Insert leuB Chromosome BW25113
Fw AATTAACCAUGTCGAAGAATTACCATATTGCCG

Rv ATCCACCAGTUCCACCCACCCCTTCTGCTACATAGCG

Insert metK Chromosome BW25113
Fw AATTAACCAUGGCAAAACACCTTTTTACGTCC

Rv ATCCACCAGTUCCACCCTTCAGACCGGCAGCATCG

Insert icd Chromosome BW25113
Fw AATTAACCAUGGAAAGTAAAGTAGTTGTTCCGG

Rv ATCCACCAGTUCCACCCATGTTTTCGATGATCGCGTCAC
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pH values in the range of 7.22 to 7.26 and osmolality in the range of 
0.28 to 0.30 osmol/kg, as measured by a cryoscopic osmometer 
(Gonotec Osmomat 3000). We prewarmed the medium to the tem-
perature of growth, typically 30°C.

Preculturing of cells for microscopy
Day 1—LB preculture
For each experiment, we took a glycerol stock of E. coli bearing one 
of the constructs reported in table S1, and we scratched it with a 
sterile inoculation loop. We then dipped the loop in 3 ml of LB me-
dium containing ampicillin (100 g/ml). We incubated the precul-
ture overnight at 30°C, with shaking at 200 rpm at a 45° angle; for all 
culturing, we used 14-ml plastic culturing tubes (Greiner Bio-One). 
After the incubation, the cultures were in the stationary phase and 
had an optical density at 600 nm (OD600) above 2.
Day 2—MBM preculture
On day 2, we transferred 30 l of the LB preculture to 3 ml of MBM 
containing 0.2% (v/v) glycerol and ampicillin (100 g/ml). The cul-
ture was incubated overnight at 30°C, with shaking at 200 rpm. Af-
ter the incubation, the culture OD600 was in the range of 0.8 to 1.8.
Day 3—MBM culture and preparation for the measurement
The next day, approximately 4 to 6 hours before microscopy, the 
overnight MBM precultures were diluted in fresh, prewarmed MBM 
with 0.2% (v/v) glycerol plus ampicillin (100 g/ml) to a final OD600 of 
0.1 to 0.2. The diluted cultures containing pBAD-mEos3.2 were induced 
with 0.1% (w/v) l-arabinose at the moment of dilution to achieve an 
expression level high enough for microscopy measurements. The diluted 
cultures of fusion constructs were then incubated at 30°C, with shak-
ing at 200 rpm until the measurement, and induced with 0.1% (w/v) 
l-arabinose approximately 1 to 2 hours before microscopy.

The diffusion measurements were performed on cultures that (i) 
had at least doubled their OD since dilution, (ii) did not exceed 
OD600 of 0.6, and (iii) were induced with l-arabinose for at least 
1 hour. Effectively, the culture OD600 at measurement was in the 
range of 0.22 to 0.57. From the final OD600 measurement onward, 
the cells were handled at room temperature. Right before the mea-
surement, the cultures were spun down in a tabletop centrifuge and 
concentrated three to six times in the growth medium. The concen-
trated cell suspension was immediately used for microscopy.

Live-cell single-molecule microscopy
Preparation of glass slides
High-precision glass slides [24  mm by 60 mm, 170-m (1.5H) 
thickness (Carl Roth GmbH & Co KG)] were sonicated in 5 M KOH 
for 45  min and then rinsed 10 times with MilliQ. The remaining 
MilliQ was removed with pressurized air, and dry slides were stored 
and protected from dust for up to 5 days.
Preparation of agarose pads
Agarose (Duchefa Biochemie) was added to MilliQ to the final con-
centration of 1.5% (w/v) and autoclaved. Afterward, it was stored at 
room temperature for up to a month. MBM (2×) was prepared sim-
ilarly to 1× MBM, with the final addition of sterile MilliQ up to 250 
instead of 500 ml (from 50 ml of 10× base MBM). Polydimethyl
siloxane (PDMS) chambers for the agarose pads were prepared by 
cutting out approximately 20 mm by 20 mm by 4 mm of flat PDMS 
chunks. A circular opening for the agar was made by punching 
through the PDMS chunk with an 8-mm-diameter biopsy needle. 
The PDMS chambers are reusable, with cleaning by sonication in 
70% ethanol for 45 min and drying with compressed air.

Approximately half an hour before the measurement, the 1.5% agarose 
gel was reheated in a microwave oven until it melted completely. In the 
meantime, 4 ml of 2× MBM was supplemented with glycerol to the final 
concentration of 0.4% (v/v), and the medium was preheated in a 50°C in-
cubator. Up to three clean PDMS chambers were placed tightly spaced on 
a clean glass slide. The chambers were gently pressed against the glass slide 
to ensure proper sealing. Four milliliters of preheated 2× MBM supple-
mented with 0.4% (v/v) glycerol was mixed with 4 ml of melted 1.5% agarose 
and mixed gently. The solution was then quickly poured into the PDMS 
chambers until they filled. The agar was left to solidify in the open air 
inside a laminar flow hood to ensure sterility. After the agar solidified, the 
chambers with the pads inside were gently covered with a glass slide to 
prevent evaporation. The chambers are used within 7 hours of preparation. 
The pads made in this way display no notable background increase during 
single-molecule microscopy measurements, as compared to fresh MBM.
Live-cell imaging
To ensure a constant temperature of the microscope throughout the 
imaging process, we turned on the equipment 4 to 5 hours before 
the measurement. This allowed us to minimize the xy drift of the 
samples, which would otherwise have been more pronounced be-
cause of fluctuations in stage and ambient temperatures. A 561-nm 
laser (Coherent, OBIS) beam was focused in the center of the cam-
era detector, such that the circular beam had a diameter slightly 
smaller than one side of the detector.

The cells were imaged on a clean, nonfunctionalized glass. Im-
mobilization was achieved by depositing 5 l of the concentrated 
cell suspension in the center of the glass slide and then pressing the 
cells against the glass surface with solidified agarose pads, formed 
inside a PDMS chamber. The agarose pad had a final concentration 
of agarose at 0.75% (w/v), as well as 1× MBM and 0.2% (v/v) glycerol 
(see preparation of agarose pads). Therefore, apart from the ampi-
cillin, the agarose pad had medium parity with the liquid MBM. The 
top of the PDMS/agarose chamber was covered with a 22 mm by 
22 mm glass slide to prevent evaporation. Usually, the immobiliza-
tion process results in some spillover of the cell suspension from 
beneath the PDMS chamber. That is blotted away with a paper tis-
sue, because we observed that spillover extended the time needed 
for the cells to settle. We then proceed to image the cells trapped 
below the agarose pad in wide-field mode. Immediately after plac-
ing the chamber on top of the cell suspension droplet, the cells re-
mained mobile. It usually took 2 to 10  min for the cells to settle 
completely. Once immobilized, the cells did not move for the dura-
tion of the experiment. We did not observe any drying of the sample 
or cell growth throughout the 35 to 60 min of the measurement.

After the cells went still, we picked a field of view where cells 
were in close proximity to one another but not too densely packed. 
Low density of cells would require us to use large selections for ac-
quisition, increasing the total measurement time. Cells being too 
close to one another creates a problem later in the analysis, where 
pairing of foci from different cells potentially leads to artifacts. We 
preferred fields of view where cells were distanced at least 1 m 
away from each other, but there were at least five cells in a 200 × 200 
pixel area. We positioned the most promising area in the center of 
the detector to ensure the best illumination. We then created a rect-
angular selection encompassing the cells that we chose. The mini-
mal time of exposure of the detector scales with the number of 
pixels within the acquired selection, which translates directly to the 
total time of the measurement. Therefore, we sought to minimize 
the size of the acquired selection. The selections were within the 
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range of 140 pixels (14 m) to 256 pixels (25.6 m) on each axis. 
After the selection was made, we switched to the shortest possible 
acquisition time and focused the sample in the middle of the cells. 
We then enabled the autofocus function of the microscope to avoid 
z drift. We then switched to the dark-field mode of the microscope, 
with low laser powers and continuous illumination at high camera 
gain. Focus was further adjusted to produce the brightest and small-
est foci. We adjusted the laser beam angle to give us the highest 
number of foci, which resulted in the beam angle slightly below 
than the critical angle for total internal reflection [highly inclined 
and laminated optical sheet microscopy (54)]. After adjusting the 
focus and the beam angle, the camera and the lasers were synchro-
nized in the stroboscopy mode: First, we determined the minimal 
amount of time necessary to illuminate mEos3.2 in E. coli to obtain 
reasonable foci. We established that using our setup, the illumina-
tion of 0.5 ms of duration at 135 mW of 561-nm laser output pro-
duced detectable foci. Second, we verified the camera dead time to 
be at 0.78 ms with an oscilloscope (Hameg Instruments, 100-MHz 
analog scope, HM1004), which followed the camera specification.

Using a custom Python notebook, with the use of the nidaqmx 
package (https://github.com/ni/nidaqmx-python), we synchronized the 
illumination to the electrical pulses generated by the camera at the 
beginning of the dead time. The acquisition time (exposure time + 
dead time) is read out automatically using a programmable card (National 
Instruments, PCI – 6602) and was used to calculate the time needed 
to position laser pulses such that the frames can be paired according to 
the schematic presented in Fig. 3. For a detailed overview of the scripts 
used for managing the microscope, please refer to https://github.com/
MembraneEnzymology/smdm/tree/main/Microscopy (46).

The camera pulse of the first frame in the pair generates count-
downs to the four following events: (1) ignoring the following cam-
era pulse, (2) start of the activator 405-nm laser pulse, (3) start of 
the first excitatory 561-nm laser pulse, and (4) start of the second 
excitatory 561-nm pulse. Countdown 1 determines the total time of 
the pulse sequence. This is equal to the acquisition time with an 
added arbitrary time interval. In this way, a single camera pulse fol-
lowing the initial one is ignored, ensuring the every-other-frame 
stroboscopic illumination. Countdown 2 determines the start of the 
405-nm laser pulse, meant to photoswitch the mEOS molecules. 
The 405-nm laser (Coherent, OBIS) pulse duration was 1 ms. We 
chose this interval and pulse length to ensure that the 405-nm pulse 
was confined to the first frame of the illumination. Countdowns 3 
and 4 determine the time of the two excitatory 561-nm laser pulses.

Throughout the measurements, we are adjusting the laser intensity 
of the 405-nm pulse, gradually increasing it as we were observing the 
number of fluorescent spots diminishing over time. We typically ac-
quire three to six consecutive movies per field of view, totaling 100,000 to 
160,000 frames. The total measurement time, from centrifugation to 
the end of acquisition, is between 35 and 60 min. The total number of 
frames and length of the measurement depend on (i) frame acquisi-
tion time (pixel size of the measured area), (ii) density of the immobi-
lized cells, and (iii) time the cells need to settle below the agar pad. 
During all of the measurements, the stage temperature was at 21° ± 
1°C, and the ambient temperature was at 20° ± 0.5°C.

SMDM analysis
Single-molecule displacement analysis
For each field of view, we recorded several consecutive movies to 
allow for a faster storage of the files. To preserve the correct order of 

excitation throughout the whole movie, before concatenation, we 
analyzed each movie for intensity of odd and even frames. Because of 
the limitations of the 561-nm laser, the second frame in the excitation 
order had lower background intensity. We use the background inten-
sity data to align individual movies, by deleting or keeping the first 
frame of each movie. This results in one large .stk file for each field 
of view. For details, see functions determine_first_image and con-
catenate_movies in Concatenate_and_find_peaks.ipynb available at 
https://github.com/MembraneEnzymology/smdm/tree/main/
Microscopy (46).
Single-molecule detection
For single-molecule analysis, we used the Storm-analysis package 
developed by the Zhuang laboratory (http://zhuang.harvard.edu/
software.html). We used the 3D-DAOSTORM program for peak 
detection (55). We tune the detection parameters to efficiently pair 
digital peaks with the observed foci. The movie is split into several 
parts that are analyzed simultaneously. After the full movie was 
analyzed, the localizations were corrected for xy drift. For parame-
ters and more detail, see functions find_all_peaks and analyze in 
Concatenate_and_find_peaks.ipynb available at https://github.com/
MembraneEnzymology/smdm/tree/main/Microscopy (46).
Peak pairing
To obtain displacements from the movies, we paired the localiza-
tions from the two consecutive frames of the stroboscopic illumina-
tion pattern. We set the maximum distance between any two peaks 
to be paired, which is dependent on the diffusion coefficient and 
was adjusted per field of view; for all our constructs, we set the dis-
tance to 600 nm. This distance is then used to find all possible peak 
pairs for each couple of frames. If the peaks are too close to one 
another, then it creates an ambiguity in the assignment of peak pairs. 
We correct for this ambiguity by applying a linear background term 
(see the “Data fitting” section). To obtain a displacement, we match 
each peak in the first frame of the couple with all the peaks falling 
within the maximum chosen distance (600 nm) in the second frame. 
Displacements are then binned inside a region (either a cell area or 
a pixel) on the basis of their starting position, that is, their position 
in the first frame of the couple. This procedure is repeated for all 
frame couples of each field of view. For details, see Analysis_script.
ipynb available at https://github.com/MembraneEnzymology/smdm/
tree/main/Microscopy (46).
Cell detection and rotation
Cells were detected automatically using the Voronoi clustering 
method (56) integrated in the Python library SciPy (https://docs.
scipy.org/doc/scipy/reference) (57). For each cluster constituting 
cells, eigenvectors are obtained through the calculation of the cova-
riance matrix. The angle between the first eigenvector and the x axis 
is then calculated. Subsequently, an appropriate rotational matrix is 
applied to the xy coordinates to align the major axis parallel to the x 
axis of the diffusion map (see code for more details). This yields a 
better resolution (number of peak pairs) per pixel, owing to the 
squared shape of the pixels. Each cell is then extracted from the field 
of view and analyzed in its own frame of reference, in which the 
center of the cell is placed at the origin of an x-y system of coordi-
nates. All cells were inspected to ensure that they did not present 
signs of aggregations or errors due to the clustering method.

Cells were then filtered on the basis of their number of displace-
ments. We calculated the median of the number of displacements per 
cell for each analyzed protein, and we used the minimum and the max-
imum of these medians, 2000 and 20,000, respectively, to define a 
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range of displacements. We then analyzed only those cells that had a 
number of displacements within such range. This was done to mini-
mize the error in determining the diffusion coefficient caused by having 
a too little number or a too large number of displacement (fig. S6).

A pixel map with pixel size between 50 and 200 nm was obtained 
from each cell. Every pixel contains the information of all the peak 
pairs (hence of all the displacements) for which the starting position 
is located inside the pixel. This map is then fitted (see the Data 
fitting section). If the number of displacement per pixel is not high 
enough to pass the minimal threshold for fitting (set to 10), then the 
map is incomplete, and the pixel size is increased.
Cell area selection
Cell area selections were made from vertical lines along the cell long 
axis (Fig.  4A). The leftmost displacement and the rightmost dis-
placement were used to calculate the cell length. Twenty percent of 
the total length was added to the leftmost x coordinate and subtracted 
from the rightmost x coordinate to create the pole regions and the cell 
center. We used 20% of the total length to identify each pole; the aver-
age cell dimensions were 2.25 m for the length and 0.45 m for the 
radius (fig. S2). By calculating the ratio between radius and length, one 
obtains 0.45/2.25 = 0.2; hence, the radius represents 20% of the total 
length. Because the radius is the parameter that determines the size of 
the hemisphere constituting the pole, we chose 20% of the length as an 
estimate of the pole area. We incorporated in our analysis the totality of 
displacements present in the cell.

We then applied a filter to exclude from the analyses those cells 
for which the displacements in a specific area were less than 100, to 
have a maximum error of 10% in determining the diffusion coeffi-
cient (33). In this case, the cell center Dapp value includes displace-
ments close to the cell membrane, but here, the outcome is less 
biased by the density of the data. Each area was then fit using the 
PDF described in Eq. 1 (Fig. 4B).
Data fitting
Fitting of the data was performed using an adjusted two-dimen-
sional PDF for displacements. The normal two-dimensional PDF 
for displacements is described by the Rayleigh distribution

	​​ p(r, t ) = ​  2r ─ 4Dt ​ ​e​​ −​ ​r​​ 2​ _ 4Dt​​​​	 (4)

We introduced a linear background term to take misassigned 
displacements into account, that is, in cases where multiple particles 
are detected in the same frames, and the wrong starting positions 
and final positions are paired with each other. The equation with 
linear background term has the form

	​ p(r, t ) = ​  2r ─ 4Dt ​ ​e​​ −​ ​r​​ 2​ _ 4Dt​​ + kr​	 (5)

This equation, however, does not represent a PDF anymore, be-
cause its integral is not 1. Hence, we applied a correction factor to 
Eq. 8, which led to

	​​ 
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​∫0​ 

​r​ max​​
 ​​p(r, t ) dr
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)

​​​

​​	 (6)

Because the integral was evaluated from 0 to rmax (600 nm in our 
case), we filtered the acquired data such that displacements larger 

than 600 nm were excluded from our dataset. In the case of simulat-
ed data, where there is no background effect, we fit our data using 
Eq. 7. We fit the data to the model using maximum likelihood esti-
mation (58).

We chose 600 nm as the value for rmax with the following reason-
ing: The root of the mean square displacement is given by

	​ RMSD  = ​ √ 
_

 2nDt ​​	 (7)

where n is the number of dimensions. Rearranging Eq. 7, one 
can obtain

	​ D  = ​  ​RMSD​​ 2​ ─ 2nt  ​​	 (8)

Considering n = 2 (because we do not have information about 
the z coordinate of diffusing molecules with our setup), we obtain 
D = 60 m2/s, which is a value about five times larger than the one 
reported for fluorescent proteins diffusing in the cytoplasm of E. coli. 
This gave us a confidence interval big enough to ensure the moni-
toring of all the displacements of all the analyzed proteins.

The diffusion coefficients obtained from the data points located 
in the central part of the cells were averaged for each protein con-
struct. The average diffusion coefficient was then analyzed as a func-
tion of other parameters (abundance, loneliness, molecular weight, 
and complex mass). Because a trend was observed between diffusion 
and complex mass, we fitted the dependence of the diffusion coefficient 
on complex mass with a power law relationship D = Mcomplex

, 
where Mcomplex is the complex mass and  and  are fitting parame-
ters. We performed the fitting using the function curve_fit included 
in the SciPy library (57), which allowed us to directly obtain both  
and , as well as the associated errors as the diagonal values of the 
covariance matrix.

Simulations
Smoldyn input and output
Simulations were conducted with the Smoldyn software (www.
smoldyn.org) (36). The script used for Smoldyn simulations is pro-
vided at https://github.com/MembraneEnzymology/smdm/tree/
main/Simulations (46). Smoldyn simulates the random walk of par-
ticles by calculating the mean square displacement for each particle 
based on the input diffusion coefficient and time steps. It then ran-
domly selects a displacement from a normal distribution of dis-
placements having as mean the squared mean square displacement. 
Furthermore, the program also randomly selects a direction in the 
three axes x, y, and z. This process is applied individually for every 
particle, meaning that each particle will have its unique direction 
and displacement for every time step.

We generated two distinct datasets: one for analyzing the differ-
ences between input diffusion coefficient and apparent diffusion 
coefficient and one for analyzing the differences between cell center 
and cell poles. For the first dataset, we kept the size of the simulated 
cell constant, and we generated 25 replicates for each simulated diffu-
sion coefficient. Briefly, we generated a spherocylinder with a radius 
of 0.45 m and a length of 2.25 m. The surface of the spherocylinder 
is described as reflective, meaning that simulated particles bouncing 
against it are reflected without loss of kinetic energy. We then placed 
particles inside the spherocylinder at random starting positions, 
i.e., uniformly distributed. The particles are described as mathe-
matical points, meaning that they do not interact with one another. 

http://www.smoldyn.org
http://www.smoldyn.org
https://github.com/MembraneEnzymology/smdm/tree/main/Simulations
https://github.com/MembraneEnzymology/smdm/tree/main/Simulations
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For input diffusion coefficients greater than or equal to 1 m2/s, we 
used 25 particles; for diffusion coefficients greater than or equal to 
0.05 m2/s and smaller than 1 m2/s, we used 100 particles; and for 
the diffusion coefficient of 0.01 m2/s, we used 500 particles. This 
was done to ensure a homogeneous distribution of particles through-
out the entire simulation. We then simulated diffusion of the parti-
cles for a total of 2  s, with time steps of 0.1 ms. For the second 
dataset, we generated 346 cells varying in size and in input diffusion 
coefficient: Various combinations of cell diameters (ranging from 
0.2 to 2.34 m), cell lengths (ranging from 1.1 to 3.64 m), and dif-
fusion coefficients (ranging from 0.5 to 20 m2/s) were used to 
simulate the motion of 25 particles randomly placed inside the 
spherocylinders. We again simulated the diffusion of the particles 
for a total of 2 s, with time steps of 0.1 ms.

The output of the simulation is presented in the form of a table 
in which the first column presents the time steps, and the following 
columns give the x, y, and z positions of each particle; the second, 
third, and fourth columns define the spatial position of the first par-
ticle; the fifth, sixth, and seventh columns define the position of the 
second particle; and so on. Each row then identifies the xyz coordi-
nates of all particles for each time step.
Smoldyn output management
The output from Smoldyn simulation is managed in Python, using 
the Pandas (https://pandas.pydata.org) (59) and NumPy (https://
numpy.org) (60) libraries. A detailed version of the code is given 
at https://github.com/MembraneEnzymology/smdm/tree/main/
Simulations (46). Briefly, because the time step in the experimental 
setup is 1.5 ms, whereas Smoldyn uses 0.1 ms, we zipped together 
the data from each i row of the output table described in the pre-
vious section with the data from each i + 15 row. We then treat 
the particles in each zipped row as if they are displacements ob-
served in a time step of 1.5 ms. This allowed us to effectively ob-
tain 19,985 displacements per particle; the last 15 rows could not 
be paired with any other row, and so they were considered as 
final positions.

The displacements are then binned in space on the basis of their 
starting position. The area used for the binning of the displace-
ments determined the pixel size of the generated map. Each pixel 
contained pairs of positions of particles that were virtually identical 
to what we obtained experimentally in the peak pairing process (see 
the “Peak pairing” section). The virtual cells are then analyzed in 
the same way as the experimental data in terms of cell area selection 
and the data fitting process.

TrxA analysis
Because published structures of wild-type TrxA were not available 
at the time of writing of this manuscript, we used a modeling tool to 
obtain the three-dimensional configuration of the protein. TrxA 
models were made using the SWISS-MODEL workspace (61, 62). 
The amino acid sequences for E. coli, L. lactis, and H. volcanii TrxA 
were obtained from the UniProt database (45), using the accession 
numbers P0AA25, A0A089XQE8, and A0A558GDT3, respectively. 
For E. coli TrxA, the structure 3DXB.1.A (63) was used as a template, 
giving a monomeric model with a global model quality estimation 
(GMQE) of 0.88 and a qualitative model energy analysis (QMEAN) 
of 0.77. For L. lactis Trxa, the structure 2O87.1.A (64) was used as a 
template, giving a monomeric model with a GMQE of 0.74 and a 
QMEAN of 0.01. For H. volcanii TrxA, the structure 6KIL.1.A (65) 
was used as a template, giving a monomeric model with a GMQE of 

0.74 and a QMEAN of −0.41. For details about GMQE and QMEAN, 
we redirect the reader to the help page from SWISS-MODEL (https://
swissmodel.expasy.org/docs/help).

The models were downloaded in pdb format. Molecular graphics 
and analyses were performed with UCSF Chimera (66), developed 
by the Resource for Biocomputing, Visualization, and Informatics at 
the University of California, San Francisco, with support from NIH 
P41-GM103311. The software was used to automatically add hydro-
gen and charges to the proteins, using the default parameters. After-
ward, Coulombic surface coloring was applied to visualize the 
surface charge distributions of the models. The dipole moment was 
calculated using the script dipole.py available in the scripts page of 
the Chimera wiki repository.

Statistical analyses
All statistical analyses were performed using the Python package stats 
from the SciPy library (57). Spearman’s rank correlation test (67) was 
used to check whether there was correlation between datasets, such as 
for the diffusion coefficients of the different proteins and their abun-
dance, loneliness, molecular weight, complex mass, and their per-
ceived viscosity. Spearman’s test returns a value between −1 and 1. 
The closer this value is to the extremities, the more the datasets will 
be negatively or positively correlated. In general, values above 0.6 or 
below −0.6 are considered as a result of a moderate correlation, and 
values above 0.8 or below −0.8 are considered a result of a strong 
correlation. The analysis of the residual was performed by plotting 
the observed value subtracted of the value predicted by the fit over 
the value predicted by the fit. Residuals higher than zero indicate an 
underestimation from the fit, while residuals lower than zero indicate 
an overestimation.

Shapiro-Wilk test for normality (68) was used to check whether 
the data were normally distributed. The test assumed the null hy-
pothesis that the data were normally distributed, and we set a level 
of confidence of 1%. Hence, for P > 0.01, the null hypothesis could 
not be rejected, and the distribution was assumed to be normal. This 
analysis was necessary to perform the proper statistical analyses on 
the dataset. If data were not normally distributed, then a Mann-
Whitney U rank test (69) was performed to check for significant 
differences between datasets.

In the case of non-normally distributed datasets, the distri-
butions were visually analyzed via kernel density estimation (70). 
Briefly, a kernel is obtained by the data underlying the distribu-
tion, and for each data point in the dataset, a Gaussian function 
centered in that point is described. The sum of all the Gaussians 
provides a continuous distribution that describes the underly-
ing data.

The Mann-Whitney U rank test was used to determine whether 
the means of two non-normally distributed populations are equal, 
such as for the analyses performed on the cell poles. Results are con-
sidered significant for P < 0.01.

The F test was used to compare constrained and unconstrained 
fitting of the power law equation (see the “On cytoplasmic viscosity” 
section in Supplementary Text). Results are considered significant 
for P < 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo5387

View/request a protocol for this paper from Bio-protocol.

https://pandas.pydata.org
https://numpy.org
https://numpy.org
https://github.com/MembraneEnzymology/smdm/tree/main/Simulations
https://github.com/MembraneEnzymology/smdm/tree/main/Simulations
https://swissmodel.expasy.org/docs/help
https://swissmodel.expasy.org/docs/help
https://science.org/doi/10.1126/sciadv.abo5387
https://science.org/doi/10.1126/sciadv.abo5387
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abo5387


Śmigiel et al., Sci. Adv. 8, eabo5387 (2022)     12 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

18 of 19

REFERENCES AND NOTES
	 1.	 S. H. Peeters, L. van Niftrik, Trending topics and open questions in anaerobic ammonium 

oxidation. Curr. Opin. Chem. Biol. 49, 45–52 (2019).
	 2.	 M. Mori, Z. Zhang, A. Banaei-Esfahani, J.-B. Lalanne, H. Okano, B. C. Collins, A. Schmidt, 

O. T. Schubert, D.-S. Lee, G.-W. Li, R. Aebersold, T. Hwa, C. Ludwig, From coarse to fine: 
The absolute Escherichia coli proteome under diverse growth conditions. Mol. Syst. Biol. 
17, e9536 (2021).

	 3.	 A. Schmidt, K. Kochanowski, S. Vedelaar, E. Ahrné, B. Volkmer, L. Callipo, K. Knoops, 
M. Bauer, R. Aebersold, M. Heinemann, The quantitative and condition-dependent 
Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

	 4.	 J. T. Mika, G. van den Bogaart, L. Veenhoff, V. Krasnikov, B. Poolman, Molecular sieving 
properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. 
Mol. Microbiol. 77, 200–207 (2010).

	 5.	 M. Kumar, M. S. Mommer, V. Sourjik, Mobility of cytoplasmic, membrane, and DNA-
binding proteins in Escherichia coli. Biophys. J. 98, 552–559 (2010).

	 6.	 F. D. Schramm, K. Schroeder, K. Jonas, Protein aggregation in bacteria. FEMS Microbiol. 
Rev. 44, 54–72 (2020).

	 7.	 A.-S. Coquel, J.-P. Jacob, M. Primet, A. Demarez, M. Dimiccoli, T. Julou, L. Moisan, 
A. B. Lindner, H. Berry, Localization of protein aggregation in Escherichia coli is governed 
by diffusion and nucleoid macromolecular crowding effect. PLoS Comput. Biol. 9, 
e1003038 (2013).

	 8.	 S. A. Keatch, P. G. Leonard, J. E. Ladbury, D. T. F. Dryden, StpA protein from Escherichia coli 
condenses supercoiled DNA in preference to linear DNA and protects it from digestion by 
DNase I and EcoKI. Nucleic Acids Res. 33, 6540–6546 (2005).

	 9.	 P. E. Schavemaker, W. M. Śmigiel, B. Poolman, Ribosome surface properties may impose 
limits on the nature of the cytoplasmic proteome. eLife 6, e30084 (2017).

	 10.	 H. Shi, B. P. Bratton, Z. Gitai, K. C. Huang, How to build a bacterial cell: MreB as the foreman 
of E. coli construction. Cell 172, 1294–1305 (2018).

	 11.	 S. Bakshi, A. Siryaporn, M. Goulian, J. C. Weisshaar, Superresolution imaging of ribosomes 
and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

	 12.	 S. Bakshi, H. Choi, J. C. Weisshaar, The spatial biology of transcription and translation 
in rapidly growing Escherichia coli. Front. Microbiol. 6, 636 (2015).

	 13.	 W. T. Gray, S. K. Govers, Y. Xiang, B. R. Parry, M. Campos, S. Kim, C. Jacobs-Wagner, 
Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 
177, 1632–1648.e20 (2019).

	 14.	 G. Laloux, C. Jacobs-Wagner, How do bacteria localize proteins to the cell pole? J. Cell Sci. 
127, 11–19 (2014).

	 15.	 B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne, C. Jacobs-Wagner, 
The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. 
Cell 156, 183–194 (2014).

	 16.	 K. Nishizawa, K. Fujiwara, M. Ikenaga, N. Nakajo, M. Yanagisawa, D. Mizuno, Universal 
glass-forming behavior of in vitro and living cytoplasm. Sci. Rep. 7, 15143 (2017).

	 17.	 R. P. Joyner, J. H. Tang, J. Helenius, E. Dultz, C. Brune, L. J. Holt, S. Huet, D. J. Müller, 
K. Weis, A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, 
e09376 (2016).

	 18.	 M. C. Munder, D. Midtvedt, T. Franzmann, E. Nüske, O. Otto, M. Herbig, E. Ulbricht, 
P. Müller, A. Taubenberger, S. Maharana, L. Malinovska, D. Richter, J. Guck, V. Zaburdaev, 
S. Alberti, A pH-driven transition of the cytoplasm from a fluid- to a solid-like state 
promotes entry into dormancy. eLife 5, e09347 (2016).

	 19.	 B. Guilhas, J.-C. Walter, J. Rech, G. David, N. O. Walliser, J. Palmeri, C. Mathieu-Demaziere, 
A. Parmeggiani, J.-Y. Bouet, A. Le Gall, M. Nollmann, ATP-driven separation of liquid 
phase condensates in bacteria. Mol. Cell 79, 293–303.e4 (2020).

	 20.	 L. Babl, G. Giacomelli, B. Ramm, A.-K. Gelmroth, M. Bramkamp, P. Schwille, CTP-controlled 
liquid–liquid phase separation of ParB. J. Mol. Biol. 434, 167401 (2022).

	 21.	 X. Jin, J.-E. Lee, C. Schaefer, X. Luo, A. J. M. Wollman, A. L. Payne-Dwyer, T. Tian, 
X. Zhang, X. Chen, Y. Li, T. C. B. McLeish, M. C. Leake, F. Bai, Membraneless organelles 
formed by liquid-liquid phase separation increase bacterial fitness. Sci. Adv. 7, 
eabh2929 (2021).

	 22.	 A.-M. Ladouceur, B. S. Parmar, S. Biedzinski, J. Wall, S. G. Tope, D. Cohn, A. Kim, N. Soubry, 
R. Reyes-Lamothe, S. C. Weber, Clusters of bacterial RNA polymerase are biomolecular 
condensates that assemble through liquid–liquid phase separation. Proc. Natl. Acad. Sci. 
U.S.A. 117, 18540–18549 (2020).

	 23.	 V. Norris, T. den Blaauwen, A. Cabin-Flaman, R. H. Doi, R. Harshey, L. Janniere, 
A. Jimenez-Sanchez, D. J. Jin, P. A. Levin, E. Mileykovskaya, A. Minsky, M. Saier Jr., 
K. Skarstad, Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 
71, 230–253 (2007).

	 24.	 C. A. Azaldegui, A. G. Vecchiarelli, J. S. Biteen, The emergence of phase separation 
as an organizing principle in bacteria. Biophys. J. 120, 1123–1138 (2021).

	 25.	 M. L. Heltberg, J. Miné-Hattab, A. Taddei, A. M. Walczak, T. Mora, Physical observables 
to determine the nature of membrane-less cellular sub-compartments. eLife 10, e69181 
(2021).

	 26.	 L. Hubatsch, L. M. Jawerth, C. Love, J. Bauermann, T. D. Tang, S. Bo, A. A. Hyman, 
C. A. Weber, Quantitative theory for the diffusive dynamics of liquid condensates. eLife 
10, e68620 (2021).

	 27.	 Y. Xiang, I. V. Surovtsev, Y. Chang, S. K. Govers, B. R. Parry, J. Liu, C. Jacobs-Wagner, 
Interconnecting solvent quality, transcription, and chromosome folding in Escherichia 
coli. Cell 184, 3626–3642.e14 (2021).

	 28.	 J. T. Mika, B. Poolman, Macromolecule diffusion and confinement in prokaryotic cells. 
Curr. Opin. Biotechnol. 22, 117–126 (2011).

	 29.	 J. Spitzer, B. Poolman, How crowded is the prokaryotic cytoplasm? FEBS Lett. 587, 
2094–2098 (2013).

	 30.	 J. Spitzer, B. Poolman, The role of biomacromolecular crowding, ionic strength, 
and physicochemical gradients in the complexities of life’s emergence. Microbiol. Mol. 
Biol. Rev. 73, 371–388 (2009).

	 31.	 J. van den Berg, A. J. Boersma, B. Poolman, Microorganisms maintain crowding 
homeostasis. Nat. Rev. Microbiol. 15, 309–318 (2017).

	 32.	 M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, 
P. Xu, T. Xu, Rational design of true monomeric and bright photoactivatable fluorescent 
proteins. Nat. Methods 9, 727–729 (2012).

	 33.	 L. Xiang, K. Chen, R. Yan, W. Li, K. Xu, Single-molecule displacement mapping unveils 
nanoscale heterogeneities in intracellular diffusivity. Nat. Methods 17, 524–530 (2020).

	 34.	 S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti, F. Broackes-Carter, 
N. H. Campbell, G. Chavali, C. Chen, N. del-Toro, M. Duesbury, M. Dumousseau, E. Galeota, 
U. Hinz, M. Iannuccelli, S. Jagannathan, R. Jimenez, J. Khadake, A. Lagreid, L. Licata, 
R. C. Lovering, B. Meldal, A. N. Melidoni, M. Milagros, D. Peluso, L. Perfetto, P. Porras, 
A. Raghunath, S. Ricard-Blum, B. Roechert, A. Stutz, M. Tognolli, K. van Roey, G. Cesareni, 
H. Hermjakob, The MIntAct project—IntAct as a common curation platform for 11 
molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

	 35.	 B. P. English, V. Hauryliuk, A. Sanamrad, S. Tankov, N. H. Dekker, J. Elf, Single-molecule 
investigations of the stringent response machinery in living bacterial cells. Proc. Natl. 
Acad. Sci. U.S.A. 108, E365–E373 (2011).

	 36.	 S. S. Andrews, Smoldyn: Particle-based simulation with rule-based modeling, improved 
molecular interaction and a library interface. Bioinformatics 33, 710–717 (2017).

	 37.	 F. B. Knight, On the random walk and Brownian motion. Trans. Amer. Math. Soc. 103, 
218–228 (1962).

	 38.	 G. Crivat, J. W. Taraska, Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 
30, 8–16 (2012).

	 39.	 E. C. Jensen, Use of fluorescent probes: Their effect on cell biology and limitations. 
Anat. Rec. 295, 2031–2036 (2012).

	 40.	 L. Mantovanelli, B. F. Gaastra, B. Poolman, Fluorescence-based sensing of the 
bioenergetic and physicochemical status of the cell, in Current Topics in Membranes: 
New Methods and Sensors for Membrane and Cell Volume Research, M. A. Model, I. Levitan, 
Eds. (Academic Press, 2021), vol. 88, pp. 1–54.

	 41.	 A. Patel, L. Malinovska, S. Saha, J. Wang, S. Alberti, Y. Krishnan, A. A. Hyman, ATP 
as a biological hydrotrope. Science 356, 753–756 (2017).

	 42.	 A. Nenninger, G. Mastroianni, C. W. Mullineaux, Size dependence of protein diffusion 
in the cytoplasm of Escherichia coli. J. Bacteriol. 192, 4535–4540 (2010).

	 43.	 P. E. Schavemaker, A. J. Boersma, B. Poolman, How important is protein diffusion 
in prokaryotes? Front. Mol. Biosci. 5, 93 (2018).

	 44.	 E. O. Puchkov, Intracellular viscosity: Methods of measurement and role in metabolism. 
Biochem. Moscow Suppl. Ser. A. 7, 270–279 (2013).

	 45.	 UniProt Consortium, UniProt: The universal protein knowledgebase in 2021. Nucleic Acids 
Res. 49, D480–D489 (2021).

	 46.	 MembraneEnzymology, MembraneEnzymology/smdm: SMdM analysis in Escherichia coli 
cytoplasm (Zenodo, 2022); https://zenodo.org/record/5911836.

	 47.	 S. Kerrien, S. Orchard, L. Montecchi-Palazzi, B. Aranda, A. F. Quinn, N. Vinod, G. D. Bader, 
I. Xenarios, J. Wojcik, D. Sherman, M. Tyers, J. J. Salama, S. Moore, A. Ceol, A. Chatr-aryamontri, 
M. Oesterheld, V. Stümpflen, L. Salwinski, J. Nerothin, E. Cerami, M. E. Cusick, M. Vidal, 
M. Gilson, J. Armstrong, P. Woollard, C. Hogue, D. Eisenberg, G. Cesareni, R. Apweiler, 
H. Hermjakob, Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular 
interactions. BMC Biol. 5, 44 (2007).

	 48.	 M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, 
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, 
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, G. Sherlock, Gene 
Ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

	 49.	 Gene Ontology Consortium, The Gene Ontology resource: Enriching a GOld mine. 
Nucleic Acids Res. 49, D325–D334 (2021).

	 50.	 F. Geu-Flores, H. H. Nour-Eldin, M. T. Nielsen, B. A. Halkier, USER fusion: A rapid 
and efficient method for simultaneous fusion and cloning of multiple PCR products. 
Nucleic Acids Res. 35, e55 (2007).

	 51.	 R. Green, E. J. Rogers, in Methods in Enzymology, vol. 529, Laboratory Methods in 
Enzymology: DNA, J. Lorsch, Ed. (Academic Press, 2013), pp. 329–336.

https://zenodo.org/record/5911836


Śmigiel et al., Sci. Adv. 8, eabo5387 (2022)     12 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

19 of 19

	 52.	 G. Bertani, Studies on lysogenesis. I. The mode of phage liberation by lysogenic 
Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

	 53.	 F. C. Neidhardt, P. L. Bloch, D. F. Smith, Culture medium for enterobacteria. J. Bacteriol. 
119, 736–747 (1974).

	 54.	 M. Tokunaga, N. Imamoto, K. Sakata-Sogawa, Highly inclined thin illumination enables 
clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

	 55.	 H. Babcock, Y. M. Sigal, X. Zhuang, A high-density 3D localization algorithm for stochastic 
optical reconstruction microscopy. Opt. Nanoscopy 1, 6 (2012).

	 56.	 D. R. Edla, P. K. Jana, A novel clustering algorithm using Voronoi diagram, in Seventh 
International Conference on Digital Information Management (ICDIM) (Macau, 2012), 
pp. 35–40.

	 57.	 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, 
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, 
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, 
Y. Feng, E. W. Moore, J. V. Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, 
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt; 
SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing 
in Python. Nat. Methods 17, 261–272 (2020).

	 58.	 I. J. Myung, Tutorial on maximum likelihood estimation. J. Math. Psychol. 47, 90–100 
(2003).

	 59.	 J. Reback, jbrockmendel, W. McKinney, J. Van den Bossche, T. Augspurger, P. Cloud, 
S. Hawkins, M. Roeschke, gfyoung, Sinhrks, A. Klein, P. Hoefler, T. Petersen, J. Tratner, 
C. She, W. Ayd, S. Naveh, M. Garcia, J. H. M. Darbyshire, J. Schendel, R. Shadrach, 
A. Hayden, D. Saxton, M. E. Gorelli, F. Li, M. Zeitlin, V. Jancauskas, A. McMaster, 
P. Battiston, S. Seabold, pandas-dev/pandas: Pandas 1.4.0 (Zenodo, 2022); 
https://zenodo.org/record/5893288.

	 60.	 C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, 
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, 
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, 
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming 
with NumPy. Nature 585, 357–362 (2020).

	 61.	 N. Guex, M. C. Peitsch, T. Schwede, Automated comparative protein structure modeling 
with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, 
S162–S173 (2009).

	 62.	 A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, 
T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL: Homology 
modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

	 63.	 L. Corsini, M. Hothorn, G. Stier, V. Rybin, K. Scheffzek, T. J. Gibson, M. Sattler, Dimerization 
and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. 
J. Biol. Chem. 284, 630–639 (2009).

	 64.	 G. Roos, A. Garcia-Pino, K. Van Belle, E. Brosens, K. Wahni, G. Vandenbussche, L. Wyns, 
R. Loris, J. Messens, The conserved active site proline determines the reducing power 
of Staphylococcus aureus thioredoxin. J. Mol. Biol. 368, 800–811 (2007).

	 65.	 S. Arai, C. Shibazaki, R. Shimizu, M. Adachi, M. Ishibashi, H. Tokunaga, M. Tokunaga, 
Catalytic mechanism and evolutionary characteristics of thioredoxin from Halobacterium 
salinarum NRC-1. Acta Crystallogr. D Struct. Biol. 76, 73–84 (2020).

	 66.	 E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, 
T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis. 
J. Comput. Chem. 25, 1605–1612 (2004).

	 67.	 C. Spearman, Spearman rank correlation coefficient, in The Concise Encyclopedia of 
Statistics (Springer, 2008), pp. 502–505; https://doi.org/10.1007/978-0-387-32833-1_379.

	 68.	 S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality (complete samples). 
Biometrika 52, 591–611 (1965).

	 69.	 P. E. McKnight, J. Najab, Mann-Whitney U test, in The Corsini Encyclopedia of Psychology 
(John Wiley & Sons Ltd, 2010), pp. 1–1; https://onlinelibrary.wiley.com/doi/
abs/10.1002/9780470479216.corpsy0524.

	 70.	 S. J. Sheather, Density estimation. Stat. Sci. 19, 588–597 (2004).
	 71.	 H. Fischer, I. Polikarpov, A. F. Craievich, Average protein density is a molecular-weight-

dependent function. Protein Sci. 13, 2825–2828 (2004).

Acknowledgments: We thank V. Krasnikov for contribution to the optimization of the 
microscopy setup. We thank B. Minh Tran for the scientific discussions and for contribution to 
the optimization of the software used for data analysis. Funding: The research was funded by 
the EU Marie-Curie ITN project SynCrop (project number 764591), ERC Advanced grant 
“ABCVolume” (grant number 670578), NWO National Science Program “The limits to growth” 
(grant number NWA.1292.19.170), and the Heising-Simons Faculty Fellows award. Author 
contributions: Conceptualization: W.M.Ś., K.X., and B.P. Experimental design: W.M.Ś., L.M., 
L.X., K.X., and B.P. Cloning: W.M.Ś., L.M., and J.S. Microbiology: W.M.Ś., L.M., D.S.L., and 
J.S. Bioinformatic analysis: W.M.Ś. and J.S. Data acquisition: W.M.Ś., L.M., D.S.L., and J.S. Data 
analysis: W.M.Ś., L.M., and D.S.L. Python scripting: W.M.Ś., L.M., and D.S.L. Simulations: W.M.Ś. 
and L.M. Simulations analysis: L.M. Statistical analysis: L.M. and D.S.L. IT supervision: 
M.P. Project supervision: B.P. Writing—original draft: W.M.Ś. and L.M. Writing—review and 
editing: K.X. and B.P. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: All data needed to evaluate the conclusions in the 
paper are present in the paper and/or the Supplementary Materials.

Submitted 10 February 2022
Accepted 28 June 2022
Published 12 August 2022
10.1126/sciadv.abo5387

https://zenodo.org/record/5893288
http://dx.doi.org/10.1007/978-0-387-32833-1_379
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524

