
Formants are easy to measure; resonances, not so much:
Lessons from Klatt (1986)a)

D. H. Whalen,1,b) Wei-Rong Chen,1 Christine H. Shadle,1 and Sean A. Fulop2

1Haskins Laboratories, New Haven, Connecticut 06511, USA
2Department of Linguistics, California State University Fresno, Fresno, California 93740, USA

ABSTRACT:
Formants in speech signals are easily identified, largely because formants are defined to be local maxima in the

wideband sound spectrum. Sadly, this is not what is of most interest in analyzing speech; instead, resonances of the

vocal tract are of interest, and they are much harder to measure. Klatt [(1986). in Proceedings of the Montreal
Satellite Symposium on Speech Recognition, 12th International Congress on Acoustics, edited by P. Mermelstein

(Canadian Acoustical Society, Montreal), pp. 5–7] showed that estimates of resonances are biased by harmonics

while the human ear is not. Several analysis techniques placed the formant closer to a strong harmonic than to the

center of the resonance. This “harmonic attraction” can persist with newer algorithms and in hand measurements,

and systematic errors can persist even in large corpora. Research has shown that the reassigned spectrogram is less

subject to these errors than linear predictive coding and similar measures, but it has not been satisfactorily

automated, making its wider use unrealistic. Pending better techniques, the recommendations are (1) acknowledge

limitations of current analyses regarding influence of F0 and limits on granularity, (2) report settings more fully, (3)

justify settings chosen, and (4) examine the pattern of F0 vs F1 for possible harmonic bias.
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I. INTRODUCTION

The realization that speech sounds have bands of energy

whose frequencies signal different vowels was a major

advance in our understanding of communication (e.g.,

Hermann, 1890; Russell, 1928; Chiba and Kajiyama, 1941).

Showing that the frequency bands could be predicted from

articulatory data (such as x rays) provided powerful support for

the acoustic theory of speech production that was and remains

foundational to speech research (Fant, 1960). The realization

that the vocal tract is essentially a malleable tube with resonant

frequencies has allowed us to measure, synthesize, and

machine-recognize acoustic speech signals with wide-ranging

practical benefits in speech theory and application.

Klatt (1986) may be one of the best three-page papers

on speech science ever written. In its tight confines, the

author shows that formant measurements are both highly

skewed toward strong harmonics and away from the reso-

nance. Even though Klatt’s first experiment was substantial

enough to stand on its own, he further showed, using syn-

thetic speech, that listeners locate the resonance and ignore

the measured formants (unless they happen to coincide, of

course). Both results have stood the test of time and replica-

tion, but improvements to measurement methods have been

incremental and the implications are routinely ignored.

Studies that depend on accurate resonance estimates

may acknowledge that linear predictive coding (LPC) algo-

rithms often go astray and attempt to counteract this by

using hand measurements in a correction or verification

step. Although LPC analysis results in the formant estimate

corresponding to the pole configuration that will minimize

the error (Atal and Hanauer, 1971), manual checking is gen-

erally aimed at excluding unrealistic or otherwise outlying

values and not at counteracting the harmonic bias. Indeed,

as we will show, manual methods do not counteract that

bias.

When authors report “formant” values, they are typi-

cally being quite scrupulous in reporting what their numbers

are, but they are assuming that those formants represent the

truly important aspect of speech, i.e., the resonances. The

fundamental need for this distinction was carefully laid out

in Titze et al. (2015). While there may be some recognition

of the importance of the distinction, most publications con-

tinue to report formant values as if they were telling us

directly about resonances rather than estimating them.

Researchers in speech technology largely bypass formants

and resonances entirely by moving to Mel-frequency cep-

stral coefficients (MFCCs), and the success of technological

approaches justifies that step (Gupta et al., 2018). However,

researchers in basic speech science continue to report for-

mant measurements widely.

The definition of accuracy must include the issue of

what is being measured. With resonances as the desired

object, it is difficult to find the “ground truth” from natural

speech. Even if human listeners are attuned to the
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resonances, as Klatt (1986) demonstrated, deriving those

resonances from the acoustic signal of typical speech is not

a directly solvable problem. Our fullest measure of the vocal

tract shape comes from three-dimensional (3D) magnetic

resonance imaging (MRI), but those measures have limita-

tions on accuracy that are at least as large as those found

with LPC. In one study (Story, 2008), the average difference

of calculated F1 from acoustically measured F1 was approx-

imately 60 Hz (see Fig. 2 therein). There are many possible

sources for such a mismatch, including limits on the resolu-

tion of the vocal tract volumes, inadequacies of the acoustic

calculation from those volumes, and differences in the con-

ditions of the acoustic recording and MRI (although that

study took care to make the conditions as similar as possi-

ble). The conclusion must remain, however, that the deter-

mination of resonances in natural speech is not accurate

enough to provide us with the ground truth needed to assess

the accuracy of acoustic estimates of resonances.

Even hand measurements specifically designed to

address the harmonic bias turn out to be ineffective (Shadle

et al., 2016). In that work, the formants of vowels synthe-

sized with a range of F0s were measured by four experienced

phoneticians from narrowband spectrograms. When queried

about their methods, they stated that they were aware of the

problem of harmonic bias, hence, they estimated what the

source intensity was likely to be and adjusted their resonance

measures accordingly. The harmonics of the source decline

in amplitude as the harmonic number (and, thus, the fre-

quency) increases, resulting in spectral tilt for the amplitude

of the harmonics. Those amplitudes are then modified by the

resonances of the vocal tract. Unfortunately, the radiated

acoustic signal does not directly show the slope of the phona-

tion source, therefore, it is impossible to know how much of

a given harmonic’s amplitude is due to source strength and

how much is the result of its proximity to a resonance. As a

result, these hand measurements were no more accurate than

the Burg method of LPC as implemented within Praat (asyn-

chronous, 30 ms window). Figure 1 plots the signed error in

estimates of F1 vs the difference between the resonance and

nearest harmonic for a phonetician’s hand measurements (tri-

angles) and a LPC algorithm (circles), based on values of

Shadle et al. (2016). If F0 had no effect on the accuracy of

either method of determining F1, error values would fall

along the abscissa, above and below zero, indicating random

error. However, errors align on diagonal lines for LPC and

manual measurements, implying that the error is biased

toward the nearest harmonic of F0.

There are hundreds of reports of speech formants based

on LPC. For example, of nearly 300 papers published in

Journal of Phonetics from 2015 to 2020, all but 2 of the 59

papers that reported formants used the legacy LPC algo-

rithm (Burg, 1967); the majority (79%) of those were done

with Praat. Even though large samples will serve to average

out random error so that one might assume central tenden-

cies are well represented, systematic biases will not average

out (see discussion in Sec. II B and Fig. 3), leading to dubi-

ous claims of accuracy.

A limitation of spectral analysis that can further limit

the accuracy of acoustic reports derives from the interac-

tions among the parameter settings themselves. To quote

from the Praat manual’s entry on “Sound: To Formant

(burg)…” (Boersma and Weenink, 2019): “For instance, if

the Window length is 0.025 s, the actual Gaussian window

duration is 0.050 seconds. This window has values below

4% outside the central 0.025 seconds, and its frequency res-

olution (-3 dB point) is 1.298/(0.025 s)¼ 51.9 Hz, as com-

puted with the formula given at Sound: To Spectrogram….

This is comparable to the bandwidth of a Hamming window

of 0.025 seconds, which is 1.303/(0.025 s)¼ 52.1 Hz, but

that window (which is the window most often used in other

analysis programs) has three spectral lobes of about �42 dB

on each side.”

Although this quote applies to Praat’s default settings,

those are the settings that are most commonly used. Even

before beginning to take the harmonic bias into account,

these settings should make us cautious in interpreting the

measurements. With the best resolution being 51.9 Hz, it is

difficult to support differences less than that.

The reports on variability of formants necessarily rely on

the accuracy of each individual measurement: if the measure-

ments are inaccurate, the estimation of variability is compro-

mised. For example, variability is sometimes reported in

acquired apraxia of speech (Haley et al., 2001; den Ouden

et al., 2018) and developmental apraxia of speech (Lenoci

et al., 2021), but some of this may be due to the granularity

of the formant measurements. Speakers with variability

within 60 Hz might appear to have no variability at all for a

single resonance, whereas those with variability of 90 Hz

would likely appear to show variable productions on 33% of

tokens even if their resonance frequency was constant. Other

studies report small effects that may be due to F0 variability

(e.g., Hall, 2013; Han et al., 2018; Turton and Baranowski,

FIG. 1. (Color online) Parts of the original Figs. 2 and 4 in Shadle et al.
(2016) have been replotted. Triangles indicate the manual measurement

errors, and circles represent the LPC-Burg errors. The x axis is the distance

from the resonance ( fR1) to the nearest harmonic, and the y axis is the

signed error of formant measurement. Errors aligning on a diagonal line

indicate strong harmonic bias.
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2021), and the differences reported are rather low for the

resolving power of LPC.

Formant variability could also be due to greater vari-

ability in F0. Because LPC is greatly influenced by F0 in

addition to the resonances, production (reflected in the reso-

nances) might be classified as variable when only F0, in

fact, varied. Conversely, a tracking of a strong harmonic

might lead to an underestimation of resonance variability if

F0 is stable. To model these possibilities, Chen et al. (2019)

synthesized vowels with known (artificial) resonances

with a wide range of F0s. Figure 2 summarizes their original

Fig. 4. In each of the two panels in Fig. 2, the (blue) circles

on the left represent the distribution of designated synthetic

resonances with the specified F0s. The (red) triangles on the

right show the corresponding formant measurements by

LPC. The top panel [Fig. 2(a)] shows the distribution that

resulted when resonances were randomly sampled from a

Gaussian distribution with mean¼ 400 Hz and standard

deviation (SD)¼ 16 Hz. The lower panel [Fig. 2(b)] has the

same mean resonance value for the central tendency but a

narrower distribution with SD¼ 3 Hz. The underlying F0

distribution was identical in both panels (mean¼ 224 Hz;

SD¼ 5.2 Hz). When LPC analysis was used on the 470 000

synthetic vowels, the results clearly differed from the actual

resonance frequencies, and the LPC-measured formants

increased with F0. Figure 2, thus, demonstrates that the

LPC-measured formant variability can be simply overridden

by F0 variability. In both panels, the LPC-measured F1s

were attracted to the second harmonic (aligning on a diago-

nal line around 420–470 Hz); therefore, the measured F1

variability bore no resemblance to the underlying resonance

variabilities but reflected exactly twice the F0 variability.

Published studies may, thus, have misattributed changes

in F0 to changes in resonances. Heald and Nusbaum (2015),

for example, found small but significant changes in F0 and

F1 within speakers but at different times of the day. They

attributed the F1 changes to changes in vowel articulation,

but F0 and F1 tended to rise over the course of the day in

their data. If most of the F1 variability was due to harmonic

attraction, then there is no change in vowel articulation to be

explained. Cochlear implant (CI) users are often reported to

have a reduced vowel space (Bharadwaj and Assmann,

2013; Verhoeven et al., 2016), but the amount of reduction

may not be as great as reported because CI speakers often

have higher than typical F0s (cf. Osberger and McGarr,

1982). A higher F0 increases the risk of poor resonance esti-

mates by raising the F1 of high vowels and lowering the F1

of low vowels (Chen et al., 2019). A vowel space difference

might be underestimated as well: Infant-directed speech has

been reported as having higher pitch and a larger vowel

space, equivalent to hyperarticulation, compared to adult-

directed speech (e.g., Cristia and Seidl, 2014; Burnham

et al., 2015). See Sec. II B for a detailed discussion of this

effect.

Current time-frequency methods for formant measure-

ment are not sufficiently developed. We reviewed all of the

formant measurement methods published in three major

journals (IEEE Transactions, JASA, and Speech
Communication) from 2000 to 2020. Most of the methods

were improvements in (1) LPC-based methods (e.g., Smit

et al., 2012; Alku et al., 2013; Gowda et al., 2017; Gowda

et al., 2020) or (2) discrete Fourier transform (DFT)-based

methods (e.g., Medabalimi et al., 2014; Daubechies et al.,
2016; Story and Bunton, 2016; Zhang et al., 2020).

However, most of the analysis methods are not publicly

available, and none of them has been extensively (if at all)

used in phonetic studies.

This article summarizes the aspects of previous studies

and arguments that continue to be relevant to the kinds of

measurements reported in the literature, outlines a more

accurate system that nonetheless is not yet automated, and

suggests ways of reporting resonance estimates more accu-

rately with regard to the assessment of resonances rather

than energy peaks.

II. EXAMPLES AND ISSUES

Various replications of Klatt (1986) have been per-

formed, as will be discussed in Sec. II A. The reasons that

averaging over large samples does not fully address the

issue are reviewed in Sec. II B. And Sec. II C will discuss

studies that try to improve the methods either directly or

through formant tracking.

A. Replications

Several studies have undertaken the task of replicating

Klatt (1986), always needing many more pages to do so, but

all have had the same result. We will point out a prior study

that is relevant as well.

In an earlier study with hand-measured spectrograms,

Monsen and Engebretson (1983) found sizable errors in

FIG. 2. (Color online) A summary of Fig. 4 of Chen et al. (2019) shows

simulations of LPC-measured formant variability with 2000 synthesized

productions of /i/ having the same variability in F0 [standard deviation

(SD)¼ 5.2 Hz] and the second harmonic (H2, SD¼ 10.4 Hz) but different

(high vs low) underlying variability of the resonance [(a) resonance

SD¼ 16 Hz and (b) resonance SD¼ 3 Hz)]. In each panel, the (blue) circles

on the left represent the ground truth and the (red) triangles on the right

indicate the measurements.
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resonance estimation by using a range of formant frequen-

cies and F0 values. These were on the order of 660 Hz for

F1 and F2. Although they asserted that this magnitude was

acceptable because this is within the just noticeable differ-

ence (jnd) for formants, it can easily represent a 20% error

in F1, which can impair the analyses presented in many

studies.

Vallabha and Tuller (2002) confirmed Klatt’s result

with synthetic and natural speech: Errors in resonance mea-

surement increase with increasing F0. Various aspects of

real speech, such as the closeness of two formants, further

contribute to errors. They showed that the choice of LPC

order and other parameters can affect the accuracy of the

result, but in some cases, the best choice may depend on

prior knowledge of the speech or speakers being analyzed.

Burris et al. (2014) compared four LPC-based programs

(Praat, Wavesurfer, TF32, and CSL) commonly used to mea-

sure formants, applying them to measure synthetic and natural

vowels. They selected eight tokens of synthesized corner vow-

els /i/, /u/, /A/, /æ/, four with female F0s (F0 falling from 245

to 205 Hz) and four with male F0s (falling from 145 to

105 Hz), and measured formants at the midpoint with the

default settings in the four programs. For F1, they found that

all four programs produced values within 65% (¼25 Hz in F1,

75 Hz in F2) of reference values (F1¼ 500 Hz, F2¼ 1500 Hz)

for synthetic vowels on the male F0 but only one did so for F1

with the female F0. Although using a percentage seems reason-

able as a first approximation, it is the case that errors for F1 (as

a percentage) were larger than those for F2 in Shadle et al.
(2016, p. 718). Further, while the 25 Hz range is one that is rea-

sonable for measurements of central tendencies, it is half the

resolution possible in typical LPC analyses (see above) and,

thus, does not have the accuracy needed for measurements of

variability.

Our own study (Shadle et al., 2016) included some

newer methods as well as hand measurements by phoneti-

cians. One variant of the LPC method, weighted linear pre-

diction with attenuated main excitation (WLP-AME), was

explicitly designed to perform more accurately with high

F0s (Alku et al., 2013) with the help of electroglottograph

(EGG) signals. Another used an entirely different algorithm,

the reassigned spectrogram (RS; Fulop and Fitz, 2006;

Fulop, 2010). The hand measurements were made on nar-

rowband spectrograms, which show individual harmonics

(for the most part) rather than broad areas of intensity (as in

a wideband spectrogram). Judgments of resonance location,

therefore, relied on the phonetician’s separation of source

and filter characteristics. To our surprise, the phoneticians’

top-down knowledge that the harmonics will be sparsely

represented within a resonance did not improve the hand

measurements for F1 of differing F0s; it was still difficult to

ignore the location of the most intense harmonic. With the

new algorithmic measures, the WLP-AME did significantly

better than typical LPC analyses but gave unrealistic results

for some of the natural stimuli, possibly due to inaccurate

estimations of glottal closing instances without EGG sig-

nals. Manual estimation of the formants from the RS display

provided the most accurate results but was more time-

intensive than any LPC-based analysis.

The previous studies, therefore, are consistent with

Klatt’s original result: Automatic formant measurements are

inaccurate in predictable ways. Previous attempts at an auto-

matic method to avoid those pitfalls have fallen short. The

RS measurements are the most promising, but they require,

at present, manual measurement. Despite expectations that

later improvements would be developed, Klatt’s caveats still

apply.

B. Inadequacy of increasing sample size

Systematic errors may not be resolved by increasing

sample size. Vallabha and Tuller (2002) provided mathe-

matical details showing that some formant measurement

errors (by using LPC) are systematic and not random. The

F0 effects in their data are, as expected, larger as F0

increases. They point out that because formants may have

different signs to their errors, methods that combine for-

mants into new measures will, in some cases, have the errors

of both added together (Vallabha and Tuller, 2002, p. 146).

Their other reported sources of errors (incorrect filter order,

exclusive reliance upon root-solving, and the parabolic

interpolation method) are less likely to be corrected and

could have different effects on vowels with various

qualities.

For the F0 effect, Chen et al. (2019) found that even a

thousand tokens were not sufficient to avoid bias. Figure 3

summarizes part of the results in Chen et al. (2019). Each

datapoint (circle, triangle, or diamond symbol) represents a

simulation of central tendency error over 1000 synthesized

vowels with a fixed first resonance and 1000 randomly sam-

pled F0s from a realistic normal distribution. Age and gen-

der effects on resonances and F0 were approximated from

values in the literature. The central tendency error was

defined by subtracting the resonance value from the mean of

formant measurements over multiple samples: [(1/n)RF1(i)]
– fR1, where n (¼1000) is the total number of samples of the

FIG. 3. (Color online) A plot summarizing the original Fig. 2 in Chen et al.
(2019) with each symbol (circle, triangle, or diamond) representing the cen-

tral tendency error of a simulated age-gender-vowel group. The central ten-

dency error was calculated as the resonance minus the mean of the F1

measurements of 1000 synthesized vowels with fixed F1 and varying F0.
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same vowel, F1(i) is the LPC-measured F1 for the ith sam-

ple, and fR1 is the first resonance. This simulates an experi-

menter’s attempt to mitigate formant measurement errors by

increasing sample size. As shown in Fig. 3, even when aver-

aging 1000 samples, F1 of low vowels tended to be underes-

timated while F1 of high vowels were increasingly

overestimated as F0 increased. Although random errors will

average out as N increases, systematic errors will remain.

As mentioned in the Introduction, the simulatons by

Chen et al. (2019) implied that when speech is produced at a

high F0 (e.g., F0> 200 Hz), formant measurements are

more centralized than the resonances truly are. As can be

seen in Fig. 3, the F1 estimates for the high vowels /i/ and

/u/ are increasingly overestimated as F0 increases. Thus, if

vowel spaces for voices with high F0 are calculated, they

may be smaller than the resonances would show. One regis-

ter that includes non-centralized (hyperarticulated) vowels

and high F0 is “motherese” or infant-directed-talk (IDT;

e.g., Bernstein Ratner, 1984). The bias in the formant mea-

surements might, therefore, underestimate the amount of

hyperarticulation as the resonances of vowels may be more

extreme than the analysis indicates. Here, to replicate and

extend the simulatons by Chen et al. (2019), we synthesized

6000 corner vowels to demonstrate the effect of F0 on the

LPC-measured vowel space area (VSA). For each of the

three corner vowels /i/, /a/, and /u/, 2 sets of 1000 synthe-

sized vowels were created with fixed underlying resonances

(/i/: fR1 ¼ 350, fR2 ¼ 2400, fR3 ¼ 3200; /a/: fR1 ¼ 891, fR2

¼ 1400, fR3 ¼ 2900; /u/: fR1 ¼ 400, fR2 ¼ 1100, fR3 ¼3050)

and varying F0s. The F0s of the first set were randomly sam-

pled from a Gaussian distribution with mean¼ 143 Hz and

SD¼ 15 Hz; the F0s of the second set were likewise ran-

domly sampled from a Gaussian distribution with mean

F0¼ 234 Hz and SD¼ 15 Hz. Figure 4 plots the LPC-

measured F1 and F2, averaged across the 1000 tokens for

each of the corner vowels in low (green dashed lines) and

high F0 (red dotted lines) settings, superimposed on the

ground truth (blue solid lines). The LPC-measured VSA for

the high F0 setting (F0¼ 234 Hz) was underestimated by

15% as compared to the true VSA.

C. Inadequacy of methods improving existing
algorithms

Recent pitch-synchronous approaches for LPC (e.g.,

Alku et al., 2013; Gowda et al., 2020) were specifically

designed to overcome F0 bias but require very accurate glot-

tal pulse information, usually provided by an EGG signal

(Alku et al., 2013). However, requiring EGG to be recorded

along with the audio signal severely restricts the usefulness

of pitch-synchronous LPC.

Most formant tracking algorithms attempt to correct

formant selection error (i.e., formant jumps; e.g., wrongly

selecting F3 as F2) and usually result in smoother sets of

formant values but cannot correct for bias toward the nearest

strong harmonic; one can end up with very smooth formant

tracks at very wrong frequencies. The default tracking func-

tion in Praat implements the Viterbi algorithm (Viterbi,

1967) to select the optimal (smoother) paths through for-

mant candidates, but it does not change the LPC-estimated

formant value itself (i.e., F0 bias remains). By contrast, a

recent study (Dissen et al., 2019) presented more accurate

(than LPC) formant estimates predicted by two deep learn-

ing architectures, trained on human-annotated formants

from wideband spectrograms. Such an approach was not

limited to the parameters of the LPC, but it was limited by

the low frequency resolution (smearing) in the wideband

spectrogram [see Fig. 5(a) for an example of frequency

smearing] and human annotator disagreements (their

reported inter-annotator differences¼ 78 Hz for F1, and

100 Hz for F2, averaged across six phonetic categories).

Thus, its accuracy against the true underlying resonances is

unknown (cf. Shadle et al., 2016). Dissen et al. (2019)

reported that the accuracy degraded when the network was

applied to data that had not been used for training, indicating

a further limitation to interpreting their accuracy results.

As an alternative to LPC, the RS has been developed

over a period of many years, beginning in 1976 (Kodera

et al., 1976). It is a new version of the spectrogram that plots

instantaneous frequency and time in lieu of the standard

short-time Fourier transform (STFT). The computation lev-

erages the information in the complex phase of the STFT,

which is discarded in the conventional spectrogram, to com-

pute the instantaneous times and frequencies of, respec-

tively, the impulsive events (e.g., glottal cycles) and line

components (e.g., vocal tract resonances) in the signal

(Fulop and Fitz, 2006). Going a step further, it is also possi-

ble to prune the RS so that only impulses and/or components

remain (Fulop and Fitz, 2007). In recent years, the RS has

found a wide range of applications and is generating consid-

erable interest in the signal processing community (Kusano

et al., 2020; Averbuch, 2021), being applied to, among other

things, beamforming (Averbuch, 2021) and component

localization in underwater signals (Cho et al., 2019).

Nevertheless, it remains underutilized in speech science

despite being demonstrated as a superior technique for

FIG. 4. (Color online) The model using synthesized data in which the blue

lines indicate the ground truth of the vowel space area (VSA). The green

dashed line indicates the VSA resulting from LPC analysis of vowels syn-

thesized with a relatively low F0¼ 143 Hz. When the F0 is 234 Hz (red dot-

ted lines), the LPC-measured VSA was underestimated by 15% as

compared to the true VSA.
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resonance frequency estimation. The chief reason for this,

aside from the usual sociology and inertia of an established

and large scientific field, is likely because it has not been

automated, whereas LPC is easily computed from a variety

of platforms.

To demonstrate the RS method, Fig. 5 compares con-

ventional wideband and narrowband spectrograms and RS,

calculated on a real speech sample of a 9-year-old girl say-

ing “blue,” with a mean F0 around 280 Hz. The speech sam-

ple was taken from the CMU kids corpus (Eskenazi et al.,
1997). As expected, the wideband spectrogram [Fig. 5(a)] is

smeared in frequency; the narrowband spectrogram [Fig.

5(b)] shows the harmonic structure clearly up to approxi-

mately 3 kHz and harmonics mixed with noise above that

(increased harmonic spacing in the final 100 ms indicates a

rising pitch); and the RS [Fig. 5(c)] manifests clear and crisp

resonance components. Figure 6(a) zooms into the region of

the first resonance of the vowel /u/ in “blue” as indicted by

the red dashed boxes in Fig. 5. As shown in Fig. 6(a), the

LPC-measured F1 (white dotted line in the middle panel)

was attracted to the second harmonic (rainbow-colored band

just above the white dotted line) and the RS-measured F1

(maroon solid line in the right panel) was unaffected by the

harmonics. Figure 6(b) further demonstrates a comparison

of the same three types of spectrograms on a synthesized

vowel /ˆ/ with the true resonance set at 614 Hz and F0 set at

416 Hz; again, the LPC-measured F1 (middle panel) was

attracted to the second harmonic with an error of 282 Hz,

whereas the RS-measured F1 (right panel) was very accurate

(error¼ 33 Hz).

Currently, formant measurement by RS still involves

manual tracing, but Fulop and Shadle (2018) have shown

some initial success of algorithmically tracking the

maximum-energy time-frequency ridges on RS. However,

more work is needed to develop a fully automated method

of RS formant measurement and a system of acquiring

ground truth resonance measurements with which automated

methods can be tested. While synthetic signals have their

place, they embody simplified models of the acoustics in the

vocal tract (Zhang et al., 2020). The use of mechanical, 3D-

printed models bypasses such synthesis models and provides

an experimental system whereby articulatory variables can

be manipulated in a controlled way, the acoustic effects

(including resonance frequencies) can be measured to obtain

the ground truth, and both can be replicated, unlike with nat-

ural speech.

FIG. 5. (Color online) A comparison of (a) wideband, (b) narrowband, and (c) RSs of the same utterance (a 9-year-old girl saying the word “blue”) is shown.

The utterance was taken from ‘fabm2ad2_’ in the CMU kids corpus (Eskenazi et al., 1997). The red dashed boxes indicate the zoomed-in region in Fig. 6(a).

FIG. 6. (Color online) A comparison of three forms of acoustic analysis, showing (a) a child saying /u/, from the region marked with a box in Fig. 5, and (b)

synthesized /ˆ/.
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III. DISCUSSION AND CONCLUSION

Much about the articulation of speech can be revealed

by the acoustic signal, and current measurement techniques

can give us, and have given us, valuable insights. The limi-

tations that Klatt (1986) pointed out remain to this day

despite efforts to improve analysis techniques. Our own rep-

lication (Shadle et al., 2016) found that one spectral repre-

sentation, the RS, was an improvement and demonstrated

that measurements made on it were more accurate than

LPC, cepstral, or hand measures of narrowband spectro-

grams. However, use of RS is not viable for large projects

until the method is automated; that work is under way, but

success is not guaranteed.

None of the methods discussed so far account for possi-

ble zeroes in the spectrum. This is a serious deficit given

that zeroes are components of nasality (Fujimura, 1962) and

side channels (Stevens, 1998, p. 549), and they occur during

the open phases of the glottis (Ananthapadmanabha and

Fant, 1982; Plumpe et al., 1999). LPC analysis on speech

containing zeroes can lead to serious errors in locating poles

(e.g., Gutowski et al., 1978). Atal and Hanauer (1971, p.

638) discuss the issue at length, acknowledging that the all-

pole model intrinsic to LPC cannot model zeroes, and anti-

resonances do occur in many speech sounds. However, they

argue that “the location of a pole is considerably more

important perceptually than the location of a zero.” Cepstral

analysis (Schafer and Rabiner, 1970) allows for separating

source and filter components and, thus, retaining zeroes, but

finding the correct cut-off boundary between source and fil-

ter in the quefrency domain can sometimes be difficult. The

autoregressive moving average (ARMA) method was spe-

cifically designed to include poles and zeroes in the model.

However, it requires postulating the correct number of

zeroes; in practice, the resultant formant estimations may

not show improvement over LPC (Fulop, 2011, p. 125). It

may well be that we will have to solve the all-pole issues

before we can move on to the important but more challeng-

ing issue of spectral zeroes. RS does not have the “no-zero”

assumption that LPC does and may allow for a fuller treat-

ment of the entire spectrum. As is the case with LPC, the

accuracy of RS measurements of poles is unaffected by

the presence of zeroes unless the zero is extremely close to

the location of a pole.

The ease of measurements in current systems makes it

tempting to think that the issues relating to accuracy of reso-

nance measurement have been solved, and many authors

appear to take that (implicit) stance by reporting without

qualification such values as given by the programs.

Reporting formant values to three (or more) decimal points,

for example, reflects a serious lack of understanding of the

limits of the measurements even if the program’s algorithm

generates such numbers. Although standards at various jour-

nals may differ, it would make sense to round formant val-

ues to the nearest 10 Hz and note that any LPC-measured

formant differences smaller than 50 Hz may be the result of

errors. Work on babbling or toddlers’ speech is particularly

prone to error, given the high F0s of productions of young

children, but formants and even bandwidths are sometimes

reported (e.g., Robb et al., 1997).

For results that seem to test the limits of LPC analysis,

researchers may want to double check their results by per-

forming manual RS measurements. (The MATLAB code is

available online.1) This is a very accurate means of obtain-

ing resonance measures, as we have said, but it is time-

consuming. Therefore, only small samples can be expected

to be checked in this way.

In general, until a viable alternative to the automaticity

available in LPC appears, it is recommended that authors (1)

acknowledge the limitations of current analyses with regard

to influence of F0 and limits on frequency granularity, (2)

report analysis settings more fully, and (3) justify choices

made in those settings. A good example of explicit descrip-

tion, and the reasons for various selections, is found in

Hillenbrand et al. (1995).

A fourth and final check on reliability of formant mea-

surements can be done by a visualization test, a scatterplot

of F0s and estimated formant values of the same tokens,

superimposed by hypothetical harmonic lines (F0 range vs

integer multiples of F0 range) to check if the measurements

fall unduly on the harmonic lines (as in Fig. 2). If there is a

strong relationship with the harmonics, the formant values

must be treated with greater caution. If not, then there is less

likelihood of harmonic attraction. Our own work (Whalen

and Chen, 2019) used a more complex calculation for the

influence of F0, and we hope to provide an open source ver-

sion of that algorithm in the future. The visualization test, in

the meantime, is a reasonable alternative.

In the 36 years since Klatt (1986), speech science has

made many advances, but our methods of obtaining formant

measurements continue to be treated as resonance measure-

ments, which will obscure some results. With greater atten-

tion to parameter settings, more cautious interpretations, and

renewed attention to tool development, even more advances

can be envisioned, especially given the current emphasis on

large datasets.
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