Skip to main content
. 2022 Aug 12;12:13739. doi: 10.1038/s41598-022-18021-1

Table 3.

Comparison of available web-based tools for predicting linear B cell epitopes.

Tool Algorithm Training dataset Validation URL Reference
B cell epitopes Non-B cell epitopes
BepiBlast BLAST 62,730 X, I http://imath.med.ucm.es/bepiblast/
Bceps Support vector machine 555 555 (a) X, I, E http://imath.med.ucm.es/bceps/ 18
BepiPred 2.0a Random forest 3542 36,785 X, I, E https://services.healthtech.dtu.dk/service.php?BepiPred-2.0 20
LBtopeb Support vector machine 14,876 23,321 (b) X, I https://webs.iiitd.edu.in/raghava/lbtope/ 17
IBCE-EL Random tree with boosting 4440 5485 (b) X, I http://www.thegleelab.org/iBCE-EL/ 28
DLBEpitope Deep neural network 22,012 201,563 (b) X, I http://ccb1.bmi.ac.cn:81/dlbepitope/index.php? 15
ILBE Random Forest 4440 5485 (b) X, I http://kurata14.bio.kyutech.ac.jp/iLBE/ 41
ABCPred Neural network 700 700 (a) X, I https://webs.iiitd.edu.in/raghava/abcpred/ 14
BCPREDS Support vector machine 701 701 (a) X, I, E http://ailab.ist.psu.edu/bcpred/ 32
SVMtrip Support vector machine 4925 4925 (b) X http://sysbio.unl.edu/SVMTriP/prediction.php 16

For each tool, table reports the underlying algorithm; the number of B and non-B cell epitopes for model building; the method used for validation (X: cross-validation; I: independent dataset; E: case example); the URL of the tool and the reference. The letter between parenthesis indicates the type of non-B cell epitopes in the training dataset: a, random peptide sequences; b, peptide sequences with reported negative B cell epitope assays. aFor BepiPred, B and non-B cell epitope figures correspond to antigen residues that in the tertiary structure of antibody-antigen complexes contact the antibody or not, respectively. bData for default model in LBtope.