
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13746  | https://doi.org/10.1038/s41598-022-17333-6

www.nature.com/scientificreports

Oral sorafenib‑loaded 
microemulsion for breast cancer: 
evidences from the in‑vitro 
evaluations and pharmacokinetic 
studies
Nishtha Chaurawal1, Charu Misra1, Harshita Abul Barkat2, Reena Jatyan3, Deepak Chitkara3, 
Md. Abul Barkat2, Teenu Sharma4,5, Bhupinder Singh4 & Kaisar Raza1*

Sorafenib tosylate (SFB) is a multikinase inhibitor that inhibits tumour growth and proliferation for 
the management of breast cancer but is also associated with issues like toxicity and drug resistance. 
Also, being a biopharmaceutical class II (BCS II) drug, its oral bioavailability is the other challenge. 
Henceforth, this report intended to encapsulate SFB into a biocompatible carrier with biodegradable 
components, i.e., phospholipid. The microemulsion of the SFB was prepared and characterized for 
the surface charge, morphology, micromeritics and drug release studies. The cell viability assay was 
performed on 4T1 cell lines and inferred that the IC50 value of sorafenib-loaded microemulsion (SFB-
loaded ME) was enhanced compared to the naïve SFB at the concentrations of about 0.75 µM. More 
drug was available for the pharmacological response, as the protein binding was notably decreased, 
and the drug from the developed carriers was released in a controlled manner. Furthermore, the 
pharmacokinetic studies established that the developed nanocarrier was suitable for the oral 
administration of a drug by substantially enhancing the bioavailability of the drug to that of the 
free SFB. The results bring forth the preliminary evidence for the future scope of SFB as a successful 
therapeutic entity in its nano-form for effective and safer cancer chemotherapy via the oral route.

According to WHO, 9.6 million people died worldwide in the last 10 years because of cancer1. There are various 
types of cancer, like liver cancer, skin cancer, prostate cancer, colon cancer, leukaemia. The most common cancer 
is breast cancer, which is a major cause of worldwide deaths due to cancer2. The etiology behind the incidence of 
breast cancer are hormonal factors, environmental factors and lifestyle changes. Breast cancer is mainly associ-
ated with the complex genetic behaviour of the person3.

Protein kinase plays a vital role in regulating cellular functions like metabolism, differentiation, signal trans-
duction, survival, and programmed cell death4. Sorafenib tosylate (SFB), a multikinase inhibitor drug, was devel-
oped by the Bayer and Onyx companies as BAY 43-9006 in 2001. Its patent was issued in 2004 from the United 
States Patent and Trademark Office (USPTO). SFB possesses anti-proliferative and anti-angiogenic effects5. The 
structure of SFB is shown in Fig. 1. SFB was clinically approved for treating cancer in December 2006 by US-FDA 
and in August 2007 by the central drug standard control organisation (CDSCO)6. It is used to treat hepatocellular 
carcinoma, renal carcinoma, breast cancer, thyroid cancer, and prostate cancer. The mode of action of SFB is the 
serine/threonine kinases c-Raf (Raf-1) inhibition and B-Raf. SFB also inhibits the tyrosine kinase receptor Flt-3 
and RET, involved in the pathogenesis of breast cancer7. Various clinical trials to identify its therapeutic efficacy 
on breast cancer are in different phases8. Despite its high therapeutic effectiveness in cancer management, it 
also possesses various side effects on oral administration such as diarrhoea (30%), fatigue (18%), hypertension 
(8–16%), pancreatitis (< 1%). SFB is also linked with dermatological side effects such as seborrheic dermatitis, 
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hand-foot skin reaction, alopecia, rash, stomatitis, and erythema. The dermatological side effects are the most 
commonly reported side effects of SFB. It also possesses pharmacokinetic related challenges like less oral bio-
availability (< 30%), reduced half-life (25–48 h), a plasma level of 7 days and extensive first-pass metabolism. 
It also exhibits poor water solubility, a BCS class II drug9. All these challenges are associated with the SFB oral 
administration provide a scope for the researchers’ to focus on this aspect. In recent past, attempts have been 
made to develop various nanoformulations of SFB such as lipid polymer hybrid nanoparticles10, liposomes11, 
self-emulsifying drug delivery systems12, cyclodextrin-modified silicon nanoparticles13, nanogels14, diatomite 
nanoparticles15, nano colloidal carrier16, and pullulan nanoparticles17. Most of the developed nanocarriers are 
non-oral, and very few studies on the oral delivery of SFB employing nanocarriers are reported.

Microemulsions (ME) are biocompatible and thermodynamically stable drug delivery cargoes consisting of 
aqueous and organic phases stabilized by emulsifiers or surfactants. MEs have proven their efficiency in drug 
delivery through promising outcomes in drug loading enhancement, controlled drug release, increased scal-
ability, and reduced toxicity18. Microemulsions are not nanoemulsions, though their droplet size is in the range 
of 10–300 nm, the difference lies in the thermodynamic stability, methodology and composition19–21. Previously, 
several research groups have explored the efficacy of ME based formulations in the oral delivery of anticancer 
drugs22–24. Inclusion of phospholipids are known to improve the safety and efficacy of the therapeutic moiety, 
when incorporated in the nanocarriers by one or other means25.

Considering the challenges in oral delivery of SFB, a ME based formulation was optimized and developed 
employing phospholipid as one of the major components. Pre-clinical studies including in-vitro and in-vivo 
experiments were performed to evaluate the therapeutic efficacy of SFB-loaded ME. The developed formulation 
is novel as the ME of SFB is not reported till date.

Materials and methods
Chemicals and instruments.  Sorafenib tosylate was provided as a generous gift from the M/s Cipla Pvt. 
Ltd., Mumbai, India. Phospholipon 90G was also a gift sample from Lipoid Gembh, Germany via Chemet, New 
Delhi. Soranib tablets were purchased from local pharmacy store, manufactured by M/s Cipla Ltd., Mumbai, 
India. Tween 80, Tween 60, Tween 40, Tween 20, methanol, and dialysis membrane was purchased by M/s Fisher 
Scientific [Pvt] Ltd, Mumbai, India, M/s SDFCL Chem limited, Mumbai, India, and M/s Himedia laboratories 
[Pvt] Ltd, Mumbai, India, respectively. Isopropyl myristate was purchased from M/s Kempaphore Pvt. Ltd., 
Mumbai, India. The 4T1 cell lines were provided as a gift sample from Dr. Deepak Chitkara, Assistant Profes-
sor, BITS, Pilani, India. Coumarin-6, 4′,6-diamidino-2-phenylindole (DAPI) and Fluorescein IsoThioCyanate 
(FITC) were purchased from M/s TCI Chemicals Pvt. Ltd., Chennai, M/s Sigma Aldrich, USA and M/s SRL 
Research Laboratories Pvt. Ltd., Chennai respectively. The Dulbecco’s modified eagle medium and Fetal bovine 
serum were purchased from M/s Thermo Fisher Scientific, USA. The MTT (3-(4,5-diemthylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide) (Catalogue no. 298931) was purchased by M/s Sigma Aldrich, USA. The phosphate 
buffer saline and dimethyl sulfoxide were purchased from M/s Hi-Media Laboratories, India. The solvents ace-
tonitrile, n-octanol, methanol and water used in the study were of HPLC grade and purchased from M/s Spec-
trochem [Pvt] Ltd, Mumbai, India. All the material reagents and chemicals utilized in this research were pure 
and of analytical grade and were used as such.

Instrumentation.  The types of equipment used in this report are ultra-high performance liquid chroma-
tography (UHPLC, Agilent 1290 Infinity LC System, USA) for the drug quantification at various preformulation 
stages. The particle size, size distribution, polydispersity index (PDI) and zeta potential of the SFB-loaded ME 
and blank ME were carried out through Malvern Zetasizer (M/s Malvern, Worcestershire, UK). The shape and 
surface morphology of the ME were observed using transmission electron microscopy (TEM, M/s FEI Tecnai, 
Europe). The Fourier-transform infrared spectroscopy (FT-IR, M/s Brukers Alpha II, USA) was performed for 
the drug’s structural analysis and physical compatibility of tween 80, IPM and PL 90G over a wavenumber of 
4000–400 cm−1. The ELISA plate reader (Biotek Epoch Microplate Reader) was used for the determination of 
percent cell viability.

Physicochemical characterization of SFB.  The SFB was examined for partition coefficient (log P) by 
shake flask method using pre-saturated n-octanol and water mixture26. Melting point (M.P) was determined 
using M-560 BUCHI Machine, Switzerland, as per the standard protocol.

Figure 1.   Structure of SFB.
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Construction of pseudo ternary phase diagram.  On the basis of solubility of SFB in surfactant and 
Isopropyl myristate (IPM), IPM was selected as the oil phase27. Tween 80 (T80), Tween 60 (T60), Tween 40 (T40) 
and Tween 20 (T20) were employed as the surfactants, whereas phospholipid 90G (PL 90G) and ethanol were 
utilized as the cosurfactants. The distilled water was used as the aqueous phase to design phase diagrams. The 
eight different groups for the phase diagram were formed considering oil, surfactants and cosurfactants. As men-
tioned in Table 1, 2.75: 1 and 1: 1 were selected as the ratio of surfactant and cosurfactant (Smix ratios) for each 
surfactant. The ratio of cosurfactants i.e., PL 90G and ethanol was maintained at 1: 10 throughout the experi-
ment to construct the pseudo ternary phase diagram. The ratio of Smix and aqueous phase was varied from 1: 9–9: 
1, which were titrated with oil until they reached the turbidity. Likewise, the ratio of Smix and oil was varied in 
between 1:9 to 9:1 followed by titration with an aqueous phase until the turbidity appeared. The pseudo ternary 
phase diagram was constructed for obtaining the ME physical state by marking one axis as oil phase, the other as 
aqueous phase and the third one as a fixed Smix ratio. Evaluating the diagram through visual inspection, the area 
which corresponds to the formation of clear and transparent formulation was identified as the ME region in the 
pseudo ternary phase diagram19.

Selection of formulation based on phase diagram.  After constructing the phase diagram, the mini-
mum quantity of surfactant to a higher fixed value was chosen to prepare different formulations. The selected 
ratio was supposed to represent the whole pseudo ternary phase diagram.

Preparation of microemulsion.  The ME was developed based on the selected ME areas in the ternary 
phase diagram at different ratios of components. All MEs were prepared to employ the emulsification method. 
Firstly, the PL 90G was mixed with IPM at a temperature of 50–60 °C with continuous stirring (700 rpm for 
10 min). Then, the surfactant was poured to the mixture while reducing the system’s temperature. After that, SFB 
was incorporated into the system with gentle stirring, and the required amount of aqueous phase was poured 
dropwise in the above ME with continuous stirring. A clear and transparent ME, having yellowish colour, was 
obtained upon the addition of ethanol. A pictorial representation of the preparation method has been described 
in Fig. 2.

Drug content.  To determine the drug content in the prepared SF-loaded ME, SFB was excerpted in metha-
nol and quantified using UHPLC. Blank ME without drug was used as the blank formulation.

Percent drug loading (DL) and drug entrapment (EE) studies.  EE and DL, the formulation studies 
were performed using the dialysis method. The SFB-loaded ME (eq. to 1 mg of SFB) was weighed and packed 
carefully in dialysis bag. The dialysis bag was then placed on magnetic stirrer for continuous stirring in 100 mL 
beaker containing 50 mL of methanol for 2 h. After 2 h, the 1mL sample was withdrawn from the beaker, and the 
sample was quantified for SFB using UHPLC28. Further, the percent drug entrapment and percent drug loading 
were calculated using the following formula29.

The drug amounts in the dialysis bags were also quantified to confirm the results.

In‑vitro drug release and release kinetics.  Drug release and drug kinetic studies were performed by 
placing free SFB (1 mg), SFB tablet (marketed formulation; batch no. GJ10330) (equivalent to 1 mg of free SFB) 
and SFB-loaded ME (equivalent to 1 mg of free SFB) in dialysis bags. In brief, the SFB and SFB tablet suspension 
and the ME were packed in separate dialysis bags. Each bag was suspended separately in 50 mL of 0.1 N HCl (pH 
1.2) containing 1% Tween 80 for the first two hours with continuous stirring and then dipped individually into 

%Entrapment Efficiency =

Amount of drug
(

mg
)

− Amount of unentraped drug (mg)

Amount of drug (mg)
∗ 100

%Drug loading =

(

theoretical drug
(

mg
)

− amount of unentraped drug
(

mg
))

amount of carrier used (mg)
∗ 100

Table 1.   The oil, surfactant, and cosurfactant group in various predetermined combinations.

Group Oil Surfactant The ratio of surfactant: cosurfactant (Smix)

A IPM T20 1:1

B IPM T20 2.7:1

C IPM T40 1:1

D IPM T40 2.7:1

E IPM T60 1:1

F IPM T60 2.7:1

G IPM T80 1:1

H IPM T80 2.7:1
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the 50 mL of phosphate buffer saline (PBS) 7.4 containing 1% Tween 80 for a total of 24 h30. The 2 mL samples 
were withdrawn from each beaker at regular time intervals and adequately maintained the sink conditions. Then 
cumulative drug release was determined using the UHPLC31. The data of percentage drug release were fitted on 
all the release models such as first-order, zero-order, and Higuchi model with their details enlisted in Table 232.

Protein binding studies.  The PBS of pH 7.4 was prepared and mixed with human serum albumin (HSA), 
4% w/v. The pure drug (SFB, 2.5 mg) was dispersed in PBS 7.4 (1 mL) and SFB-loaded ME containing an equal 
amount of drug were packed in dialysis membrane bags. To the previously prepared HSA dispersion (4% w/v), 
the dialysis bags containing different samples were immersed for 12 h with constant stirring. The samples were 
withdrawn after 12  h followed by centrifugation at 14,000  rpm (21.036×g) at 4  °C. After centrifugation, the 
supernatants were removed, mixed with an equal amount of acetonitrile (ACN) and filtered through a 0.22 µm 
filter. The samples were then analysed through UHPLC at the respective wavelength for the quantification of 
free SFB33,34.

In‑vitro cytotoxicity assay.  The cytotoxic effects of the developed nano-formulation (SFB-loaded ME) 
were evaluated against 4T1 breast cancer cells and were compared to that of the blank formulation and free SFB. 
The method was performed by the relevant guidelines and regulations. 4T1 cells (mouse mammary carcinoma) 

Figure 2.   Schematic representation for the preparation of SFB-loaded microemulsion.

Table 2.   Details of various drug release models. where, Ct = amount of drug dissolved in time t, C0 = initial 
amount of drug in the solution, K0 = zero order release constant, Kt = first order release constant, Cs = drug 
solubility in the matrix media, D = diffusivity of drug molecules in the matrix, Mt/M∞ = fraction of drug 
released at time t, Kp = release rate constant, n = release exponent.

Release model Parameter on x-axis Parameter on y-axis Equation

Zero-order Time % Drug release Ct = C0 + K0t

First-order Time Log % drug release Log Ct = log C0 + Ktt/2.303

Higuchi The square root of time % Drug release Ct = A√D (2C0 – Cs) Cst
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were cultured in culture plates of 96 wells using DMEM culture media. Different concentrations of SFB, blank 
formulation, and SFB-loaded ME (0.25–50 µM) were prepared separately using the same culture media. The 
prepared samples were transferred into the 96-well culture plates containing 4T1 cells followed by incubation 
of 24 h at 37 °C. Further, 10 μL of MTT solution was added, and the 4T1 cell culture plates were re-incubated 
for an additional 4  h. The purple-coloured formazan crystals were dissolved in 200 μL of DMSO. Using an 
ELISA plate reader, the samples were analysed for optical density at λmax of 570 nm. Percentage cell viability 
was determined in comparison to untreated cells. The results obtained from optical density values were utilised 
to calculate the percentage cell viability. The samples were also analysed for microscopic observation using an 
optical microscope35.

In‑vitro cellular uptake studies.  The cellular uptake of the developed SFB-loaded ME (ME16) was evalu-
ated using a qualitative and quantitative manner using fluorescence microscopy and flowcytometry, respectively. 
Briefly, the breast cancer cells (4T1 cells) were seeded in a six-well plate with a density of 1 × 106 cells/well and 
incubated at 37 °C overnight. The next day, coumarin-6 loaded ME formulation (Coumarin-6-ME16) was added 
to each well (n = 03), and cells were further incubated for another 6 h at 37 °C. Herein, the free coumarin-6 was 
added to the control group. After the incubation time, PBS was used to wash the cells at least three times, then 
fixed the cells with 4% paraformaldehyde solution for 15 min, and lastly, counterstained using DAPI. Further, 
cells were directly observed under a fluorescence microscope (Vert. A1 ZEISS Axiocam, Germany), and the 
images were acquired at excitation and emission of 488 nm and 510 nm, respectively. On the other hand, the 
cells were trypsinised, washed with PBS, and analysed using flowcytometry (Cytoflex, Beckman Coulter, USA) 
to quantify the cellular uptake of the coumarin-6-ME16. The flowcytometry data were processed and analysed 
using CytExpert software36,37.

In‑vivo pharmacokinetic studies.  The pharmacokinetics were implemented on the Unisex Wistar rats 
(200–300 g; 4–6 weeks old). The Institutional Animal Ethics Committee (Panjab University, Chandigarh, India 
(PU/IAEC/S/16/18))  approved all the animal protocols. All experiments were performed under the relevant 
guidelines and regulations. The study in complied with Animal Research: Reporting of In-Vivo Experiments 
(ARRIVE) guidelines. The rats were separated into two different groups. The group I received free SFB sus-
pended in 0.2% carboxymethyl cellulose, and group II administered the SFB-loaded ME via oral gavage. The 
human dose of SFB is 200 mg/70 kg which was applied to calculate the dose of SFB for each rat peroral route38. 
The blood samples (200 µL) were withdrawn at 0.25, 0.5, 1, 2, 4, 8, 12, 24 and 36 h time intervals from the retro-
orbital plexus of rats. The plasma proteins were precipitated from the blood samples taken in heparin contain-
ing micro-centrifuge using micro-centrifugation at 12,000 rpm (10,866*g) for 10 min. Henceforth, the UHPLC 
method was incorporated to estimate SFB in the extracted plasma of rats at a wavelength of 265 nm with solvents 
(ACN and water; 65:35 v/v) and a flow rate of 0.8 mL/min using a C18 column39. Then, all the pharmacokinetic 
parameters such as Volume of distribution (V/F), maximum plasma concentration (Cmax), absorption rate con-
stant (Ka), time at the maximum concentration (Tmax), the area under the curve (AUC), half-life (t1/2) and elimi-
nation rate constant (K) were determined as per 1CBM peroral model using PK solver software40.

Stability studies.  The stability studies of the SFB-loaded ME were performed as per the guidelines of the 
International Council on Harmonization (ICH). To estimate the stability of the formulation, samples were stored 
under different storage conditions at 4 ± 2 °C, 30 ± 2 °C, 45 ± 2 °C for at least 6 months. The particle size, zeta 
potential and drug loading were observed at 0, 3rd and 6th months of interval41.

Statistical analysis.  Statistical analysis of the data was performed using t-test and analysis of variance 
(ANOVA) software. All the studies were performed at least three times (n = 3), and the data is shown as the 
means ± SD.

Results and discussion
Spectroscopic analysis.  Fourier transform infrared spectroscopy (FT‑IR).  The FT-IR spectra of SFB in 
Fig. 3A showed amide bond formation indicated peak at 2920.78  cm−1 ascribed presence of amine group in 
SFB. Various characteristic peaks were observed, in the range 1634.51–1425.93 cm−1. FT-IR spectra of blank ME 
(Fig. 3B), SFB-loaded ME (Fig. 3C), and excipients like Tween 80 (Fig. 3D) and PL (Fig. 3E), IPM (Fig. 3F) were 
also observed. The broadband centred at 3320.90 cm−1 was assigned to –OH stretching in PL. The absorption 
at 2978.18 cm−1 and 2922.60 cm−1 were assigned to –CH stretching of methylene group in blank ME. This ab-
sorption rate was decreased from 2922.52 to 2854.67 cm−1, significantly indicating the formation of SFB-loaded 
ME. There were broad spectra observed at 1106.00 cm−1 of the C–O stretch. Thus, it confirmed the formation of 
SFB-loaded ME42.

Ultra‑high performance liquid chromatography (UHPLC).  The chromatogram and calibration curve of SFB 
using UHPLC has been demonstrated using ACN and water (65:35% v/v) as mobile phase under isocratic con-
ditions with a flow rate of 0.8 mL/min and injection volume of 10 µL39. The Calibration curve and chromatogram 
are shown in Fig. 4a,b. It was observed that the retention time of SFB was determined to be 2.37 min, and r2 value 
was found to be 0.999.
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Physicochemical characterization of SFB.  The melting point of the drug was determined to be 204.5 °C, indicat-
ing the stability of SFB at higher temperatures, which was favourable for ME preparation. The practical log P 
value was estimated at 4.18, suggesting that the drug was highly lipophilic and suitable for oral delivery.

Screening of components of the microemulsion.  To improve the aqueous solubility challenge of SFB, the IPM was 
selected as oil for ME preparation. In terms of toxicity, the nonionic surfactants show less toxicity in comparison 
to the ionic surfactants and have low critical micellar concentrations. SFB also showed solubility in these non-
ionic surfactants. Therefore, four non-ionic surfactants were selected for the optimisation of ME43.

PL 90G and ethanol was selected as a cosurfactant for the ME in which PL 90G exhibited high biocompat-
ibility and safety profile along with high solubility of SFB in ethanol. The selected ratio of PL 90G and ethanol 
was 1:10 to construct the phase diagram due to its maximum solubility with the drug and cost-effective nature. 
Solubility studies were performed in predetermined Smix ratios i.e., 1:1, 2.75:1, 5:1, 10:1 and 20:1. Based on the 
outcomes of solubility studies, the Smix ratio was chosen for the effective formulation development. The maximum 
solubility was manifested in the ratio 2.7:1 followed by 1:1 compared to other Smix ratios.

Construction of pseudo‑ternary phase diagram.  The phase behaviour of a mixture and its components relation 
can be easily identified by forming a phase diagram. The pseudo ternary phase diagrams of o/w ME of all the 
eight groups comprising IPM, ethanol, PL 90G, Tween 20/40/60/80 and distilled water are shown in Figs. 5 and 
6. The ratio of surfactant and cosurfactant along with the oil played a significant role in enhancing the phase 
properties of the ME region. It can be observed in Fig. 5A,B that on increasing the concentration of surfactant 
(2.7:1), the ME area increased. A similar observation was also seen in other ternary phase diagrams. Also, the ME 

Figure 3.   FTIR spectra of (a) Free SFB (b) Blank ME (c) SFB-loaded ME (d) Tween 80 (e) PL 90G (f) IPM.

Figure 4.   (a) Chromatogram of SFB. (b) Calibration curve of SFB.
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area was considerably smaller when T20, T40, and T60 were used as surfactants instead of T80, which offered a 
better emulsification region (32.45%). Hence, there were no miscibility issues of drug with the surfactants. The 
maximum emulsification property of T80 imposed its selection as the surfactant. Additionally, the loading of 
SFB was also assumed to be enhanced by the use of T80 as emulsifier. The stability of MEs was also enhanced by 
the presence of co-surfactant, which reduced the interfacial tension. The phospholipid 90G along with ethanol 
showed biocompatibility and reduced the phospholipid films rigidity needed for the ME globule formation44.

Selection of formulation based on phase diagram.  Several MEs can be prepared from the ME region of a single-
phase diagram. Due to the different surfactants used for the phase diagram construction, the number of formu-
lations was also varied. From all eight pseudo-ternary phase diagrams, formulations were selected from each 
phase diagram. The composition of all of the selected sixteen ME formulations is given in Table 3.

Drug content.  All prepared formulations had a drug content of 99.42% to 99.83%, with an average value of 
99.62% (Table 4). As the drug content was observed to be so high, it thereby confirmed minimal drug loss during 
the preparation of MEs and assured the authenticity of the preparation method.

Micromeritics and zeta potential.  The zeta potential of several formulations was near to zero (Table 4), which 
attributed to the non-ionic nature of the surfactants used and imparted better stability to the MEs against any 
ionic reactions during the long-term storage. Out of all the formulations, the smallest globule size of the ME was 
of formulation ME16, i.e., 58.8 ± 0.02 nm (Fig. 7) with a zeta potential of 0.05 ± 0.03 (Table 4). The PDI of the 
ME16 formulation (0.19 ± 0.14) also showed the homogeneity of the ME system. Hence, these results ensured 
that ME16 was the optimized formulation and selected for further evaluation studies.

Percent drug loading (DL) and entrapment efficacy (EE) of ME.  The percentage DL and EE of the selected SFB-
loaded ME (ME16) was observed to be 21.07 ± 2.16% and 72.64 ± 0.84%, respectively. The value of EE depicted 
the higher amount of entrapment of SFB in ME with the help of an emulsifying agent (Tween 80). The drug-
carrying capacity of the nano-system was quite favourable and assured high loading of SFB for better delivery 
to the target site.

Figure 5.   Pseudo-ternary phase diagrams; IPM as oil and T20 as a surfactant (A and B), T40 as a surfactant (C 
and D) at two Smix ratios (1:1 and 2.7:1).
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Surface morphology.  The photomicrographs (Fig. 8) of TEM exhibited a spherical shape of the ME16 globules 
with homogeneity in size. The TEM images showed the smooth surface of the developed ME deprived of any 
agglomeration45.

Figure 6.   Pseudo-ternary phase diagrams; IPM as oil and T60 as a surfactant (A and B), T80 as a surfactant (C 
and D) at two Smix ratios (1:1 and 2.7:1).

Table 3.   Composition of selected microemulsions.

Formulation code Oil phase (%) Smix ratio Smix (%)

ME1 IPM (6%) 1:1 T20: (PL90G: ethanol) (88%)

ME2 IPM (10%) 1:1 T20: (PL90G: ethanol) (70%)

ME3 IPM (7%) 2.7:1 T20: (PL90G: ethanol) (70%)

ME4 IPM (2%) 2.7:1 T20: (PL90G: ethanol) (50%)

ME5 IPM (6%) 1:1 T40: (PL90G: ethanol) (40%)

ME6 IPM (3%) 1:1 T40: (PL90G: ethanol) (48%)

ME7 IPM (4%) 2.7:1 T40: (PL90G: ethanol) (46%)

ME8 IPM (10%) 2.7:1 T40: (PL90G: ethanol) (60%)

ME9 IPM (4%) 1:1 T60: (PL90G: ethanol) (56%)

ME10 IPM (8%) 1:1 T60: (PL90G: ethanol) (47%)

ME11 IPM (18%) 2.7:1 T60: (PL90G: ethanol) (66%)

ME12 IPM (4%) 2.7:1 T60: (PL90G: ethanol) (50%)

ME13 IPM (3%) 1:1 T80: (PL90G: ethanol) (74%)

ME14 IPM (2%) 1:1 T80: (PL90G: ethanol) (83%)

ME15 IPM (9%) 2.7:1 T80: (PL90G: ethanol) (69%)

ME16 IPM (9%) 2.7:1 T80: (PL90G: ethanol) (45%)
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Table 4.   Characterization studies of microemulsion formulations.

Formulation code Globule size (nm) PDI Zeta potential (mV) Drug content (%)

ME1 1081.3 ± 0.4 0.69 ± 0.5 − 3.15 ± 0.6 99.49

ME2 862.1 ± 4.2 0.20 ± 0.03 − 0.22 ± 0.05 99.62

ME3 137.0 ± 3.8 0.32 ± 0.14 − 0.42 ± 0.21 99.68

ME4 513.5 ± 7.3 0.92 ± 0.11 0.31 ± 0.43 99.77

ME5 90.0 ± 6.6 0.23 ± 0.02 0.021 ± 0.15 99.53

ME6 122.6 ± 2.7 0.21 ± 0.03 − 0.36 ± 0.10 99.59

ME7 81.30 ± 0.49 0.21 ± 0.32 0.15 ± 0.07 99.67

ME8 79.09 ± 0.03 0.20 ± 0.05 0.16 ± 0.05 99.81

ME9 648.7 ± 1.02 0.57 ± 0.02 − 4.03 ± 0.02 99.46

ME10 512.8 ± 7.3 0.53 ± 0.51 − 1.67 ± 0.03 99.75

ME11 244.3 ± 0.5 0.65 ± 0.61 − 3.78 ± 0.12 99.62

ME12 83.2 ± 1.4 0.26 ± 0.14 − 2.11 ± 0.23 99.51

ME13 266.0 ± 2.5 0.65 ± 0.06 − 1.82 ± 0.04 99.42

ME14 319.3 ± 4.7 0.53 ± 0.05 − 2.57 ± 0.41 99.56

ME15 75.6 ± 0.2 0.20 ± 0.03 0.13 ± 0.11 99.71

ME16 58.8 ± 0.02 0.19 ± 0.14 0.05 ± 0.03 99.83

Figure 7.   (a) Particle size of ME16 and (b) Zeta potential of ME16.

Figure 8.   TEM image of SFB-loaded ME (ME16).
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In‑vitro drug release studies and release kinetics.  The drug release studies of free SFB, ME16 and SFB-marketed 
formulation (Soranib tablet, Batch no. GJ10330) was carried out in 0.1 N HCl for 2 h, followed by pH 6.8 for the 
further time period46. The graph (Fig. 9) depicted that the drug release was pH-dependent, and ME16 exhib-
ited a sustained release pattern. Free SFB showed more than 90% of drug release within 2 h in simulated acidic 
medium (0.1 N HCl). The release of SFB from the marketed product across the dialysis membrane was quite 
less as shown in the Fig. 9. On the other hand, the drug dissolution profile of the marketed product (Soranib 
tablet, Batch no. GJ10330) using the USP II apparatus following a USFDA approved protocol47 was well within 
the acceptable range (Supplementary data, Fig. S1). The reason for slow release by the marketed product might 
be the presence of dialysis membrane. The developed microemulsion system was able to sustain the drug release 
over 24 h, however, the drug dissolution of marketed product released the drug in 1 h. The results unequivocally 
vouch the sustained and controlled drug release behavior of the developed system. On fitting the values of % 
drug release versus time into the various release kinetic models, it was inferred that ME16 followed the Higuchi 
kinetic model. The r2 values of multiple models are depicted in Table 548.

Protein binding studies.  Protein binding studies in the equivalent doses of 10 mg/kg for the free SFB at a specific 
1 mg/mL concentration is > 90%49. The study revealed that after loading onto the ME, the protein binding was 
substantially decreased (p < 0.05), as shown in Fig. 10. The protein binding of free SFB was more than the ME16. 
It stated that the developed formulation could provide better affinity of SFB to the target site as compared to the 
free SFB.

In‑vitro cytotoxicity assay.  The cytotoxicity of SFB, blank ME, and SFB-loaded ME against 4T1 breast cancer 
cells were evaluated through microscopic observations and IC50 value determination. The microscopic images of 
the treated 4T1 cells were captured at 1 μM concentration, considering DMSO as control (Fig. 11a)50. Through 
these microscopic observations, blank ME exhibited no cytotoxic effect on 4T1 breast cancer cells. A significant 
decrease in cell viability was observed in the case of SFB-loaded ME than free SFB at 1 µM concentration. The 
cytotoxic effects of different samples are also represented as % cell viability versus concentration plot in the 

Figure 9.   Graph of drug release study of free SFB, SFB-loaded ME (ME16) and SFB-marketed Formulation.

Table 5.   Parameters of various release kinetic models.

Release kinetic models Formulations

Parameters

Slope Intercept r2

Zero order

Pure drug 0.0296 18.769 0.4996

SFB-loaded ME 0.055 20.834 0.662

SFB-marketed formulation 0.0124 4.9346 0.4992

First order

Pure drug 0.007 1.067 0.256

SFB-loaded ME 0.0009 1.07 0.334

SFB-marketed formulation 0.0007 0.5248 0.4308

Higuchi

Pure drug 0.565 3.004 0.754

SFB-loaded ME 0.379 1.361 0.889

SFB-marketed formulation 1.3215 0.8616 0.7364
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Fig. 11b). Though at lower concentration, the efficacy of both free SFB and SFB-loaded ME are comparable, 
but at the concentration above 1 µM, the difference is conspicuous (p < 0.05). The IC50 values of free SFB and 
SFB-loaded ME were calculated to be 3.47 ± 0.21 and 2.15 ± 0.11 µM, respectively. These outcomes confirmed 
the therapeutic efficacy of the drug loaded ME. Considering the IC50 values, the lethal dose 50 (LD50) values of 
free SFB and SFB-loaded ME were calculated to be 8.99 and 7.52 µM, respectively. The large therapeutic window 
provided by SFB-loaded ME supported the safety profile of the formulation. The findings are of greater signifi-
cance as the dose of the drug for human is 200 mg and the plasma drug concentration for 100% bioavailability 
(theoretically) comes out to be 350 ng/mL. It implies that 0.136% of the centrally available drug concentration 
has the potential to kill the cancer cells, when loaded in the developed ME.

In‑vitro cellular uptake study.  The cellular uptake study was performed and analysed qualitatively and quan-
titatively on 4T1 breast cancer cells. For the qualitative determination of cellular uptake, coumarin-6-ME16 
and free coumarin was observed using a fluorescence microscope (Zeiss, Germany). As shown in Fig. 12, the 
results revealed higher cellular internalization in case of coumarin-6-ME16 in overlay images. On the other 
hand, free coumarin did not exhibit significant cellular uptake through microscopic observation. To further con-
firm the qualitative results, the uptake was quantified using flowcytometry (Cytoflex, Beckman Coulter, USA). 
The amount of coumarin-6 internalised by the 4T1 cells was assumed to impart the fluorescence intensity. The 
findings obtained from CytExpert software showed that 9.79% of free coumarin was internalized by the cells, 
whereas the uptake was 88.96% in the case of coumarin-6-ME16. Qualitative and quantitative analysis con-
firmed higher 4T1 cell uptake in the case of coumarin-6-ME16, which also supported the cytotoxicity results.

Figure 10.   Graph of protein binding of free SFB and SFB-loaded ME (ME16).
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Figure 11.   Cytotoxicity evaluation of SFB-loaded ME concerning free SFB determined via (a) microscopic 
evaluation and (b) MTT based cell viability assay.
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In‑vivo pharmacokinetic studies.  The free SFB and SFB-loaded ME was evaluated for further in-vivo pharma-
cokinetic studies. The study’s graph was plotted between the plasma drug concentration versus time, as shown in 
Fig. 13. The graph estimated that the rats of group II (ME16) exhibited a higher concentration of plasma at each 
time point than of the group I receiving free SFB (p < 0.05). The pharmacokinetic parameters were determined 
by fitting the plasma concentration–time profile in PK solver software. A comparison of various pharmacoki-
netic parameters has been described in Table 6. The mean residence time (MRT) value of ME16 (21.82 h) was 
found to be significantly higher than the free SFB (16.49 h; p < 0.05). This result revealed a reduction in the clear-
ance rate of the drug. The clearance rate (CL) of the free drug was found to be 0.09 μg/ml compared to the SFB-
loaded ME (0.05 μg/ml). The high entrapment of SFB into the ME could be justified because of the predicted low 
level of volume of distribution of ME16 (1.08 μg/ml). It is evident from the value of pharmacokinetic parameters 
that fabrication of SFB in the form of ME resulted in the formulation with a sustained effect. The Tmax was almost 
safe. However, the bioavailability of SFB was 1.5 times increased by the ME system. The findings provide hope for 
a formulation with the potential to enhance the biological stay period of the drug and increase the bioavailability 
fraction. It has immense promises in better efficacy and dose reduction.

Free Coumarin  Coumarin-6-ME16

9.79 % 88.96 %

Free 
Coumarin  

Coumarin-
6-ME16

DIC DAPI FITC DAPI+FITC Overlay

0.00

50.00

100.00

Free Coumarin Coumarin-6-ME16

Figure 12.   Cellular uptake study of free coumarin and coumarin-6-ME16.

Figure 13.   Plasma-concentration time graph of Free SFB and SFB-loaded ME (ME16).
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Stability studies.  The stability studies of the developed ME16 were carried out for 6 months51; It was observed 
that 30 ± 2 °C was the most favourable storage conditions for the SFB-loaded ME as no significant changes in 
particle size, zeta potential and drug loading had been found in this temperature (Table 7).

Conclusion
The challenges of SFB related to oral delivery are limiting its efficacy towards breast cancer. The present reports, 
i.e., in-vitro and in-vivo studies, manifested a new insight towards the SFB oral administration by developing 
SFB-loaded ME. The developed formulation enhanced the oral bioavailability of the SFB and increased its t1/2 
which could result in a once-in-a-day product. The overall performance and cytotoxicity of the SFB to the breast 
cancer cells were improved after encapsulated into the ME as depicted in cell viability studies. The same can be 
further investigated in the preclinical studies for confirmation and further exploration.

Data availability
The data used to contribute the findings of this research are included within the article and supplementary file.
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