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Abstract

Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes

despite early combination antiretroviral therapy (cART). While CPHIV-related brain

alterations can be investigated separately using proton magnetic resonance spectros-

copy (1H-MRS), structural magnetic resonance imaging (sMRI), diffusion tensor imag-

ing (DTI), and functional MRI (fMRI), a set of multimodal MRI measures characteristic

of children on cART has not been previously identified. We used the embedded fea-

ture selection of a logistic elastic-net (EN) regularization to select neuroimaging mea-

sures that distinguish CPHIV from controls and measured their classification

performance via the area under the receiver operating characteristic curve (AUC)

using repeated cross validation. We also wished to establish whether combining MRI

modalities improved the models. In single modality analysis, sMRI volumes performed

best followed by DTI, whereas individual EN models on spectroscopic, gyrification,

and cortical thickness measures showed no class discrimination capability. Adding

DTI and 1H-MRS in basal measures to sMRI volumes produced the highest classifica-

tion performance validation accuracy¼85%,AUC¼0:80ð Þ. The best multimodal MRI

set consisted of 22 DTI and sMRI volume features, which included reduced volumes

of the bilateral globus pallidus and amygdala, as well as increased mean diffusivity

(MD) and radial diffusivity (RD) in the right corticospinal tract in cART-treated CPHIV.

Consistent with previous studies of CPHIV, select subcortical volumes obtained from

sMRI provide reasonable discrimination between CPHIV and controls. This may give

insight into neuroimaging measures that are relevant in understanding the effects of

HIV on the brain, thereby providing a starting point for evaluating their link with cog-

nitive performance in CPHIV.
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1 | INTRODUCTION

Without treatment, perinatal human immunodeficiency virus (PHIV)

infection enters the central nervous system (CNS) soon after transmis-

sion. It is initially marked by elevated CSF white blood cell count and

neopterin, followed by calcification of the basal ganglia, cortical and

cerebral atrophy, and reactive gliosis in the maturing brain (George

et al., 2009; Kieck & Andronikou, 2004; van Rie et al., 2007).

Combination antiretroviral therapy (cART) suppresses the ele-

vated markers in each phase of infection and has improved clinical

outcomes in children (Crowell et al., 2015; Cusini et al., 2013). How-

ever, the neurocognitive and behavioral profile of children on cART

remains within the low average range (e.g., Garvie et al., 2014;

Laughton et al., 2012; Nichols et al., 2016, 2015). A possible reason is

differential crossing of the blood–brain barrier (BBB) by different anti-

retroviral (ARV) drugs (Caniglia et al., 2014; Letendre et al., 2008). Fur-

thermore, the stage of brain development and progression of

infection within which cART is initiated is crucial, as evidenced by the

Children with HIV Early Antiretroviral (CHER) trial. This open label

randomized controlled trial addressed when to start cART treatment

in children with PHIV (CPHIV), and found that early time-limited treat-

ment (initiated before 12 weeks of age) reduced mortality, correlated

with better neuropsychological test performance at 11 months, and

provided better clinical outcomes than deferred continuous treatment

(Cotton et al., 2013; Laughton et al., 2012; Violari et al., 2008).

A subset of children from the CHER trial were enrolled in a

follow-up longitudinal neuroimaging study with structural magnetic

resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton

magnetic resonance spectroscopy (1H-MRS) every 2 years from the

age of 5 years. Compared with age and community-matched uni-

nfected children (controls), CPHIV at age 5 years showed various

brain alterations, including larger subcortical gray matter structures

and smaller corpora callosa (Randall et al., 2017), thicker cortex in

bilateral frontal and left temporo-insular regions, lower gyrification in

left superior and bilateral medial orbitofrontal cortex (Nwosu

et al., 2021), and regional fractional anisotropy (FA) decreases and

mean diffusivity (MD) increases (Ackermann et al., 2016). CPHIV who

started ART before age 12 weeks also had higher basal ganglia

(bg) N-acetyl-aspartate (NAA) and total choline levels than controls

(Mbugua et al., 2016). At age 7 years, among other findings, CPHIV

had smaller volumes of gray and white matter (WM), bilateral hippo-

campus, putamen and right thalamus; lower gyrification in bilateral

paracentral and right temporal regions, and thicker cortex in a small

left inferior lateral occipital region (Nwosu et al., 2018); clusters with

lower FA and higher MD in various WM tracts (Jankiewicz

et al., 2017); but similar bg neurometabolite concentrations

(Robertson et al., 2018) to controls.

These findings in the CHER children are consistent with other

studies demonstrating HIV-related irregularities in brain structure

and WM integrity across childhood (Blokhuis et al., 2017, 2019;

Hoare et al., 2019; Lewis-de los Angeles et al., 2016, 2017; Wade

et al., 2019; Yadav et al., 2017; Yu et al., 2019). Although a single

MRI modality can identify pathological brain alterations, in isolation

none can provide a comprehensive picture of the impact of HIV on

brain structure and function. Many studies nowadays acquire data

using multiple MRI modalities, but these data are rarely analyzed

together to identify a signature of pediatric HIV. Due to the large

number of measurements (features) generated in a typical neuroim-

aging study, it is a challenge to identify the most salient HIV-related

alterations.

Feature selection and supervised machine learning algorithms are

increasingly applied to high-dimensional neuroimaging datasets

(e.g., Davatzikos, 2019; Janssen et al., 2018; Jollans et al., 2019; Woo

et al., 2017; Wu et al., 2017) where a large number of neuroimaging

features are combined and analyzed simultaneously. We aimed to

build multimodal neuroimaging models, combining features from mul-

tiple MRI modalities, using elastic-net (EN) regularization (Zou &

Hastie, 2005) with repeated cross validation to identify MRI signa-

tures of CPHIV on cART. A logistic EN regularization approach

(Friedman et al., 2010; Zou & Hastie, 2005) uses penalized regression

to perform variable selection, shrinking the weighting of unimportant

variables to zero. Similar approaches were employed to classify

dementia (Tohka et al., 2016) including Alzheimer's disease (Schouten

et al., 2016) and Parkinson's disease (Bowman et al., 2016), as well as

attention deficit hyperactivity disorder (Colby et al., 2012). However,

no study to date has combined MRI modalities or used a multivariate

pattern analysis approach to identify a set of neuroimaging features

characteristic of CPHIV.

We hypothesized that a multivariate, multimodal approach com-

bining neuroimaging data from sMRI, DTI and 1H-MRS would discrim-

inate better between 7-year-old controls and CPHIV on early cART

than single modality analyses.

2 | METHODS

2.1 | Participants

Participants were 72 virally suppressed 7-year-old children from the

CHER trial residing in Cape Town, South Africa (Cotton et al., 2013;

Violari et al., 2008) who enrolled in a longitudinal follow-on study and

55 age- and community-matched uninfected control children. On the

CHER trial, infants with PHIV who had CD4 percentage (CD4%) of at

least 25% were randomized to one of three treatment arms. For one
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group, treatment was deferred until CD4% dropped below 25% in the

first year or below 20% thereafter. The other two groups began cART

immediately (before 12 weeks of age) with planned treatment inter-

ruption after, respectively, 40 and 96 weeks. Thereafter, cART was

restarted if either CD4+ T-cell declined to threshold levels or there

was clinical evidence of severe HIV disease.

Due to evidence of accelerated disease progression following

interruption, cART was not interrupted in a subset of the children

who had initiated cART before 12 weeks as there was already evi-

dence of disease progression. Fifteen infants with PHIV with

CD4 < 25% were included in the early treatment arms. The cART regi-

men consisted of Zidovudine (ZDV) + Lamivudine (3TC) + Lopinavir-

ritonavir (LPV/r) (Cotton et al., 2013; Violari et al., 2008). Infants

across all three groups showed first viral load suppression between

6 and 76 weeks of age. Sample characteristics of the children with

PHIV are summarized in Table 1.

Since the focus of the current study is to identify neuroimag-

ing features that distinguish CPHIV (irrespective of treatment arm)

from children without HIV, we do not present a comparison of

clinical measures for the three CHER treatment arms. Moreover,

clinical measures of the three treatment groups have been pres-

ented in previous papers (e.g., Laughton et al., 2018; van Wyhe

et al., 2021). Briefly, among the CPHIV in the current sample,

enrolment (age 6–12 weeks) CD4, CD8 and viral load were similar

across the three treatment groups (all p's > 0.06; pairwise Wilcoxon

rank sum tests), as were CD4 and CD8 around age 7 years

(p's > 0.10). In the early treatment arm with planned interruption at

96 weeks, five children had detectable viral loads around age

7 years, while all children in the other two arms were virally

suppressed (<400 RNA copies/ml).

2.2 | Image acquisition

Children were scanned around age 7 years on a 3 Tesla Allegra MRI

scanner (Siemens Erlangen, Germany) at the Cape Universities Brain

Imaging Centre (CUBIC) using a single channel head coil. Neuroimag-

ing was performed in a single session lasting under 60 min without

sedation in accordance with protocols approved by the Human

Research Ethics committees of the Universities of Cape Town and

Stellenbosch. Parents or guardians provided written informed consent

and oral assent was provided by the children, who were first familiar-

ized with the procedure in a mock scanner.

Structural and diffusion tensor imaging were performed as well as

single-voxel 1H-MRS. The high-resolution structural T1-weighted

acquisition used a 3-dimensional echo planar imaging (EPI) navigated

multi-echo magnetization prepared rapid gradient echo (MEMPRAGE)

sequence (van der Kouwe et al., 2008) with field of view (FOV)

224�224�144mm3, voxel size 1:3�1:0�1:0mm3, flip angle 7�,

echo times (TEs) 1:53=3:19=4:86=6:53ms, repetition time

(TR) 2530ms, inversion time (TI) 1160ms, bandwidth 657Hz=px,

matrix size 224�168, and 144 sagittal slices. Two diffusion-weighted

(DW) datasets were acquired with opposite phase encodings (ante-

rior–posterior and vice versa) for EPI distortion correction during

processing using a volumetric navigated (Alhamud et al., 2012) twice

refocused spin-echo (TRSE) sequence: FOV¼220�220�144mm3,

voxel size¼2�2�2mm3, 72 slices, matrix size 112�112,

TR = 10,000ms, TE¼86ms, b0 ¼0smm�2, b1 ¼1000smm�2, 30 dif-

fusion directions. 1H-MRS were obtained from 3 voxels of interest in

the basal ganglia (bg), midfrontal gray matter (mfgm) and peritrigonal

white matter (pwm) using an EPI navigated point resolved spectros-

copy (PRESS) sequence (Hess et al., 2011): TR¼2000ms,TE¼
30ms,voxel size¼1:5�1:5�1:5cm3,averages¼64 and chemical

shift selective (CHESS) (Haase et al., 1985) water suppression; an

acquisition without water suppression was performed in each voxel

for water referencing.

TABLE 1 j Sample characteristics of children with PHIV from the
CHER trial.

CPHIV

Demographics

Observations (n) 72

Sex, Female, n (%) 36 (50%)

Age at scan (years) 7.20 (0.02)

Clinical measures at enrolment/baseline (6–8 weeks)

CD4 count (cells/mm3) 1800 (106.80)

CD4% 33 (1.21)

CD4/CD8 1.30 (0.08)

CD8 count (cells/mm3) 1682 (127.26)

CD8% 31 (1.24)

Viral load (copies/ml), n (%)

High (>750 000) 43 (58%)

Low (400–750 000) 29 (40%)

Suppressed (<400) 0

Clinical measures at scan

CD4 count (cells/mm3) 11652 (55.16)

CD4% 37 (0.73)

Viral load (copies/ml), n (%)

High (>750 000) 0

Low (400—750 000) 5 (7%)

Suppressed (<400) 67 (93%)

Treatment-related measures

cART initiation before 12 weeks, n (%) 54 (75%)

Children with cART interruption, n (%) 40 (55.56%)

Age at cART interruption (weeks)a 70.40 (4.37)

Duration of cART interruption (weeks)b 61.44 (13.43)

Note: Values presented are “mean (SE)”, unless otherwise stated.
aBased only on the children in whom treatment was interrupted; median

51.27 weeks, interquartile range 55.43 weeks.
bBased only on the children in whom treatment was interrupted; median

32.71 weeks, interquartile range 33.07 weeks.

4130 KHOBO ET AL.



2.3 | Image pre-processing and feature creation

For the structural T1-weighted dataset, FreeSurfer version 6.0 (Dale

et al., 1999; Fischl et al., 2002) was used for automated cortical recon-

struction and volumetric segmentation. Skull-strip corrections

(removal of extra-cerebral voxels) were performed if required as

described by Nwosu et al. (2018). Thirty eight regional volumes from

FreeSurfer's automatic segmentation were included as candidate fea-

tures in our sMRI volumes feature set (Figure S1), and cortical thick-

ness and local gyrification index (LGI) for each of the 34 regions of the

Desikan–Killiany (DK) atlas (Desikan et al., 2006) in each cerebral

hemisphere (LH & RH) for the sMRI cortical thickness and LGI feature

sets, respectively (Figure S2). LGI's were included as a candidate fea-

ture set as LGI alterations have previously been reported in CPHIV

(Lewis-de los Angeles et al., 2016; Hoare et al., 2019; Nwosu

et al., 2018).

For the DW dataset, field distortion, motion correction, and a

voxel-wise calculation of the diffusion tensor were done in Tortoise

v.2.5.2. Voxel-wise diffusivity measures were calculated in AFNI

(Cox, 1996) as described in Jankiewicz et al. (2017). Average values of

radial diffusivity (RD), axial diffusivity (AD), mean diffusivity (MD) and

fractional anisotropy (FA) were calculated for each of the 20 white

matter tracts in the Johns Hopkins University (JHU) atlas (Mori et al.,

2005; Figure S3).

For spectroscopy, processing was performed as described by

Robertson et al. (2018). Concentrations of 14 metabolites and their

ratios to creatine including N-acetylaspartate (NAA), creatine (Cr),

choline (Cho), myo-inositol (MI), lipids and macromolecules

(MM) (Table S1) were obtained for each of the three SVS voxels using

LCModel version 6.1 (Provencher, 2001).

Quality-control measures were applied to each of the seven MRI-

derived feature sets: sMRI volumes (1st set), sMRI cortical thickness

(2nd set), sMRI gyrification (3rd set), DTI (4th set), 1H-MRS bg (5th set),
1H-MRS mfgm (6th set), and 1H-MRS pwm (7th set). Extreme outliers

on measures from the T1-weighted structural data and DW images

with large motion artefacts and dropout slices were eliminated from

analysis. Datasets with failed alignment to the JHU and DKT templates

in standard space were excluded. Similarly, poor quality spectra were

eliminated based on low SNR (SNR <6) or broad linewidth

(FWHM>0.07 ppm) as calculated in LCModel version 6.1. Because

some subjects did not complete the full scanning session and in some

subjects not all modalities met quality control criteria, all seven feature

sets were not present for all subjects. Subjects were therefore excluded

from analyses for which they did not have the required feature sets.

2.4 | Statistical analyses

We chose to use the embedded feature selection of EN logistic

regression to identify a collection of neuroimaging features character-

istic of pediatric HIV infection. We did this initially within each neuro-

imaging feature set separately (namely sMRI volumes, sMRI cortical

thickness, sMRI gyrification, DTI, 1H-MRS bg, 1H-MRS mfgm, and 1H-

MRS pwm) before combining features from different sets. EN models

were implemented in the R programming language version 3.5.3

(R Core Team, 2018).

Confounders that may affect imaging measures may be included

as predictors in a predictive model, that is, estimated jointly with neu-

roimaging data (Linn et al., 2016) or the effects of possible con-

founders may be regressed out of the neuroimaging data before the

model is constructed (e.g., Adeli et al., 2018). Choosing the former

approach, we included sex and age at scan as confounders for all EN

models with no shrinkage penalty, and total intracranial volume (TIV)

as an added confounder for models that included sMRI volumes.

2.4.1 | Classification performance

To estimate how accurately each classification model performs on an

independent data set, we implemented k-fold cross-validation

(CV) (Kohavi, 1995). We chose to use k = 10 folds as is commonly

used in neuroimaging studies which have relatively small n since it

avoids overfitting and selection bias (Colby et al., 2012; Schouten

et al., 2016; Tohka et al., 2016).

Initially, for sMRI volumes, sMRI cortical thickness, sMRI

gyrification, DTI, 1H-MRS bg, 1H-MRS mfgm, and 1H-MRS pwm sepa-

rately, the classification performance was assessed by computing

accuracy, specificity, and sensitivity at the optimum cut-off point, as

well as the mean area under the receiver operator characteristic curve

(AUC) across 10 CV folds (Figure 1) and 100 iterations (Krstajic

et al., 2014; Schouten et al., 2016). We identified the best performing

single modality model as the one with highest AUC.

2.4.2 | Feature identification

To identify features that typify cART-treated pediatric HIV infection

and to assess the stability of the selected features, the EN model that

gave the highest AUC was refitted on the whole sample (i.e., all sub-

jects) using optimized parameters obtained during the 100 training

iterations. The relative importance of a selected feature was evalu-

ated in two ways: the frequency (f ) of selection with a non-zero

weighting (β) across the 100 repeats, and the average value of its

weighting (β) in the final model over all iterations. Features were

determined to be relevant if their frequency of occurrence was >75%

(selected at least 75 out of 100 retraining iterations). This was an

empirically determined threshold that produced the most overlap in

features between the single modality and multimodal models. The

same features were selected when the models were trained once on

the entire data set.

2.4.3 | Construction of multimodal models

To create multimodal models, the entire set of features from the

best performing single modality model (highest AUC) was
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concatenated pairwise with each of the remaining six feature

sets and more EN-penalized regressions were run. To allow

unbiased selection of multimodal features, at each stage we

included all the features in each set. We then computed the

classification performance and the combination resulting in

the largest AUC was concatenated in turn with each of the

remaining feature sets. This process was repeated until

there was no further increase in AUC from concatenating the

features of the best performing combination with another

feature set.

F IGURE 1 Illustration of classification and feature selection using repeated 10-fold cross validation employed in this study.
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To compare the best performing multimodal and single modality

models we used the Akaike information criterion (AIC) (Akaike, 1973;

Anderson & Burnham, 2002). This allowed us to evaluate which model

provided the best trade-off between simplicity (smaller number of

parameters) and goodness of fit (minimizing information loss). We

then chose the multimodal combination with minimum AIC. For large

datasets, minimizing AIC is equivalent to minimizing the CV error

(Peng et al., 2013; Stone, 1977).

We then identified multimodal features for the combination

resulting in the minimum AIC using the same procedure described for

the individual modality models in Section 2.4.2.

3 | RESULTS

3.1 | Number of observations used for analyses

Sample characteristics of participants whose data survived quality

control for each modality are listed in Table 2. Structural imaging fea-

ture sets had the largest number of observations (n = 125), and spec-

troscopy in the basal ganglia had the fewest (n = 79). The two CPHIV

excluded from the sMRI feature sets only had usable DTI measures.

The number of observations for multimodal feature sets was neces-

sarily smaller (lower number of subjects n) than the largest individual

feature sets from structural imaging.

3.2 | Classification performance for individual
feature sets

Building EN models using data from individual modality feature sets,

we found that structural volumes and DTI metrics produced better

discrimination between CPHIV and controls than other measures con-

sidered (summarized in Table 3).

3.3 | Selected features for the best performing
single modality

We show the 12 relevant features from the sMRI volume model in

Figure 2 and the ranking of these features in Table 4. The sign of the

coefficients indicates smaller volumes of the relevant structures except

TABLE 2 Sample characteristics of participants (n) in each modality (and combination of modalities) after quality control.

Feature set CPHIV Controls

sMRI measures

(n = 125)a Volumes Gyrification Thickness

Observations 70 55

Females, n (%) 35 (50%) 24 (44%)

Age at scan (se) 7.20 (0.02) 7.24 (0.02)

1H-MRS mfgm (n = 105)b Observations 60 45

Females, n (%) 31 (52%) 19 (42%)

Age at scan (se) 7.19 (0.01) 7.24 (0.02)

DTI (n = 104)c Observations 59 45

Females, n (%) 31 (53%) 21 (47%)

Mean age (se) 7.22 (0.02) 7.24 (0.02)

1H-MRS pwm (n = 99)d Observations 58 41

Females, n (%) 30 (52%) 18 (44%)

Age at scan (se) 7.19 (0.01) 7.24 (0.02)

1H-MRS bg (n = 79)e Observations 47 32

Females, n (%) 23 (49%) 15 (47%)

Age at scan (se) 7.23 (0.01) 7.19 (0.02)

sMRI volumes + DTI (n = 102)f Observations 57 45

Females, n (%) 30 (53%) 21 (47%)

Age at scan (se) 7.21 (0.02) 7.24 (0.02)

sMRI volumes + DTI + 1H-MRS bg Observations 40 29

Females, n (%) 24 (60%) 16 (55%)

(n = 69)g Age at scan (se) 7.21 (0.02) 7.24 (0.03)

aTwenty-three subjects had no DTI measures, 46 had no 1H-MRS bg, 21 had no 1H-MRS mfgm, and 27 had no 1H-MRS pwm.
bFourteen subjects had no DTI measures, one did not have structural measures, 31 had no 1H-MRS bg, and 14 had no 1H-MRS pwm.
cThirty-five subjects had no 1H-MRS bg, 13 had no 1H-MRS mfgm, 17 had no 1H-MRS pwm, and two had no structural measures.
dOne had no structural imaging, 12 had no DTI, 29 had no 1H-MRS bg, and eight had no 1H-MRS mfgm.
eAll had structural measures, 10 had no DTI, five had 1H-MRS mfgm, and nine had no 1H-MRS pwm.
fAll had structural and DTI, 33 had no 1H-MRS bg, 1H-MRS bg, 12 had no 1H-MRS mfgm, and 16 had no 1H-MRS pwm.
gAll had structural measures, DTI, and 1H-MRS bg, five had no 1H-MRS mfgm, and six had no 1H-MRS pwm.
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for CSF in children living with HIV than in controls. Figure 3 shows fea-

tures selected in the DTI model and their feature ranking in Table S2.

3.4 | Classification performance for multimodal
feature sets

The stepwise concatenation procedure that began with sMRI volumes

(AUC = 0.71) gave a multimodal feature set consisting of sMRI vol-

umes + DTI + 1H-MRS bg with AUC = 0.80 and 85% accuracy

(Table 5). Table S3 provides accuracy, sensitivity, and specificity for

the best combination in each step. No improvement of AUC was seen

with further addition of feature sets.

3.5 | Goodness of fit comparison for single vs
multimodal models

We compared our models in terms of predictive ability (CV) and fit to

the data (AIC) and found that although the model with the lowest CV

error was sMRI volumes + DTI + 1H-MRS bg (AUC¼0:80) in Table 5,

the simpler multimodal model comprising only the sMRI volumes and

DTI feature sets had a lower AIC (AICc ¼90:88; Table 6)—making it

the simplest model to minimize information loss.

To confirm the sensitivity of the model to distinguish virally

suppressed CPHIV from controls, we repeated the analyses excluding

the five children with detectable viral loads. Similar classification met-

rics (sensitivity, specificity, accuracy, and AUC) were obtained. Fur-

ther, repeating the analyses of the three best performing feature sets

(sMRI volumes, DTI, and sMRI volumes + DTI) using only the subjects

common to all feature sets (n = 102) yielded similar classification per-

formance measures (Table S4), confirming the stability of the models.

Finally, we examined for the three best performing feature sets

whether nadir CD4 and nadir CD4%, which reflect historical processes

and are known to be strong indicators of brain integrity, and differ-

ences in treatment interruption within our sample, biased model per-

formance. We found no differences in nadir CD4, nadir CD4%

(Wilcoxon Rank Sum tests, all p's > .22), nor the percentage of chil-

dren with treatment interruption (Chi-square test p's > .53), between

correctly and incorrectly classified CPHIV.

TABLE 3 Classification performance
evaluation metrics of the seven MRI
derived feature sets.

Modality n AUC Sensitivity (%) Specificity (%) Accuracy (%)

sMRI volumes 125 0.71 81 69 74

sMRI thickness 125 0.55 80 60 71

sMRI gyrification 125 0.54 75 65 65

1H-MRS mfgm 105 0.58 77 60 61

DTI all regions 104 0.62 75 69 72

1H-MRS pwm 99 0.49 72 32 59

1H-MRS bg 79 0.58 64 69 61

Note: We present the AUC (degree of separability) along with sensitivity, specificity, and accuracy for

each individual classifier. The number of observations (n) after quality control is also given.

F IGURE 2 Anatomical locations of the relevant features from the sMRI volume feature set. The sMRI volumes were from an automatic
segmentation with FreeSurfer (Fischl et al., 2002). CWM, cerebellar white matter; CC, corpus callosum; CSF, cerebrospinal fluid).
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3.6 | Features selected in the multimodal
feature set

We found 22 stable features from the multimodal combination of vol-

umes and DTI (ranked in Table S5). Although most selected predictors

in the multimodal combination were the combined predictors selected

in the two separate single modality EN models, seven less relevant

features, namely right choroid plexus, posterior corpus callosum (CC),

right ventral diencephalon (DC), MD, RD and AD in left corticospinal

tract, and RD in left cingulum, were replaced by four features in the

multimodal combination that were not selected in the single modality

analyses: volumes of brainstem and right lateral ventricle, RD in right

cingulum, and AD in the temporal part of the right superior longitudi-

nal fasciculus (illustrated in Figure 4).

4 | DISCUSSION

4.1 | Feature selection and classification
performance

In line with our hypothesis, multimodal neuroimaging improves classi-

fication performance compared with single modalities. We identified a

neuroimaging signature of cART-treated pediatric HIV comprising

22 features from a multimodal combination of regional volumes and

DTI measures in several tracts—these include smaller bilateral globus

pallidus and amygdala, as well as increased radial and mean diffusiv-

ities in the uncinate fasciculus and right corticospinal tract. We infer

that there are more consistent effects of cART-treated HIV on sub-

cortical structures and WM microstructure at age 7 years for these

children than on cortical thickness, gyrification, and neurometabolite

concentrations in the basal ganglia, midfrontal gray matter, and

peritrigonal white matter.

Combining sMRI and DTI previously improved classification per-

formance in other pathologies like Alzheimer's disease (Schouten

et al., 2016), schizophrenia (Sui et al., 2015), depression (Kambeitz

et al., 2017), and Parkinson's disease (Bowman et al., 2016). While we

and these authors relied primarily on AUC as an overall measure of

model performance, other studies in dementia (Tohka et al., 2016),

mild cognitive impairment (Ritter et al., 2015), attention deficit hyper-

activity disorder (Colby et al., 2012), and schizophrenia (Cabral

et al., 2016) reported increases of 2–7% in classification accuracy with

a multimodal approach. Similarly, our initial classification accuracies of

74%, 72%, and 61% for volumes, diffusion measures, and basal ganglia

metabolites, respectively, improved to 85% for the multimodal combi-

nation. Previous studies could discriminate adults living with HIV from

controls with accuracies >80% using classifiers incorporating embed-

ded feature selection, namely LASSO on DTI measures (Tang

et al., 2017), and chained regularization on sMRI (Adeli et al., 2018).

The combination of multimodal MRI measures with clinical features

has also been found to predict neurocognitive impairment in adults

with HIV better than clinical features or MRI measures alone,

suggesting that these techniques have the potential to be clinically

useful (Xu et al., 2021).

This is the first study to combine MRI modalities and use a multi-

variate pattern recognition approach to identify features characteristic

of pediatric HIV infection. This may give insight into neuroimaging

measures that are relevant in understanding the effects of HIV on the

brain, thereby providing a starting point for evaluating the link with

cognitive performance in CPHIV. Although most of the predictors of

cART-treated pediatric HIV in the multimodal combination are simply

the combined relevant features selected in each single modality when

analyzed separately, the multimodal EN model does not retain redun-

dant features (Chandrashekar and Sahin, 2014; Khaire and

Dhanalksmi, 2019; Mwangi et al., 2014). We found the volumes of

the posterior corpus callosum, right choroid plexus and right ventral

diencephalon, as well as MD, RD and AD in left corticospinal tract,

and RD in right cingulum to be relevant in the single modality ana-

lyses, but redundant in the multimodal analysis. Similarly, brainstem

and right lateral ventricle volumes, RD in right cingulum, and AD in

the temporal part of the right superior longitudinal fasciculus were rel-

evant only in the multimodal analysis. This implies that when sMRI

volumes and DTI are combined, the latter four features have better,

or at least equivalent, explanatory power compared with the seven

dropped single modality features, avoiding model overfitting (cross

validation), and minimizing information loss.

We used both cross-validation and the second order AIC

(Anderson & Burnham, 2002) to evaluate our models in terms of pre-

dictive ability and fit to the data. Although these are equivalent in cer-

tain cases (Peng et al., 2013; Stone, 1977), in our model parameters

were optimized to minimize cross-validation error rather than AIC.

Interestingly, the complex model (sMRI volumes + DTI + 1H-MRS bg)

had the lowest CV error while the simpler model (sMRI+ DTI) pro-

vided the best compromise between simplicity and minimizing

TABLE 4 j Relevant features of the sMRI volumes ranked by the
absolute value of their average weighting across 10 folds.

CV penalized EN regularization model

Relevant features Frequency β�10�2a

Right vessel 100 �2.37

Optic Chiasm 98 �0.64

Left Amygdala 99 �0.25

Left Pallidum 100 �0.20

Right Pallidum 100 �0.18

Right choroid plexus 95 �0.15

Right amygdala 93 �0.08

Posterior corpus callosum (CC) 78 �0.07

Cerebrospinal fluid (CSF) 93 0.05

Right ventral diencephalon (DC) 84 �0.05

Left ventral DC 77 �0.02

Right cerebellum white matter (CWM) 90 �0.01

aMean weighting of the feature in the penalized EN regularization model.

A negative mean weighting indicates a smaller measure in CPHIV than in

controls, and adjusted for age at scan, sex, and TIV.
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information loss, that is, minimum AIC. Since our data set was rela-

tively small for the complex model (n = 69), our training and tests

were also necessarily small, which may reduce reliability of cross-

validation (Varoquaux, 2018). It is worth testing whether the classifi-

cation performance from this study would be similar if the models

were used to predict HIV status in children from other cohorts. If our

data are similar to other CPHIV cohorts, we would expect our results

to remain valid using the model that minimizes CV error. However, if

the distribution of our data is different to the actual data distribution

of other cohorts, the models with fewer parameters (and lower AIC)

might perform better.

Pediatric neuroimaging research is frequently limited by number

of observations (e.g., Benki-Nugent and Boivin et al., 2019; George

et al., 2015; van Arnhem et al., 2013; Wade et al., 2019), since rela-

tively small cohorts of subjects are scanned. Our study sample size of

127 was further reduced after quality control criteria had been

applied to each modality. However, larger sample size does not

directly translate to higher classification performance, since models

F IGURE 3 Selected relevant DTI tracts. The regions of interest for the DTI feature set were from the John Hopkins University (JHU) atlas
(Mori et al., 2005).

TABLE 5 j Multimodal classification performance in steps of improving AUC (in bold).

Concatenation steps

sMRI

volumes

DTI all

regions

1H-

MRS bg

1H-

MRS mfgm

sMRI

thickness

sMRI

LGI

1H-

MRS pwm

1. — 0.71 0.62 0.58 0.58 0.55 0.54 0.49

2. sMRI volumes (n = 125) — 0.78 0.75 0.68 0.61 0.60 0.62

3. sMRI volumes + DTI (n = 102) — — 0.80 0.78 0.72 0.65 0.76

4. sMRI volumes + DTI + 1H-MRS bg

(n = 69)

— — — 0.77 0.73 0.64 0.76

Note: The first column gives the feature set combination with which the feature set in each column is concatenated. Only subjects with data for all

measurements were included. Since the number of subjects n was different for each multimodal feature set, each concatenation step was performed on a

smaller sample than the previous one.

TABLE 6 Comparison of non-nested
multimodal classifiers with AIC.

Candidate models ka AICc Relative likelihood e
AICcmin�AIC

2

sMRI volumes 16 99.60 0.013

DTI 16 102.87 0.002

1H-MRS bg 29 163.12 2.056 � 10�16

sMRI volumes + DTI 26 90.88 1.000

sMRI volumes + DTI + 1H-MRS bg 28 102.62 0.002

Note: Second order AIC (AICc) because ratio of sample size to number of estimated parameters was <40.
aNumber of estimated parameters in the model = relevant features + confounders + deviance (measure

of goodness of fit).
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using DTI features (n = 104) showed better performance than those

using cortical thickness and gyrification (largest n = 125); furthermore,

multimodal classifiers (n = 102 and n = 69) have better performance

that those from any single modality. Therefore, we infer that differ-

ences in sample size between models did not play a substantial role in

determining classification performance. This was confirmed by show-

ing that the classification performance of the single modality sMRI

volumes and DTI analyses remained essentially unchanged when

repeated with only the subjects (n = 102) common to the sMRI vol-

umes + DTI model (Table S4).

In addition, as there were more CPHIV than controls, prediction

models are biased toward higher sensitivity than specificity. Cross val-

idation and random shuffling of subjects during repeat cycles were

performed to minimize bias, however higher sensitivity than specific-

ity suggests that these models still tended to identify CPHIV better

than controls. Ninety-three percent of the CPHIV had suppressed

plasma HIV RNA; exclusion of the five children with detectable viral

loads did not lower classification performance.

There is still debate about how to incorporate confounders into

predictive models, depending on whether the goal of the model is pri-

marily biomarker development, disease diagnosis or to understand the

mechanisms and neuroimaging patterns that characterize the disease

(Linn et al., 2016). Applying feature selection to all variables including

possible confounders such as age, sex and total intracranial volume

with a shrinkage penalty showed that none of these features

predicted HIV status. We conclude that these are not confounders in

this sample, but since these variables may be confounders in the

larger CPHIV population, they were included in the model with no

shrinkage penalty. Therefore, other coefficients in the models are

adjusted for these variables. Furthermore, as we found no differences

in nadir CD4 count, nadir CD4%, nor the percentage of children with

treatment interruption, between correctly and incorrectly classified

CPHIV, we conclude that these historical factors were not driving the

findings.

Including non-imaging confounders—in this case sex and age, is

possibly sub-optimal for small sample sizes in which there may be a

bias in the training sample—a relationship between a confounder and

the outcome variable that is not representative of the wider popula-

tion (Linn et al., 2016). In our overall data set, there is no difference in

age distribution between CPHIV and control children. However, there

are on average 7% more females in the CPHIV groups (Table 2). If

non-imaging variables are associated with the imaging measures in a

F IGURE 4 j Four extra features that appear in the multimodal analysis and were not part of the single modality analyses of sMRI volumes and
DTI. These are in addition to all except three (right choroid plexus and ventral diencephalon, and posterior corpus callosum) of the sMRI features
in Figure 2 and the DTI tracts, except left corticospinal tract, in Figure 3. The DTI regions of interest are from the John Hopkins University (JHU)

atlas (Mori et al., 2005) and the sMRI volumes from FreeSurfer (Fischl et al., 2002).
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disease-dependent way, estimating disease patterns jointly with non-

imaging variables may reveal the relative importance of neuroimaging

versus demographic and clinical features in the classification (Linn

et al., 2016). However, this can be a problem when the distribution of

confounders in the training sample does not match the distribution in

the population of interest (Linn et al., 2016; Rao et al., 2017).

4.2 | Implications of selected features in cART-
treated pediatric HIV

Previous studies in this cohort have also reported differences in sub-

cortical volumes in cART-treated pediatric HIV (Nwosu et al., 2018;

Randall et al., 2017). However, with training and cross-validated fea-

ture selection, a feature that alone is not highly predictive of HIV can

be discovered when combined with another feature or set of features.

This may explain measures in our EN regularization models that were

not altered in previous investigations in the same cohort, for example

right lateral ventricle volume. Furthermore, the EN analysis allows us

to consider many candidate features previously unexamined because

of the need to limit multiple comparisons. For example, we found

reduced volume of bilateral amygdala and expansion of CSF including

third and fourth ventricles, structures that were not included in previ-

ous analyses in this cohort (Nwosu et al., 2018; Randall et al., 2017).

Although Nwosu et al. (2018) found reduced putamen volumes in

the CHER cohort at age 7 years, the putamen is not a relevant feature

in our single modality or multimodal EN models in the same popula-

tion. This suggests that smaller putamen may not be a robust finding

across the CPHIV population and may reflect a change that is specific

to a CPHIV subgroup, for example, children who started cART after

12 weeks. In fact, Blokhuis et al. (2017) reported trend-level putamen

increases in CPHIV children, and Randall et al. (2017) similarly reported

larger putamen volumes at age 5 in the CHER cohort that were asso-

ciated with delayed cART initiation.

Our results suggest that HIV may affect globus pallidus more than

other components of the basal ganglia. In a cohort of Thai CPHIV,

there was shape deformation of the right pallidal surface and baseline

CD4 count was negatively associated with left globus pallidus volume

(Wade et al., 2019). Shape deformation has also been negatively asso-

ciated with peak viral load in adolescents (Lewis-de los Angeles

et al., 2016). Although our models suggest reduced volume of the left

and right globus pallidus in CPHIV at this age, larger globus pallidus

volumes are reported for CPHIV aged 5 in the CHER cohort (Randall

et al., 2017) and CPHIV <12 years, but not in older children (Paul

et al., 2018). The effect of HIV on the globus pallidus may therefore

vary with factors such as age and past HIV disease severity.

Ventricular enlargement is among the more common neuroimag-

ing findings in children with HIV on cART (van Arnhem et al., 2013).

Although total CSF has not previously been examined in this cohort,

our finding of increased CSF volume (collective expansion of the ven-

tricles, that is, lateral ventricles + third ventricle + fourth ventricle) in

CPHIV is therefore not unexpected. Surprisingly, despite increased

total CSF, our EN models suggest reduced volume of the right lateral

ventricle in HIV infection, despite previous analysis of this data show-

ing no difference in volumes of the lateral ventricles in CPHIV (Nwosu

et al., 2018). Previous studies have shown that children living with

HIV have lateral ventricles that are asymmetrical (Bruck et al., 2001;

Thompson and Jahanshad, 2015) and dilated, with a reduction in total

brain volume (Mariam & Assefa, 2012).

Previous studies in cART-treated children found increased MD in

superior longitudinal fasciculus at ages 8–12 years (Hoare et al., 2012)

and 13 to 17 years (Li et al., 2015), while Uban et al. (2015) found

increased MD in the inferior longitudinal fasciculus between 16 and

20 years of age. Others described decreased AD in left superior longi-

tudinal fasciculus in cART-treated children aged 6–15 years, associ-

ated with poorer fronto-striatal cognition (Hoare et al., 2015). We find

only increased AD in the right temporal part of the superior longitudi-

nal fasciculus. MD and RD differences along the cingulum have been

reported in adults living with HIV (Zhu et al., 2013), however we were

unable to find studies that report on the cingulum in cART-treated

children.

We noted increased RD and MD in the right corticospinal tract,

suggestive of reduced myelination (Lebel & Beaulieu, 2011) and less

organized structure (Feldman et al., 2010), respectively. At age

5, Ackerman et al. (2016) found two clusters in right corticospinal

tract with lower FA predominantly attributable to increased

RD. Increased MD in the same tract was due to both increases in RD

and AD. In a follow-up study at age 7 years, Jankiewicz et al. (2017)

found no continued WM damage in this tract, possibly attributable to

cART. Similarly, we found increased RD and MD in bilateral uncinate

fasciculus, and increased AD in right uncinate fasciculus, as relevant

features of cART-treated HIV, although no voxel-wise group differ-

ences were found in any clusters that overlap these tracts at age

7 years (Jankiewicz et al., 2017).

The inconsistency between these results and ours may be

explained by noting that in this study we employed a region-of-

interest (ROI) method instead of voxel-based group analyses as

employed by Jankiewicz et al. (2017) and Ackerman et al. (Ackermann

et al., 2016). Where regions affected by HIV are substantially smaller

than the atlas regions, differences found in voxel-wise analysis might

not be detectable when averaging over an ROI. Conversely, averaging

across voxels in a noisy ROI could also provide more power to detect

differences not apparent in a voxel-wise comparison. This may also

explain why, although Nwosu et al. (2018) and others found reduced

cortical gyrification in HIV (Lewis-de los Angeles et al., 2016; Hoare

et al., 2019), gyrification was not an important feature in our models.

Finally, spectroscopy measures in the basal ganglia, midfrontal gray

matter, and peritrigonal white matter are poor predictors of HIV at age

7 years according to our individual modality EN analyses. Correspond-

ingly, in the same study population, Robertson et al. (2018) using linear

regression models found no difference in metabolite concentrations in

the basal ganglia at age 7. In our study, data were analyzed cross-

sectionally at age 7, which prevented us from exploring longitudinal

changes due to cART-treated HIV. These children were followed and

scanned at ages 5, 7, 9, and 11 years, and are thus well characterized.

We recommend a future longitudinal multimodal neuroimaging study.
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Lifelong exposure to HIV and cART in this population warrants a longitu-

dinal assessment of these signatures, their changes over time, relation-

ship to neuroinflammation, neurocognitive impairment, and vascular

dysfunction and utility in predicting neurocognitive outcomes.

4.3 | Other relevant predictors of cART-
treated HIV

In addition to the neuroimaging features described above, some rarely

examined features that are specific to FreeSurfer segmentation were

found to be relevant predictors in our models. These include right ves-

sel of the basal ganglia, left ventral diencephalon, optic chiasm, and

the brainstem.

The left and right vessel are small labels in FreeSurfer for vessels

entering the basal ganglia that would otherwise be labelled as lesions

(Filipek et al., 1994; Fischl et al., 2002). Reduced volume of the right

vessel in CPHIV may reflect altered blood flow to the basal ganglia,

which has previously been detected in cART-treated perinatally HIV-

infected children with mild psychomotor symptoms (Blokhuis

et al., 2017).

The FreeSurfer ventral diencephalon label contains the hypo-

thalamus, its main component, along with basal forebrain, sub-

lenticular extended amygdala, and a large portion of the ventral teg-

mentum (Makris et al., 2008; Makris et al., 2013). As volume of the

hypothalamus is difficult to measure in vivo (Makris et al., 2013),

other investigators have used this FreeSurfer-defined ROI as the

best representation of the neuroendocrine or homeostatic system in

pathologies such as pediatric neurotrauma (Bigler et al., 2019), major

depression disorder (Kim et al., 2019), and first-episode schizophre-

nia (Emsley et al., 2015). Endocrine dysfunction is extensively

reported in children living with HIV (Chantry et al., 2007; Loomba-

Albrecht et al., 2014; Pandey et al., 2018; Rondanelli et al., 2002),

however, no previous neuroimaging studies measured volume of

hypothalamus or other parts of the ventral diencephalon in people

living with HIV.

The optic chiasm is a small visual pathway—part of the brain where

optic nerves partially cross. It is located at the bottom of the brain imme-

diately inferior to the hypothalamus, and is essential for binocular vision

and depth perception (Herrera et al., 2019). Although in the pre-cART

era between 40 and 90% of adults living with HIV had ocular involve-

ment (Govender et al., 2011), the prevalence of ocular manifestations of

HIV infection in children is very low (Dennehy et al., 1989; Padhani

et al., 2000) suggesting that this finding is unlikely to have any functional

consequence as is the case in other studies on optic chiasm abnormali-

ties. Brainstem morphometry is not often examined. The brainstem

includes the sensory pathway for the auditory nerve. Many studies have

reported hearing impairment in children living with HIV on cART (Chao

et al., 2012; Hrapcak et al., 2016; Torre et al., 2012; Torre III, 2016),

which are commonly associated with abnormalities in auditory brainstem

responses. The first relay of the primary auditory pathway occurs in the

cochlear nuclei in the brainstem, where the basic decoding of duration,

intensity, and frequency occurs.

Some of these selected features may not on their own be highly

predictive of HIV infection, but their specificity to HIV may be revealed

in combination with another feature or set of features. Discovery of

common patterns of features characteristic of HIV has the potential to

reveal mechanisms underlying the effects of HIV on the developing

brain. Although it is unclear how the selected features in this study are

related to each other, some seem to have anatomical links. For example,

the uncinate fasciculus connects parts of the limbic system, which

includes amygdala and diencephalon, with the orbitofrontal cortex. The

cingulum also allows components of the limbic system to communicate,

and the large fiber bundles of the corticospinal tract connect the cortex

with spinal cord via the brainstem. The selection of these features

together suggests that highly connected structures may be affected to

the same degree by HIV infection.

All these findings require further investigation to establish

whether they represent true effects of PHIV or are anomalous

findings specific to our small sample. In addition to small sample

size, other limitations of our study include the unequal size of the

control and CPHIV groups and the cross-sectional nature of the

study. The ability to predict CPHIV based on neuroimaging is not

clinically advantageous, particularly in resource-limited settings,

however identification of a neuroimaging signature of CPHIV may

offer a complementary dimension to the clinical assessments for

evaluating neurological effects in CPHIV. Future work will examine

the link between neuroimaging features, including cortical volumes

and resting state fMRI, and cognitive performance in these

children.

5 | CONCLUSION

The multimodal signature of cART-treated perinatally acquired HIV in

7-year old children is smaller right and left globus pallidus, bilateral

amygdala, right vessel of the basal ganglia, optic chiasm, brainstem,

right lateral ventricle, left ventral diencephalon, and right cerebellum

white matter; enlargement of the ventricular system; increased RD

and MD in bilateral uncinate fasciculus and increased AD in right unci-

nate fasciculus, MD and RD in right corticospinal tract, and MD in cin-

gulum and RD in right cingulum, and AD in right superior temporal

longitudinal fasciculus. Using logistic regression this multimodal signa-

ture has a classification performance of 83% sensitivity, 80% specific-

ity, 81% accuracy, and 78% AUC, which is better than using volumes

(71% AUC, 74% accuracy) or DTI measures (62% AUC, 72% accuracy)

separately. Measures of cortical thickness, gyrification, and spectros-

copy in basal ganglia, peritrigonal white matter, or midfrontal gray

matter, are not useful in the classification of cART-treated

pediatric HIV.

Through cross-validation and repeated resampling, EN is opti-

mized to perform well on data that was never seen during training.

The regularization and embedded feature selection ensure that both

model complexity and information loss is minimized. As such,

detected differences are more likely to be generalizable (and not

driven by a subgroup) not only within the study population in general.
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Future work should examine how well these models perform on other

CPHIV.
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