Table 2.
Summaries of curve estimation regression models
| Model | Age | Hb | LD | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Parameter estimation | R2 | P | Parameter estimation | R2 | P | Parameter Estimation | R2 | P | |||||||||||
| Intercept | b1 | b2 | b3 | Intercept | b1 | b2 | b3 | Intercept | b1 | b2 | b3 | ||||||||
| Linear | Y = b0 + (b1 × t) | −1794.7 | 71.4 | 0.09 | 0.02 | 1631 | −49.6 | 0.03 | 0.16 | 1602.8 | −0.6 | 0.01 | 0.56 | ||||||
| Logarithmic | Y = b0 + (b1 × ln(t)) | −10081 | 3037.2 | 0.09 | 0.02 | 1453.3 | −191.2 | 0.02 | 0.26 | 1318.3 | 12.7 | 0 | 0.97 | ||||||
| Inverse | Y = b0 + (b1/t) | 4132 | −117106 | 0.09 | 0.02 | 1110.7 | 172 | 0.01 | 0.36 | 1586.7 | −46570 | 0.01 | 0.56 | ||||||
| Quadratic | Y = b0 + (b1 × t) + (b2 × t2) | −5528.6 | 248.3 | −2 | 0.1 | 0.05 | 1669.5 | −76.5 | 1.1 | 0.03 | 0.37 | 1251.7 | 1 | −0.0011 | 0.01 | 0.66 | |||
| Cubic | Y = b0 + (b1 × t) + (b2 × t2) + (b3 × t3) | 28252.4 | −2277.7 | 58.6 | −0.5 | 0.16 | 0.02 | 1552.2 | 70.7 | −14 | 0.4 | 0.04 | 0.5 | 502.3 | 6.5 | −0.0103 | 0.000004 | 0.03 | 0.65 |
| Compound | ln(Y) = ln(b0) + (ln(b1)t) | 2 | 1.1 | 0.05 | 0.08 | 188.9 | 0.9 | 0.05 | 0.1 | 268.3 | 1 | 0.03 | 0.17 | ||||||
| Power | ln(Y) = ln(b0) + (b1 × ln(t)) | 0.00003 | 4 | 0.06 | 0.06 | 127.8 | −0.3 | 0.02 | 0.32 | 1181.7 | −0.4 | 0.01 | 0.55 | ||||||
| S-curve | ln(Y) = b0 + (b1/t) | 8.5 | −159 | 0.06 | 0.07 | 4.3 | 0.3 | 0.01 | 0.4 | 4.9 | −39.3 | 0 | 0.77 | ||||||
| Growth | ln(Y) = b0 + (b1 × t) | 0.7 | 0.1 | 0.05 | 0.08 | 5.2 | −0.1 | 0.05 | 0.1 | 5.6 | 0 | 0.03 | 0.17 | ||||||
| Exponential | ln(Y) = ln(b0) + (b1 × t) | 2 | 0.1 | 0.05 | 0.08 | 188.9 | −0.1 | 0.05 | 0.1 | 268.3 | 0 | 0.03 | 0.17 | ||||||
| Logistic | ln(1/y–1/u) = ln (b0) + (ln(b1) × t) | 0.9 | 0.9 | 0.06 | 0.05 | 0.004 | 1.1 | 0.05 | 0.09 | 0.003 | 1 | 0.03 | 0.21 | ||||||