Skip to main content
. 2020 Nov 4;63(5):249–253. doi: 10.1111/idj.12040

Table 2.

Summaries of curve estimation regression models

Model Age Hb LD
Parameter estimation R2 P Parameter estimation R2 P Parameter Estimation R2 P
Intercept b1 b2 b3 Intercept b1 b2 b3 Intercept b1 b2 b3
Linear Y = b0 + (b1 × t) −1794.7 71.4 0.09 0.02 1631 −49.6 0.03 0.16 1602.8 −0.6 0.01 0.56
Logarithmic Y = b0 + (b1 × ln(t)) −10081 3037.2 0.09 0.02 1453.3 −191.2 0.02 0.26 1318.3 12.7 0 0.97
Inverse Y = b0 + (b1/t) 4132 −117106 0.09 0.02 1110.7 172 0.01 0.36 1586.7 −46570 0.01 0.56
Quadratic Y = b0 + (b1 × t) + (b2 × t2) −5528.6 248.3 −2 0.1 0.05 1669.5 −76.5 1.1 0.03 0.37 1251.7 1 −0.0011 0.01 0.66
Cubic Y = b0 + (b1 × t) + (b2 × t2) + (b3 × t3) 28252.4 −2277.7 58.6 −0.5 0.16 0.02 1552.2 70.7 −14 0.4 0.04 0.5 502.3 6.5 −0.0103 0.000004 0.03 0.65
Compound ln(Y) = ln(b0) + (ln(b1)t) 2 1.1 0.05 0.08 188.9 0.9 0.05 0.1 268.3 1 0.03 0.17
Power ln(Y) = ln(b0) + (b1 × ln(t)) 0.00003 4 0.06 0.06 127.8 −0.3 0.02 0.32 1181.7 −0.4 0.01 0.55
S-curve ln(Y) = b0 + (b1/t) 8.5 −159 0.06 0.07 4.3 0.3 0.01 0.4 4.9 −39.3 0 0.77
Growth ln(Y) = b0 + (b1 × t) 0.7 0.1 0.05 0.08 5.2 −0.1 0.05 0.1 5.6 0 0.03 0.17
Exponential ln(Y) = ln(b0) + (b1 × t) 2 0.1 0.05 0.08 188.9 −0.1 0.05 0.1 268.3 0 0.03 0.17
Logistic ln(1/y–1/u) = ln (b0) + (ln(b1) × t) 0.9 0.9 0.06 0.05 0.004 1.1 0.05 0.09 0.003 1 0.03 0.21