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Cross-neutralization and cross-protection among SARS-CoV-
2 viruses bearing different variant spikes
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Dear Editor

The rapid evolution of SARS-CoV-2 mandates a better under-
standing of cross-neutralization and cross-protection among
variants. Such information is essential to guide vaccine strategy
and public policy. To examine the cross-protection among
different variant spikes, we initially prepared four chimeric SARS-
CoV-2 viruses (Fig. 1a), each bearing the spike gene from Alpha,
Beta, Gamma, or Epsilon in the backbone of USA-WA1/2020
lisolated in January 2020 and defined as wild-type (WT)]. The four
variants were selected based on their high prevalence at the onset
of the project, when Delta and Omicron had not emerged. Each
variant spike contained a distinct set of mutations (Fig. 1a). An
additional substitution E484K was added to the original Alpha
variant (Alpha + E484K-spike) as this mutation occurred in many
clinical isolates." The spike genes from all recombinant viruses
were sequenced to ensure no aberrant mutations. Comparable
ratios of viral RNA copies versus plaque-forming units (RNA/PFU)
were obtained for both WT and chimeric viruses when produced
and analyzed on Vero E6 cells (Supplementary Fig. 1), suggesting
equivalent specific infectivity of the viral stocks.

To analyze the immunogenicity of different variant spikes, we
intranasally infected hamsters with 10° PFU of recombinant WT or
variant-spike virus (Fig. 1b). The infected animals developed
different degrees of weight loss in the order of Alpha+E484K-
spike > Beta-spike = Gamma-spike > WT = Epsilon-spike (Supple-
mentary Fig 2a). The weight loss results were consistent with the
disease scores, with the Alpha-+E484K-spike virus causing the
most severe disease (Supplementary Fig 2b). These results suggest
that Alpha+E484K-spike is the most pathogenic virus in hamsters.
Sera were collected on days 14, 28, and 45 post-immunization and
measured for neutralizing titers against homologous and hetero-
logous variant-spike viruses, including the Delta-spike virus that
emerged when the experiment was performed (Fig. 1b). To
increase assay throughput, we developed a “fluorescent foci”
reduction neutralization test (FFRNT) by using mNeonGreen
(MNG) chimeric-spike viruses (Supplementary Fig 3a). The mNG
gene was engineered into the open-reading-frame-7 (ORF7) of the
viral genome? The protocols for the conventional plaque
reduction neutralization test (PRNT) and FFRNT (supplementary
Fig 3b) were similar except that the latter quantifies “fluorescent
Foci” using a high-content imager in a high-throughput manner
(supplementary Fig 3c). The two assays yielded comparable
neutralizing titers for the same set of BNT162b2-vaccinated
human sera (Fig. S3d-e), validating the utility of FFRNT for
neutralization test.

FFRNT analysis of immunized hamster sera showed distinct
neutralizing profiles against homologous and heterologous SARS-
CoV-2 variants (Summary in Fig. 1c and details in supplementary
Fig. 4 and supplementary Tables 1-3). Each variant spike elicited
faster and higher neutralizing titers against its homologous SARS-
CoV-2 variant than heterologous variants. The magnitudes and

Received: 9 May 2022 Revised: 9 July 2022 Accepted: 25 July 2022
Published online: 13 August 2022

© The Author(s) 2022

; https://doi.org/10.1038/s41392-022-01137-1

ranks of neutralizing titers against different heterologous variants
varied depending on the infected variant spikes. Unlike other
variant spike-immunized groups, the Alpha-spike-infected animals
did not seem to increase the neutralizing titers against hetero-
logous variants from days 14 to 45 post-infection. Notably, from
days 14 to 45 post-infection, homologous neutralization titers
increased by <2.32-fold, whereas heterologous neutralization
titers could increase up to 22-fold when Gamma-spike-infected
sera were tested against epsilon-spike SARS-CoV-2 (Fig. 1c). On
days 14, 28, and 45 post-infection, the differences in neutralizing
titers between homologous and heterologous variants could be as
large as 62-, 15-, 9.7-fold, respectively (Fig. 1c). Collectively, the
results demonstrate that infection of hamsters with USA-WA1/
2020 bearing different variant spikes elicits distinct kinetics,
magnitudes, and ranks of neutralizing titers against homologous
and heterologous variants.

Using the neutralization data in supplementary Tables 1-3, we
created three antigenic maps to visualize the relationships between
sera collected from infected hamsters at days 14, 28, and 45 against
SARS-CoV-2 variants (Supplementary Fig 5). FFRNT titers were used to
position the serum relative to each virus using antigenic cartography
(@ modification of multidimensional scaling for binding assay data)
such that higher neutralization titers were represented by shorter
distances between serum and the virus.? Each gridline or antigenic
unit of the map corresponds to a twofold difference in neutralization
titer of a given virus. In all cases, two clusters were observed for both
antigens and sera: one containing WT USA-WA1/2020, Delta, and
Epsilon; the other Alpha-+E484K, Beta, and Gamma. Comparison of
maps for Days 14 and 45 also revealed the increasing cross-reactivity
of WT USA-WA1/2020 and Epsilon sera as distances between clusters
decrease and WT USA-WA1/2020 and Epsilon sera became more
equidistant to these two clusters.

To evaluate cross-protection, we selected variant viruses exhibiting
the lowest neutralizing titers for each immunized group to challenge
the hamsters on day 49 post-infection. Specifically, animals
immunized with WT, Alpha-, Epsilon-, Beta-, or Gamma-spike were
challenged with 10* PFU of Beta-, Delta, Gamma-, Epsilon-, or
Epsilon-spike SARS-CoV-2 viruses, respectively. Compared with PBS-
immunized, challenged animals, all variant spike-immunized ham-
sters were protected from the challenge and developed significantly
lower viral loads in nasal washes (82- to 10,112-fold), tracheas (955-
to 120,000-fold), and lungs (57,000- to 490,000-fold) (Fig. 1d-g).

After the completion of the above experiments, Omicron varint
emerged. Since Omicron exhibited the least sensitivity to vaccine-
elicited neutralization among all known variants* and became
globally prevalent, we examined the cross-neutralization and
cross-protection between these two variants. A chimeric USA/
WA1-2020 bearing the complete spike from Omicron BA.1 was
constructed, resulting in Omicron BA.1-spike SARS-CoV-2 (Fig. 1a).
Hamsters were intranasally inoculated with 10° PFU of Delta- or
Omicron BA.1-spike virus. The Delta-spike virus-innoculted animals
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Delta-spike virus challenge

developed more weight loss (Supplementary Fig 6a) and diseases
(Supplementary Fig 6b) than the Omicron BA.1-spike virus-
inoculated hamsters. The results are in agreement with the recent
reports that Omicron causes milder disease in hamsters® and
humans.®

SPRINGERNATURE

Omicron BA.1-spike virus challenge

For cross-neutralization, Delta-spike virus elicited neutralization
titers in the order of Delta-spike > WT USA/WA1/2020 > Omicron
BA.1-spike virus; on day 28 post-immunization, the neutralization
titer against Delta-spike virus was 4.1- and 15.1-fold higher than
those of WT and Omicron BA.1-spike virus, respectively (Fig. 1h,

Signal Transduction and Targeted Therapy (2022)7:285



Letter

Fig. 1 Cross-neutralization and corss-protection among different SARS-CoV-2 variants in hamsters. a Amino acid substitutions in variant
spikes. The spike sequence from USA-WA1/2020 strain was used as a reference. NTD N-terminal domain, RBD receptor-binding domain.
b Experimental scheme. The hamsters (n =4 or 5 per group) were intranasally immunized with WT or variant-spike SARS-CoV-2 (10° PFU).
Serum NTsq values were measured on days 14, 28, and 45 post-infection. On day 49 post-infection, the hamsters were intranasally challenged
by indicated variant-spike SARS-CoV-2 (10% PFU). The nasal washes (NW) were quantified for viral titers on days 1 and 2 post-challenge. Viral
loads in lungs and trachaes were measured on day 2 post-challenge. c-g Cross-neutralization and corss-protection among Alpha, Beta,
Gamma, Epsilon, or Delta. h—j Cross-neutralization and corss-protection between Delta and Omicron (BA.1). ¢, h Neutralizing titers of sera
against variant spikes on days 14, 28, and 45 post-immunization. The values in the graph represent the mean + standard error of mean. An
unpaired two-tailed t test was used to determine significant differences between self-neutralization and cross-neutralization groups. P values
were adjusted using the Bonferroni correction to account for multiple comparisons. Differences were considered significant if p<0.01;
p<0.01, * p<0.002, *); and p <0.0002, *** (c) or p <0.025; p < 0.025, *; p <0.005, **; and p < 0.0005, *** (h). d-g and i-j Cross-protection
against heterologous spike variants. The non-immunized mock and immunized hamsters were challenged with selected variant spike viruses.
The viral loads in nasal wash, lung, and trachea were quantified by plaque assays. The numbers above individual columns indicate the fold
decrease in viral loads by comparing the means from the immunized group with that from the non-immunized group. Means + standard
errors of the mean are shown. An unpaired two-tailed t test was used to determine significant differences between mock and immunized
groups. Differences were considered significant if p <0.05; p < 0.05, *; p <0.01, *¥; and p <0.001, *** . d-f P values were adjusted using the
Bonferroni correction to account for multiple comparisons. Differences were considered significant if p < 0.025; p < 0.025, *; p < 0.005, **; and

p < 0.0005, *** (g, i-j)

<

left panel, Supplementary Fig 7a and Supplementary Table 4).
Although the Delta-spike virus-immunized animals were protected
against challenges of both Delta- and Omicron BA.1-spike viruses,
the protection against Delta-spike virus was stronger than that
against Omicron BA.1-spike virus (Fig. 1i-j).

The Omicron BA.1-spike virus elicited neutralization titers in the
order of Omicron BA.1-spike > Delta-spike > WT virus; remarkably,
on day 28 post-immunization, the neutralization titer against
Omicron BA.1-spike virus was 40.1- and 127.2-fold higher than
those of Delta-spike and WT virus, respectively (Fig. 1h right panel,
supplementary Fig 7b and supplementary Table 4). The neutraliza-
tion differences between the homologous and heterologous viruses
are much larger from the Omicron BA.1-spike virus-infected group
than those from the Delta-spike virus-infected group (Fig. 1h).
Infection with Omicron BA.1-spike virus protected hamsters against
both Delta- and Omicron BA.1-spike viruses (Fig. i-j). The results
again demonstrate that different variant spikes elicit distinct cross-
neutralization profiles after SARS-CoV-2 infection, leading to
different levels of cross-protection against other variants.”

The heterogeneity of cross-neutralization among different
variants may have implications in vaccine strategy. However,
when applying our results to vaccine strategy, this study has two
limitations. First, we used chimeric viruses rather than clinically
approved vaccine platforms (e.g., mRNA) for expressing variant
spikes. The approved vaccine platforms with variant spikes were
not available for research labs for head-to-head comparison
studies. The neutralizing profile elicited by chimeric viruses could
differ from that elicited by the clinically approved vaccine
platforms. In chimeric virus-infected hamsters, immune responses
to non-spike viral proteins may provide additional protection
when compared with animals immunized with spike-alone
vaccines. Second, we did not analyze T cell and other types of
immunity, which are known important for protection. Unlike
neutraliztion that could be significantly evaded by variants, the
majority of T cell epitopes are highly preserved against varinat
spikes (including Omicron) after vaccination or infection.2 Despite
these limitations, our study has systematically uncovered the
cross-neutralization and cross-protection among different variants
in a hamster model; many of these variant infection-and-challenge
combinations are impossible to achieve in COVID-19 patients (e.g.,
Omicron infection followed by Delta challenge).
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