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Mendelian randomization of circulating 
proteome identifies actionable targets in heart 
failure
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Abstract 

Background:  Heart failure (HF) is a prevalent cause of mortality and morbidity. The molecular drivers of HF are still 
largely unknown.

Results:  We aimed to identify circulating proteins causally associated with HF by leveraging genome-wide genetic 
association data for HF including 47,309 cases and 930,014 controls. We performed two-sample Mendelian randomi‑
zation (MR) with multiple cis instruments as well as network and enrichment analysis using data from blood protein 
quantitative trait loci (pQTL) (2,965 blood proteins) measured in 3,301 individuals. Nineteen blood proteins were 
causally associated with HF, were not subject to reverse causality and were enriched in ligand-receptor and glycosyla‑
tion molecules. Network pathway analysis of the blood proteins showed enrichment in NF-kappa B, TGF beta, lipid in 
atherosclerosis and fluid shear stress. Cross-phenotype analysis of HF identified genetic overlap with cardiovascular 
drugs, myocardial infarction, parental longevity and low-density cholesterol. Multi-trait MR identified causal associa‑
tions between HF-associated blood proteins and cardiovascular outcomes. Multivariable MR showed that association 
of BAG3, MIF and APOA5 with HF were mediated by the blood pressure and coronary artery disease. According to the 
directional effect and biological action, 7 blood proteins are targets of existing drugs or are tractable for the develop‑
ment of novel therapeutics. Among the pathways, sialyl Lewis x and the activin type II receptor are potential drugga‑
ble candidates.

Conclusions:  Integrative MR analyses of the blood proteins identified causally-associated proteins with HF and 
revealed pleiotropy of the blood proteome with cardiovascular risk factors. Some of the proteins or pathway related 
mechanisms could be targeted as novel treatment approach in HF.
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Background
Despite significant advances in the treatment of heart 
failure (HF) in the last decade, the life expectancy for 
patients with this condition is still limited [1]. Only a 

small fraction of HF cases is related to a monogenic 
cardiomyopathy [2]. A recent genome-wide association 
study (GWAS) leveraging 47,309 cases and 930,014 
controls has identified 11 loci associated to HF [3]. 
HF is characterized by an altered left ventricular (LV) 
function and may result from different causes. Notably, 
coronary artery disease (CAD), high blood pressure, 
atrial fibrillation and some other cardiometabolic risk 
factors are associated with the development of HF [4]. 
The molecular processes and key factors promoting 
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the development of HF are still largely unknown. The 
identifications of molecules promoting the develop-
ment of HF could lead to novel therapy. Epidemiologi-
cal studies measuring biomarkers are subject to bias 
and reverse causality [5]. Hence, only a small propor-
tion of trials are successful and lead to new licensed 
drugs [6, 7].

Genetic association data provide a rich resource to 
identify molecules and pathways involved in the devel-
opment of disorders. Gene variants acting in cis and 
associated with intermediate phenotypes such as the 
expression of genes or the level of proteins in circula-
tion can be leveraged as instrumental variables (IVs) 
in Mendelian randomization (MR) [8]. Since alleles 
are randomly allocated before the development of 
outcomes, MR technique is not prone to reverse cau-
sality [9]. Hence, the use of multiple IVs in MR is a 
robust method to evaluate causal associations. Studies 
have underscored that molecular targets supported by 
genetics have a higher chance for being licensed [10].

Disorders are complex systems characterized by the 
interaction of several molecules. The assessment of 
complex system in network is a non-biased method to 
probe pathways and to prioritize molecules [11, 12]. 
Studies have consistently underscored that molecules 
highly connected in network, often referred to as hubs, 
are enriched in signaling pathways and drug targets 
[13]. Herein, we implemented an integrative approach 
to identify causally associated blood proteins with 
HF and we performed network and pathway analy-
ses to prioritize molecules and find novel druggable 
candidates.

Results
Mendelian randomization of blood proteins in heart failure
We conducted a two-sample MR analysis to iden-
tify causally associated blood proteins with HF. Sum-
mary level data from INTERVAL [14], a study including 
pQTLs for 2,965 different blood proteins measured in 
3,301 individuals, were leveraged to identify cis-acting 
gene variants as instrumental variables (IVs). A minimum 
of 3 independent (r2 < 0.1) gene variants within a window 
of 500 kb were selected to identify IVs (P value < 1E-03) 
for the blood proteins (exposure). GWAS data from the 
Heart Failure Molecular Epidemiology for Therapeu-
tic Targets Consortium (HERMES) [3], a meta-analysis 
including 47,309 HF cases and 930,014 controls of Euro-
pean ancestry, were assessed as the outcome. There were 
enough instruments to perform 822 cis-MR analyses. In 
inverse variance weighted (IVW) MR, we identified at 
a false discovery rate (FDR) of 5% nineteen blood pro-
teins that were significantly associated with HF (ABO, 
BAG3, FLT4, TDGF1, FUT3, FSTL1, ALDH3A1, GLCE, 
PTHLH, CDON, FCGR2A, RGMB, AMH, MIF, IL15RA, 
B3GAT3, CCDC126, ST3GAL6, APOA5) (Fig. 1) (Suppl. 
Table 1 and Suppl. Table 2). In order to check for weak 
instruments, we calculated F-statistic [15] for all identi-
fied instruments for each protein significantly associated 
with HF. The F-statistic was > 10 for each variant con-
firming the validity of our selected IVs [15–17] (Suppl. 
Table 1). Among those proteins, (OR per 1 SD) ABO (OR: 
1.03, 95%CI: 1.02–1.04, PIVW = 5.89E-13), BAG3 (OR: 
0.79, 95%CI: 0.74–0.85, PIVW = 2.59E-09) and FLT4 (OR: 
1.08, 95%CI: 1.04–1.12, PIVW = 3.34E-05) were significant 
after a Bonferroni correction (P < 6.08E-05, 0.05/822). 

Fig. 1  Identification of blood proteins potentially implicated in HF. Manhattan plot depicting blood proteins associated with heart failure (HF) in 
cis-MR analysis. The localization of the gene encoding the blood protein is represented on the x-axis, whereas the y-axis represents the -log10P value 
for the association in MR. Red and blue dashed lines are the Bonferroni and FDR 5% threshold values respectively. Red dots are genes positively 
associated with the development of HF, and green dots are genes negatively associated with the development of HF
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We carried out the Cochran’s Q and Egger intercept 
tests to detect horizontal pleiotropy [18, 19]. Both the 
Cochran’s Q and intercept tests did not reveal heteroge-
neity or horizontal pleiotropy for the nineteen blood pro-
teins (Suppl. Table 1). Thus, the nineteen blood proteins 
(FDR < 0.05) were considered as causal molecular candi-
dates for downstream analyses. Among the causal can-
didates, 7 (ABO, FLT4, PTHLH, MIF, IL15RA, B3GAT3, 
CCDC126) were positively associated with HF, whereas 
12 (BAG3, TDGF1, FUT3, FSTL1, ALDH3A1, GLCE, 
CDON, FCGR2A, RGMB, AMH, ST3GAL6, APOA5) 
were negatively associated with the risk of HF. The blood 
proteins with the largest negative and positive effect 
sizes on HF were BAG3 (OR: 0.79, 95%CI: 0.74–0.85, 
PIVW = 2.59E-09) and MIF (OR: 1.19, 95%CI: 1.08–1.32, 
PIVW = 5.53E-04), respectively.

As MR is subject to pleiotropy of the IVs, we performed 
several sensitivity analyses. In weighted median MR, 
which is robust to invalid instruments [20] (variants with 
horizontal pleiotropy), 17 blood proteins (ABO, BAG3, 
CDON, APOA5, CCDC126, FLT4, IL15RA, ALDH3A1, 
PTHLH, RGMB, AMH, GLCE, TDGF1, FSTL1, 
FCGR2A, B3GAT3, MIF) remained significantly asso-
ciated with HF (Suppl. Table  1). The directional effects 
were concordant between weighted median MR and 
IVW MR. As an additional measure we implemented MR 
by using cis-IVs with a more stringent P value (P < 1E-05). 
By using this approach, there were enough instruments 
to perform multiple instruments MR for 12 causal can-
didate proteins. In MR, the 12 proteins (ABO, TFGF1, 
GLCE, CCDC126, IL15RA, FCGR2A, CDON, FUT3, 
ST3GAL6, B3GAT3, ALDH3A1, FLT4) remained signifi-
cantly associated with HF (FDR < 0.05) with concordant 
directional effect (Suppl. Table  3). Among the remain-
ing 7 proteins, 5 had one available instrument with a P 
value < 1E-05, for which we performed MR with the 
Wald ratio. MR with the Wald ratio showed that 4 pro-
teins (BAG3, PTHLH, RGMB, APOA5) were significantly 
(PWald test < 0.05) associated with HF and again with con-
cordant directional effects (Suppl. Table 4). Hence, these 
analyses showed that 16 blood proteins out of 19 were 
replicated by using a more stringent selection of IVs. We 
also conducted reverse MR analysis as an additional sen-
sitivity measure. We selected 11 genome-wide significant 
instruments at HF risk loci. In reverse MR analysis, we 
found no significant association (FDR > 5% for the nine-
teen causal candidate proteins) (Suppl. Table  5). These 
data indicate that the causal candidate blood proteins 
were not subject to reverse causality.

Additionally, we conducted a replication two-sample 
MR analysis by leveraging as exposure the data from 
the deCODE study [21]. This study included pQTLs for 
4,719 blood proteins measured in 35,559 Icelanders of 

European ancestry. Enough instruments were avail-
able to perform 17 cis-MR analysis (P value IVs < 1E-03) 
(Suppl. Table  6). Among the 17 candidate blood pro-
teins available in the deCODE study, 14 were rep-
licated at FDR < 5% (ABO, GLCE, IL15RA, RGMB, 
FSTL1, CDON, ALDH3A1, ST3GAL6, TDGF1, FUT3, 
CCDC126, FCGR2A, PTHLH, B3GAT3) (Suppl. Table 6). 
By using IVs with a P value < 1E-05, both multiple instru-
ments MR and the Wald ratio showed that 16 proteins 
(ABO, FLT4, GLCE, IL15RA, TDGF1, B3GAT3, RGMB, 
FSTL1, ALDH3A1, CDON, ST3GAL6, FUT3, FCGR2A, 
CCDC126, PTHLH, MIF) were replicated in deCODE 
(Suppl. Table  7 and Suppl. Table  8). For the replicated 
blood proteins, the directional effects were concordant 
between deCODE and INTERVAL.

Enrichment and network pathway analysis
We aimed to identify the functional and pathway enrich-
ments of candidate causal blood proteins. Among the 
causal candidates, 5 blood proteins (ABO, FUT3, GLCE, 
B3GAT3 and ST3GAL6) were classified as molecules 
involved in glycosylation in the Comprehensive Glyco-
Enzyme Database (GlycoEnzDB) (fold-enrichment 13.1, 
P = 1.40E-06, hypergeometric test). Of note, FUT3 (OR: 
0.97, 95%CI: 0.96–0.98, PIVW = 8.68E-05) and ST3GAL6 
(OR: 0.97, 95%CI: 0.96–0.99, PIVW = 1.06E-03) were 
both negatively associated with the risk of HF. FUT3 and 
ST3GAL6 are key enzymes leading to the generation of 
sialyl Lewis x, a glycan moiety decorating membrane and 
circulating proteins [22, 23] (Suppl. Figure  1). We next 
hypothesized that some of the causal candidate proteins 
may be involved in different ligand-receptor interactions. 
By using a comprehensive repository of ligand-receptor 
interactions reported by Shao et  al. [24], we found that 
blood proteins associated with HF in MR were enriched 
in ligand and receptors (fold-enrichment 5.7, P = 4.0E-07, 
hypergeometric test). These molecules may contribute to 
43 different ligand-receptor pairs (Suppl. Table 9). The 43 
ligand-receptor pairs were enriched in Gene Ontology 
(GO) (molecular function) for transmembrane receptor 
protein serine/threonine kinase activity (P = 3.68E-12), G 
protein-coupled receptor activity (P = 1.08E-10), patched 
binding (P = 5.43E-07), activin-activated receptor activity 
(P = 1.30E-06) and transforming growth factor beta-acti-
vated receptor activity (P = 3.38E-06) (Suppl. Figure  2) 
(Suppl. Table 10).

We next performed a pathway analysis by using a net-
work approach. Protein interaction data from Innat-
eDB, which includes more than 19,800 curated protein 
interactions, was leveraged to infer a blood protein 
network [25]. The nineteen causal candidate proteins 
were used as seeds to generate a network including 155 
nodes (proteins) and 160 edges (interactions) (Fig.  2A) 
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(Suppl. Table  11). The causally associated blood pro-
teins were overrepresented in the nodes (proteins) with 
the highest degree (≥ 90th percentile) (fold-enrichment 
3.6, P = 7.26E-06, hypergeometric test). The top nodes 
(proteins) acting as hub molecules include MIF, BAG3, 

FSTL1, FCGR2A, TDGF1, FLT4, PTHLH, IL15RA, AMH 
and ALDH3A1. We interrogated the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [26] to perform a 
pathway enrichment analysis of the network. The high-
est enrichments were pathways in cancer (P = 1.03E-17), 

Fig. 2  Network and enrichment pathway analysis of causal blood protein candidates. A) HF causal blood protein candidates were used as seeds 
to generate a protein interaction network inferred from InnateDB [25] (database of 19,800 curated proteins interactions). B) Pathway enrichment 
analysis of the network by using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [26]
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NF-kappa B signaling (P = 2.99E-13), TGF-beta signaling 
(P = 3.83E-13), lipid and atherogenesis (P = 9.53E-13) as 
well as fluid shear stress and atherosclerosis (P = 9.96E-
12) (Fig. 2B) (Suppl. Table 12).

Cross‑phenotype analysis
Cross-phenotype association analysis were performed 
for the genetic association data of HF by using the inter-
active cross-phenotype analysis of GWAS database 
(iCPAG) [27] which provides enrichment and similar-
ity metrics between traits by using an exhaustive list of 
ancestry LD-specific association data from the NHGRI-
EBI GWAS catalog [28]. After a Bonferroni correction, 
this analysis showed that 75 disorders and traits were 
significantly associated to HF (Suppl. Table 13). Figure 3 
shows the highest enrichments between HF and traits-
disorders. According to iCPAG, the highest enrichments 
were for beta blocking agent use (P = 1.36E-24), coronary 
artery disease (P = 2.70E-23), low-density cholesterol 
(P = 9.09E-21), myocardial infarction (P = 4.87E-20), 
apolipoprotein B (P = 1.24E-19) and parental longevity 
(P = 1.28E-19).

Multi‑trait and multivariable MR analyses
Considering the cross-phenotype analysis showing a 
genetic overlap between HF and several cardiovascular 
disorder related traits, we performed a multi-trait MR 
analysis for the nineteen causal blood candidate proteins. 
We leveraged 31 different GWAS covering 7 disease cate-
gories (atopic, autoimmune, cancer, cardiovascular, infec-
tious, metabolic and neurologic) as outcomes (Suppl. 
Table  14). Figure  4 illustrates the MR analysis includ-
ing the directional effect and the significance (-logP) 
between the nineteen blood proteins (exposure) and the 

different disorder-traits (outcomes). Some blood pro-
teins such as ABO and FCGR2A show significant asso-
ciation with several traits often with opposite directional 
effects (antagonistic pleiotropy) with HF. However, some 
proteins such as BAG3, MIF and APOA5 show concord-
ant associations between HF, the blood pressure (BAG3) 
and coronary artery disease (MIF and APOA5). BAG3 is 
significantly and negatively associated with systolic and 
diastolic blood pressure, whereas MIF and APOA5 are 
associated with coronary artery disease. We performed 
mediation analysis by using multivariable MR corrected 
for the exposure to cardiovascular traits. Following the 
correction for the diastolic blood pressure, the associa-
tion between BAG3 and HF was not significant (Suppl. 
Table 15). Also, after correction for coronary artery dis-
ease the associations between MIF and APOA5 with 
HF were no longer significant (Suppl. Table  15). Taken 
together, these data suggest that, at least in part, the pro-
tective effect of circulating BAG3 is mediated by a reduc-
tion of the diastolic blood pressure. On the other hand, 
the impact of MIF and APOA5 on HF are likely mediated 
by the risk of coronary artery disease, a leading cause of 
HF [29, 30].

Drug target analysis
We leveraged several resources to carry out a drug tar-
get analysis. We investigated the blood proteins in 
order to document if they represent targets for licensed, 
in-development small molecules or biologics. In the 
Therapeutic Target Database (TTD) [31], 6 blood pro-
teins (ABO, FLT4, FCGR2A, AMH, MIF, IL15RA) are 
reported as either clinical trial target or successful tar-
gets (Suppl. Table  16). In the Drug Gene Interaction 
Database (DGIdb) [32], a total of 111 drug-target pairs 
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Fig. 3  Cross-phenotype analysis. Cross-phenotype association analysis of HF performed by using the summary statistics data of GWAS from 
HERMES and the interactive cross-phenotype analysis of GWAS database (iCPAG), which includes data from the NHGRI-EBI GWAS catalog. 
Significance of traits was determined by the Fisher exact test
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were reported for FLT4, ALDH3A1, PTHLH, FCGR2A, 
AMH, MIF, IL15RA and APOA5 (Suppl. Table 17). Sev-
eral kinase inhibitors targeting FLT4, a blood protein 
positively associated with the risk of HF, are approved 
for the treatment of cancer. In the Open Targets database 
[33, 34], MIF, PTHLH, FLT4 and TDGF1 were reported 
as targets of approved and in-development drugs as 
well as antibodies (Suppl. Table 18). In the blood, MIF is 
positively associated with the risk of HF and is a target 
for Imalumab and Iguratimod, respectively an antibody 
and a small molecule inhibitor. Iguratimod is licensed 
in Japan for the treatment of rheumatoid arthritis [35], 

whereas Imalumab is a phase 1 monoclonal antibody 
destined for patients with solid tumors [36]. Accord-
ing to Open Targets, 15 blood proteins (MIF, CCDC126, 
IL15RA, FCGR2A, CDON, ALDH3A1, FSTL1, APOA5, 
AMH, BAG3, B3GAT3, ST3GAL6, FUT3, GLCE, RGMB) 
are deemed tractable for the development of antibodies 
(Suppl. Table 18). Taken together, these data suggest that 
according to the directional effect MIF, FLT4, PTHLH, 
ABO, CCDC126, IL15RA, and B3GAT3 (blood proteins 
positively associated with HF) are potential targets for 
HF as they are the object of approved, in-development 

Fig. 4  Multi-trait MR. Balloon plot illustrating the multi-trait MR analysis of the 19 blood proteins as exposures, and the 31 diseases and traits 
as outcomes. Red and green indicates positive and negative directional effects respectively. * Indicates significance at a Bonferroni threshold; † 
indicates significance at FDR 5% threshold
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inhibitors or deemed tractable for the development of 
novel inhibitors (antibodies).

Discussion
In this work, we undertook a MR analysis of the circu-
lating proteome to identify circulating proteins caus-
ally associated with HF. A comprehensive analysis of the 
blood proteome identified, by using multiple cis-acting 
variants as IVs, nineteen proteins causally associated with 
HF. Causal candidate proteins were enriched in glyco-
sylation and ligand-receptor molecules. A blood protein 
network showed that causal candidates were enriched as 
hub molecules involved in pathways related to NF-kappa 
B, TGF-beta and atherogenesis. Cross-phenotype and 
multi-trait MR showed that some blood proteins asso-
ciated with HF were pleiotropic and involved in cardio-
vascular traits. The assessment of the druggable genome 
identified causal candidates for which drug repurposing 
or drug development could lead to novel therapies.

The present MR analysis identified several novel genes 
associated with HF. In this regard, among the candi-
date molecules only ABO and BAG3 have been pre-
viously associated with HF. Among the causal blood 
candidate proteins, BAG3 (OR: 0.79, 95%CI: 0.74–0.85, 
PIVW = 2.59E-09) and MIF (OR: 1.19, 95%CI: 1.08–1.32, 
PIVW = 5.53E-04) had the highest effect size in MR analy-
sis. Mutations in BAG3 have been associated with domi-
nant forms of myopathy affecting skeletal muscle and the 
heart [37]. The role of intracellular BAG3 has been inten-
sively investigated as the protein binds to heat shock pro-
teins and control protein folding and aggregation. Herein, 
we documented, to our knowledge, for the first time that 
secreted and circulating BAG3 may be protective on the 
risk of HF. A previous study showed that BAG3 admin-
istered to rodents reduced the blood pressure through a 
nitric oxide pathway [38]. The putative receptor whereby 
extracellular BAG3 reduced the blood pressure is pres-
ently unknown. These experimental data are supported 
by the present results, which showed in mediation analy-
sis that the protective effect of circulating BAG3 on HF 
was, at least in part, mediated by a reduction of the dias-
tolic blood pressure. Functional follow-up studies are 
needed to tease apart the mechanism whereby circulat-
ing BAG3 regulates the blood pressure and the risk of 
HF. MIF encodes the macrophage migration inhibitory 
factor, a pro-inflammatory molecule involved in rheuma-
toid arthritis [39]. Results of our MR analysis indicated 
that MIF was positively associated with the risk of HF. 
Multivariable analysis suggested that MIF promoted HF 
through the risk of CAD.

The circulating proteins related to the risk of HF were 
highly enriched in molecules involved in glycosylation 
(fold-enrichment 13.1, P = 1.40E-06). Notably, FUT3 

(OR: 0.97, 95%CI: 0.96–0.98, PIVW = 8.68E-05) and 
ST3GAL6 (OR: 0.97, 95%CI: 0.96–0.99, PIVW = 1.06E-
03) were negatively associated with the risk of HF. FUT3 
and ST3GAL6 encode for fucosyl transferase 3 and ST3 
beta-galactoside alpha-2,3-sialyltransferase 6, respec-
tively. They are involved in the synthesis of sialyl Lewis 
X (Siaα2,3Galβ1,4[Fucα1,3] GlcNAc), a glycan moeity 
involved in cell adhesion and the recruitment of inflam-
matory cells (Suppl. Figure  1). Experimental evidence 
suggests that circulating glycosyltransferase promotes 
extracellular glycosylation including the synthesis of 
sialyl Lewis x [40]. These data suggest that the synthe-
sis of sialyl Lewis X in the blood could be protective in 
HF possibly by acting as a decoy factor that limit leuko-
cyte adhesion. Consistent with this hypothesis, systemic 
administration of a sialyl Lewis x analogue in a large ani-
mal model of cardiac arrest decreased the recruitment 
of inflammatory cells to the myocardium and preserved 
the myocardial function [41]. Further work is needed to 
address the potential role of glycosylation in HF.

HF-associated causal proteome was enriched in ligands 
and receptors. Ligand-receptor pairs were overrepre-
sented by serine/threonine kinase, G protein-coupled 
receptor, patched binding, activin-activated receptor 
binding and transforming growth factor beta-activated 
receptor activity. Blood IL15RA (OR: 1.02, 95%CI: 1.01–
1.04, PIVW = 8.60E-04) concentrations were positively 
associated with the risk of HF. IL15RA encodes for the 
IL15R alpha-chain, which is secreted through a protease-
dependent process and binds to IL15 [42, 43]. Secreted 
receptors may function as natural antagonist or agonist 
for their ligands and thus exert an important control over 
many biological processes. Contradicting reports for 
secreted IL15RA suggest that it may either antagonize 
or promote IL15 signaling [44, 45]. In a mouse model 
of myocardial infarction, the administration of IL15 
improved cell death and LV function [46]. Inquiry into 
the function of IL15RA-IL15 on the myocardial func-
tion could help design new therapies. TDGF1 encodes 
for teratocarcinoma-derived growth factor 1 (also known 
as CRIPTO), which is acting as natural antagonist for 
activin receptor ActRII [47, 48]. Blood TDGF1 (OR: 
0.98, 95%CI: 0.97–0.99, PIVW = 8.20E-5) concentrations 
were negatively associated with the risk of HF suggest-
ing that inhibition of the activin pathway might reduce 
the risk of HF. Consistent with the present data, activin-
mediated signaling (ActRII) in cardiomyocyte promoted 
the degradation of sarcoplasmic reticulum Ca2 + ATPase 
(ATP2A2 also known as SERCA2), an important regula-
tor of cardiac contractility, and the development of aging-
related HF in a rodent model [49]. Among the other 
blood proteins acting as receptors, CDON (OR: 0.95, 
95%CI: 0.93–0.98, P = 2.59E-04) is involved in hedgehog 
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(HH) signaling [50], a pathway playing a role in cardiac 
regeneration [51, 52], whereas AMH (OR: 0.82, 95%CI: 
0.74–0.91, P = 4.71E-04) binds to AMHR2 and is related 
to the TGF-beta pathway [53]. AMH encodes for the 
anti-Müllerian hormone. Lower level of this hormone 
have been associated with increased cardiovascular risk 
in women [54].

Some of the causal blood protein candidates may rep-
resent suitable drug targets for HF. For instance, repur-
posing the MIF antagonist Iguratimod may lower the 
risk of CAD and HF. Among the other approved drugs, 
FLT4 inhibitors may lower the risk of HF, but long-term 
therapy needed to treat HF is a limiting factor as this 
class of drugs is associated with a high rate of side effects 
[55–58]. Though further follow-up studies are needed, 
some of the blood candidate molecules were involved in 
pathways, which could be targeted in HF. For instance, 
glycosylation and the activin pathways may offer novel 
opportunity for the treatment of HF. For instance, bima-
grumab, a monoclonal antibody, is an antagonist of the 
activin type II receptors (ActRII) [59]. In patients with 
type 2 diabetes and obesity, a phase 2 study has shown 
that bimagrumab increased the lean mass and enhanced 
insulin sensitivity [60]. In addition, the development of 
new fusion proteins between a target and a peptide, such 
as the Fc domain, increase the biological activity of the 
target-protein [61]. As a case in point, considering the 
protective effect of secreted BAG3 on the risk of HF, the 
functionalization of this protein could represent a thera-
peutic opportunity.

The present study has some limitations. MR is subject 
to horizontal pleiotropy [9]. As such, some IVs may be 
associated with the outcome through unknown path-
ways, which are not related to the exposition. However, 
we have implemented several measures to decrease the 
risk of horizontal pleiotropy. The selection of cis-instru-
ments instead of trans-instruments is known to lower the 
risk of pleiotropy [9, 62]. In addition, both the Cochran’s 
Q test for heterogeneity and the Egger-intercept tests 
provide further assessment of pleiotropy [18, 19]. Finally, 
the implementation of the weighted median MR, which 
is resistant to invalid instruments (i.e. IVs related to the 
outcome through another process not related to the 
exposition) also provided robustness to the results [20].

Conclusion
By using MR, we identified circulating proteins causally 
associated with HF. These proteins highlighted molecu-
lar pathways playing a key role in the development of this 
disorder. Integrative analysis showed that proteins were 
involved in several interactions where they were acting as 
hub molecules. Some of the molecules or pathways could 

be targeted for drug repurposing or the development of 
new small molecules or biologics in order to treat HF.

Methods
Genetic associations for heart failure
Summary statistics from GWAS data of a meta-analysis 
including 47,309 HF cases and 930,014 controls were 
downloaded for analyses (HERMES) [3]. The GWAS 
meta-analysis included participants of European ancestry 
from 26 cohorts. Cases included clinical cases of HF from 
any aetiology. GWAS meta-analysis was adjusted for age, 
sex and principal components and included 8,281,262 
genetic variants.

Mendelian randomization
To derive the exposures, protein expression quantita-
tive trait loci (pQTL) were leveraged from the INTER-
VAL study, which included data for 2,965 different blood 
proteins measured in 3,301 individuals [14]. Blood pro-
teins were measured using the SOMAscan assay. The 
study reported 10,572,788 genetic variants. Two-sample 
MR using the INTERVAL and (exposure) and HERMES 
(outcome) studies was carried out by using at least 3 
cis-instrumental variables (at P < 1E-03 and P < 1E-05) 
selected within a window of ± 500  kb around the tran-
scription start site of the candidate gene. Independent 
(r2 < 0.1) instrumental variables (SNPs) were identified 
with PLINK1.9 based on genotypes from European pop-
ulations from the 1000 Genome project. Horizontal plei-
otropy was evaluated by using the Cochran’s Q test and 
the Egger-intercept test. We performed inverse vari-
ance weighted MR and as sensitivity analyses we used 
the weighted median MR, which allows the use of up to 
50% of invalid instruments. F-statistic [15–17] was calcu-
lated for each IV using the formula β2/SE2. Multivariate 
MR using HF as the outcome was performed by cor-
recting the exposition for selected cardiovascular traits 
(blood pressure and CAD). MR analyses were performed 
by using the Mendelian Randomization package. Multi-
ple test correction was performed, and significance was 
established at FDR < 0.05. FDR was calculated by using 
the R package multtest with the Benjamini and Hochberg 
test. The Wald ratio was calculated when only one IV 
with a P value < 1E-05 was available. The Wald ratio was 
calculated with the TwoSampleMR library in R.

Reverse Mendelian randomization
Two sample reverse MR was carried out by using the 
HERMES study as the exposure and the blood proteins 
from the INTERVAL study as the outcome. IVs were 
selected by using a window of 500 kb at risk loci and by 
using the lead GWAS significant variant (P < 5E-08). 
In total, we leveraged 11 independent cis-instrumental 
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variables in the HERMES study. We performed inverse 
variance weighted MR and the weighted median MR. 
Horizontal pleiotropy was evaluated using the Egger-
intercept test and the Cochran’s Q test.

Replication in deCODE
For replication we used the deCODE study [21], which 
included data for 4,719 different blood proteins meas-
ured in 35,559 Icelandic individuals. Blood proteins were 
measured by using the SOMAscan version 4 assay. The 
study reported 27,2 million genetic variants. Analysis was 
conducted for the nineteen causal candidate proteins and 
MR was performed as described above for the INTER-
VAL study.

Enrichment analyses
To perform enrichment analyses, we downloaded data 
from the Comprehensive GlycoEnzyme Database (Gly-
coEnzDB) [63] and the ligand-receptor repository from 
Shao et  al. [24]. Hypergeometric test was performed by 
using R. Pathway and gene ontology enrichments were 
performed by using enrichR [64, 65]. EnrichR Pathways 
and Gene Ontology were generated on 2021/10/20. The 
Comprehensive GlycoEnzyme Database was downloaded 
on 2021/10/22.

Network analyses
Candidate causal blood proteins were used as seeds to 
generate a network based on data from InnateDB, which 
includes more than 19,800 curated protein interactions 
[25]. Edge list of association pairs was analyzed by using 
NetworkAnalyst [66]. We identified hub nodes (genes) as 
those with a degree ≥ 90th percentile. Network of protein 
/ protein interactions was generated on 2021/10/20 using 
Generic PPI / IMEx parameters.

Cross‑trait analysis
GWAS for HF was evaluated with the Cross-Phenotype 
Analysis of GWAS database (iCPAGdb) [27]. iCPAGdb 
uses ancestry LD-specific association data across 3,793 
traits-disorders, which were selected from the NHGRI-
EBI GWAS catalog to compute cross-phenotype enrich-
ment analyses. iCPAGdb reports pairwise traits and 
shared signal. Output data are reported as Fisher exact 
test with adjustment (Benjamini–Hochberg and Bonfer-
roni) and the Chao-Sorenson similarity index. Results of 
cross-trait analysis were generated on 2021/10/21.

Multi‑trait Mendelian randomization analysis
Multi-trait Inverse Variance Weighted MR were per-
formed by using data of pQTL from the INTERVAL 
study (exposure) and 31 traits-disorders (outcomes). 
Traits were selected from 7 disease categories (atopic, 

autoimmune, cancer, cardiovascular, infectious, meta-
bolic and neurologic). Data were downloaded from the 
NHGRI-EBI GWAS catalog and UK Biobank data previ-
ously processed by the Neale lab (see Data availability). 
Association from the MR analyses were deemed signifi-
cant after applying the Bonferroni correction (P < 1.61E-
03, 0.05/31). Results were illustrated as a balloon plot. 
Graphs were generated with ggplot2 in R.

Drug target analysis
We assessed the druggability of each protein candidates 
by using the following resources: Therapeutic Target 
Database (TTD) [31], Drug Gene Interaction Database 
(DGIdb) [32] and Open Targets [33, 34]. For each reposi-
tory, we reported the drug-gene pairs by using approved 
and non-approved drugs. In the Open Targets database, 
we also reported the tractability index for the develop-
ment of antibodies. Drug target analysis were generated 
on the 29 to 30/11/2021 using DGIdb v 4.2.0; Open tar-
gets v 21.11 and TTD (update of 2021/09/29).
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Additional file 1: Suppl. Figure 1. Glycosylation pathway for Sialyl-lewis 
x. FUT3 and ST3GAL6 encode for fucosyl transferase 3 and ST3 beta-
galactoside alpha-2,3-sialyltransferase 6, respectively. They are involved in 
the synthesis of sialyl Lewis x. Suppl. Figure 2. Gene Ontology of ligand-
receptor pairs derived from the blood candidate proteins. Ligand-receptor 
pairs were identified through publicly available database[24]. Gene 
Ontology enrichment analysis performed using the 43 identified ligands/
receptors pairs and the GO molecular function database.

Additional file 2: Suppl. Table 1. Mendelian randomization INTERVAL (P 
< 1E-03). Results of MR analysis for the nineteen causal candidate proteins 
in INTERVAL. Table includes: the aptamer and corresponding id code 
along with the protein name; the number of SNPs used as IVs in MR for 
each protein; the median, minimum and maximum F-statistics value for 
IVs; the beta, standard error and p-values for Inverse Variance Weighted 
and Weighted Median methods; heterogeneity tests (Cochrane’s Q 
test and intercept Egger test). Suppl. Table 2. Mendelian randomiza‑
tion INTERVAL (P < 1E-03) (all results). Results of MR analysis for all the 
proteins with enough IVs in INTERVAL. Table includes: the aptamer and 
corresponding id code along with the protein name; the number of SNPs 
used as IVs in MR for each protein; the median, minimum and maximum 
F-statistics value for IVs; the beta, standard error and p-values for Inverse 
Variance Weighted and Weighted Median methods; heterogeneity tests 
(Cochrane’s Q test and intercept Egger test). Suppl. Table 3. Mendelian 
randomization INTERVAL (P < 1E-05). Results of MR analysis for the nine‑
teen causal candidate proteins in INTERVAL. Table includes: the aptamer 
and corresponding id code along with the protein name; the number of 
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SNPs used as IVs in MR for each protein; the median, minimum and maxi‑
mum F-statistics value for IVs; the beta, standard error and p-values for 
Inverse Variance Weighted and Weighted Median methods; heterogeneity 
tests (Cochrane’s Q test and intercept Egger test). Suppl. Table 4. Mende‑
lian randomization INTERVAL (Wald ratio; P < 1E-05). Results of mendelian 
randomization with Wald ratio, using INTERVAL as the exposure. Wald ratio 
was calculated using the most significant SNP for proteins not present‑
ing enough instruments for previously described two-sample mendelian 
randomization. Table includes: the aptamer and corresponding id code 
along with the protein name; the corresponding lead SNP identification; 
the beta, standard error and p-values for the GWAS outcome, the GWAS 
pQTL and for the Wald ratio. Suppl. Table 5. Reverse Mendelian Randomi‑
zation for the nineteen causal candidates. Results of reverse MR for the 
nineteen causal candidate proteins identified in the study. Table includes: 
the aptamer and corresponding id code along with the protein name; 
the number of SNPs used as IVs in MR for each protein; the beta, standard 
error and p-values for Inverse Variance Weighted and Weighted Median 
methods; heterogeneity tests (Cochrane’s Q test and intercept Egger test). 
Suppl. Table 6. Mendelian randomization deCODE (P < 1E-03). Results 
of mendelian randomization for all nineteen causal candidate proteins, 
using deCODE [21] as the exposure. Table includes: the aptamer and 
corresponding id code along with the protein name; the number of SNPs 
used as IVs in MR for each protein; the median, minimum and maximum 
F-statistics value for IVs; the beta, standard error and p-values for Inverse 
Variance Weighted and Weighted Median methods; heterogeneity tests 
(Cochrane’s Q test and intercept Egger test). Suppl. Table 7. Mendelian 
randomization deCODE (P < 1E-05). Results of mendelian randomiza‑
tion for all nineteen causal candidate proteins, using deCODE [21] as the 
exposure. Table includes: the aptamer and corresponding id code along 
with the protein name; the number of SNPs used as IVs in MR for each 
protein; the median, minimum and maximum F-statistics value for IVs; 
the beta, standard error and p-values for Inverse Variance Weighted and 
Weighted Median methods; heterogeneity tests (Cochrane’s Q test and 
intercept Egger test). Suppl. Table 8. Mendelian randomization deCODE 
(Wald ratio; P < 1E-05). Results of mendelian randomization with Wald 
ratio, using deCODE [21] as the exposure. Wald ratio was calculated using 
the most significant SNP for protein not presenting enough instruments 
for previously described two-sample mendelian randomization. Table 
includes: the aptamer and corresponding id code along with the protein 
name; the corresponding lead SNP identification; the beta, standard error 
and p-values for the GWAS outcome, the GWAS pQTL and for the Wald 
ratio. Suppl. Table 9. Ligand-receptor pairs generated from causal blood 
candidate proteins. Ligand-receptor interactions for causal candidate 
blood proteins by using the comprehensive repository reported by Shao 
et al. [24]. Bold are causal candidate blood proteins. Suppl. Table 10. 
Gene Ontology (molecular function) for ligand-receptor pairs generated 
from the causal candidate proteins. Enrichment of all ligand-receptor pairs 
in Gene Ontology (GO Molecular Function). Suppl. Table 11. Network 
nodes (proteins) and degree. Degree for each protein in the network. 
Suppl. Table 12. Pathway enrichment (KEGG) for the network. Summary 
results of enrichment for all proteins in the network by using the Kyoto 
Encyclopedia of Gene and Genomes (KEGG) database. Suppl. Table 13. 
Cross-phenotype association analysis of HF by using iCPAG. Summary of 
iCPAG results. Trait 1 is the GWAS data from the HERMES study; Trait2 is 
the trait-disorder, which is compared to trait1 for sharing a similar genetic 
architecture. Reported in the table: p-value, FDR and Bonferroni adjusted 
p-value for the Fisher’s exact test; the Chao-Sorensen similarity index 
between trait 1 and trait 2; the list of SNPs in common between trait 1 and 
2; links to corresponding experimental factor ontology (EFO) in EMBL-EBI 
database. Suppl. Table 14. Multi-trait MR. Table summarizing the 31 traits 
and diseases used in the multi-trait MR. Suppl. Table 15. Results of multi‑
variable MR corrected for cardiovascular traits. Summary of multivariable 
MR and univariate MR for BAG3, MIF and APOA5. Univariate exposure is 
HF, whereas multivariate exposure is HF corrected for the selected trait in 
parenthesis. Reported are: estimate (beta), se (standard error) and p-value. 
DBP: diastolic blood pressure; SBP: systolic blood pressure; CAD: coronary 
artery disease. Suppl. Table 16. Therapeutic Target Database (TTD) for 
the causal candidate proteins. Summary results of druggable genome in 
the Therapeutic Target Database (TTD) for the causal candidate proteins. 
Reported are: the gene symbol and name; target type; disease for which 

there is an indication; drugs associated to the target. NA: not available. 
Suppl. Table 17. Drug Gene interaction Database (DGIdb) for the causal 
candidate proteins. Summary of druggable genome in the Drug Interac‑
tion database (DGIdb) for the causal candidate proteins. Reported are: the 
gene symbol; drug associated with the target; sources and pmids from the 
National Library of Medicine. Suppl. Table 18. Open Targets for the causal 
candidate proteins. Summary of druggable genome in the Open Targets 
for the causal candidate proteins. Reported are: gene symbol; drugs 
associated with the target; drug type (sm: small molecule, ab: antibody); 
category ab is the prediction confidence that the target is tractable for the 
development of an antibody.
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