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ORIGINAL RESEARCH

Natural Language Processing to Improve 
Prediction of Incident Atrial Fibrillation Using 
Electronic Health Records
Jeffrey M. Ashburner , PhD, MPH; Yuchiao Chang, PhD; Xin Wang, MPH; Shaan Khurshid , MD, MPH; 
Christopher D. Anderson , MD, MMSC; Kumar Dahal, MS; Dana Weisenfeld, MS; Tianrun Cai, MD;  
Katherine P. Liao , MD, MPH; Kavishwar B. Wagholikar , MD, PhD; Shawn N. Murphy, MD, PhD;  
Steven J. Atlas, MD, MPH; Steven A. Lubitz , MD, MPH; Daniel E. Singer , MD

BACKGROUND: Models predicting atrial fibrillation (AF) risk, such as Cohorts for Heart and Aging Research in Genomic 
Epidemiology AF (CHARGE-AF), have not performed as well in electronic health records. Natural language processing (NLP) 
may improve models by using narrative electronic health record text.

METHODS AND RESULTS: From a primary care network, we included patients aged ≥65 years with visits between 2003 and 2013 
in development (n=32 960) and internal validation cohorts (n=13 992). An external validation cohort from a separate network 
from 2015 to 2020 included 39 051 patients. Model features were defined using electronic health record codified data and nar-
rative data with NLP. We developed 2 models to predict 5-year AF incidence using (1) codified+NLP data and (2) codified data 
only and evaluated model performance. The analysis included 2839 incident AF cases in the development cohort and 1057 
and 2226 cases in internal and external validation cohorts, respectively. The C-statistic was greater (P<0.001) in codified+NLP 
model (0.744 [95% CI, 0.735–0.753]) compared with codified-only (0.730 [95% CI, 0.720–0.739]) in the development cohort. 
In internal validation, the C-statistic of codified+NLP was modestly higher (0.735 [95% CI, 0.720–0.749]) compared with 
codified-only (0.729 [95% CI, 0.715–0.744]; P=0.06) and CHARGE-AF (0.717 [95% CI, 0.703–0.731]; P=0.002). Codified+NLP 
and codified-only were well calibrated, whereas CHARGE-AF underestimated AF risk. In external validation, the C-statistic of 
codified+NLP (0.750 [95% CI, 0.740–0.760]) remained higher (P<0.001) than codified-only (0.738 [95% CI, 0.727–0.748]) and 
CHARGE-AF (0.735 [95% CI, 0.725–0.746]).

CONCLUSIONS: Estimation of 5-year risk of AF can be modestly improved using NLP to incorporate narrative electronic health 
record data.
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Atrial fibrillation (AF) is a common arrhythmia in aging 
populations,1,2 is a potent risk factor for ischemic 
stroke,3–5 and is often first identified at the time of 

stroke.6,7 Oral anticoagulation therapy is highly efficacious 
in preventing a large proportion of AF-related strokes.8–12 
Screening for undiagnosed AF is a growing priority as it 
may enable earlier diagnosis of AF and implementation of 
oral anticoagulation therapy to prevent strokes.

Novel point-of-care technologies used in health care 
settings or at home, including wearable technology 
and mobile single-lead ECGs, make mass screening 
for undiagnosed AF feasible. Prior randomized studies 
assessing the impact of AF screening interventions in 
subjects aged ≥65 years have been mixed13–16; how-
ever, the effectiveness of these studies may have been 
limited by screening solely based on age, which may 
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include many subjects with low short-term risk of de-
veloping AF.16,17 Using individual patient risk of AF can 
effectively allocate screening resources to those most 
likely to benefit.18

A widely used model to predict AF, the Cohorts for 
Heart and Aging Research in Genomic Epidemiology 
AF (CHARGE-AF) score,19 was developed and validated 
in research cohorts with rigorously collected and uni-
formly formatted data and has demonstrated weaker 
performance in health care–related data sets.20,21 AF 
risk stratification may be most often used in clinical 
settings that include subjects with more comorbidities 
than those included in research cohorts. Developing 
and validating an AF risk prediction model within a clin-
ical setting using features available in electronic health 
records (EHRs) may improve model performance in 
these settings. Much of the data in EHRs exist as free-
form typed narrative text within provider notes or re-
ports. Natural language processing (NLP) represents a 

range of computational techniques for processing text 
that can be used to extract medical concepts for anal-
yses. Incorporating NLP in determination of risk factors 
within EHRs has several advantages and has resulted 
in improved risk prediction.22,23 NLP provides data that 
may be missing from codified data (ie, entered in a 
structured format, such as International Classification 
of Diseases [ICD], Tenth Revision diagnosis codes), 
for example, information extracted from cardiology re-
ports about left ventricular hypertrophy.24–26

In this study, we developed and evaluated 2 models 
to identify patients at increased risk for AF in primary 
care patients at Massachusetts General Hospital. One 
model used codified and NLP data (codified+NLP), 
whereas one used codified data only (codified-only). It 
is not known if incorporating NLP data to ascertain risk 
factors within EHRs will result in an improved AF risk 
prediction model. As such, we compared performance 
of newly developed models with and without NLP and 
compared each to an existing and widely used AF risk 
model (CHARGE-AF) in both internal and external vali-
dation populations.27

METHODS
Mass General Brigham data contain protected health 
information and cannot be shared publicly. The data 
processing scripts used to perform analyses will be 
made available to interested researchers on reason-
able request to the corresponding author.

Study Sample
Model Development and Internal Validation

The study cohort for model development and internal 
validation consisted of patients from the Primary Care 
Practice-Based Research Network at Massachusetts 
General Hospital, identified using a validated attribu-
tion algorithm.28,29 All 18 practices in the network use 
EHRs and share the same data systems. Individuals 
included were aged ≥65 years, with primary care visits 
between 2003 and 2013. Individuals were excluded if 
they had diagnosed prevalent AF with no study follow-
up before the AF diagnosis. Individuals aged <65 years 
were excluded because AF prevalence is strongly as-
sociated with age, and these individuals are less likely 
to benefit from oral anticoagulation or be targeted in 
an AF screening program. The eligible cohort was ran-
domly split into 2 subsets: two thirds for model devel-
opment and one third for internal validation.

External Validation

The external validation cohort consisted of patients 
aged ≥65 years from Brigham and Women’s Hospital 
with primary care visits between 2015 and 2020 and 

CLINICAL PERSPECTIVE

What Is New?
•	 We derived and validated 2 new models to pre-

dict the incidence of atrial fibrillation: one model 
that used only codified data and a second 
model that added information from narrative 
data using natural language processing.

•	 In internal and external validation, we found that 
estimation of the 5-year risk of atrial fibrillation in 
a primary care population can be modestly im-
proved by using natural language processing to 
incorporate narrative electronic health record data.

•	 Both newly developed models (codified data only 
and codified plus natural language processing) 
demonstrated improved predictive utility com-
pared with an established atrial fibrillation predic-
tion model (Cohorts for Heart and Aging Research 
in Genomic Epidemiology Atrial Fibrillation).

What Are the Clinical Implications?
•	 The amount of data available in unstructured 

form within electronic health records is im-
mense, and optimizing the use of natural lan-
guage processing to meaningfully process this 
data offers an opportunity to improve prognos-
tic models used within clinical care.

Nonstandard Abbreviations and Acronyms

CHARGE-AF	 Cohorts for Heart and Aging 
Research in Genomic 
Epidemiology Atrial Fibrillation

NRI	 net reclassification improvement
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without prevalent AF. Brigham and Women’s 15 prac-
tices use EHRs, and data are accessed from the Mass 
General Brigham Research Patient Data Registry, a 
data warehouse containing data from 7 affiliated hos-
pitals, including Massachusetts General Hospital.30 
This medical records–based study was approved 
with a waiver of informed consent by the local Mass 
General Brigham Institutional Review Board.

Ascertainment of Potential Features/
Variables for the Model
Data extracted from the EHR included the follow-
ing: (1) patient demographics, (2) diagnostic codes 
(International Classification of Diseases, Ninth Revision 
[ICD-9], and International Classification of Diseases, 
Tenth Revision [ICD-10]), (3) procedure codes (Current 
Procedural Terminology), (4) medications, (5) cardiol-
ogy test reports, (6) progress notes, (7) visit notes, (8) 
history and physical notes, (9) laboratory notes, (10) 
discharge summaries, and (11) vital status. We assem-
bled a list of potential predictors of AF incidence based 
on a review of prior studies. The full list of potential 
model features is available in Table 1, as well as the 
source of information (eg, codified EHR data versus 
data extracted using NLP). Although height, weight, 
and blood pressure are included in an existing AF pre-
diction model, these were not considered as features 
for new models because of missing data.

Clinical Characteristics
Patient characteristics and comorbidities were ascer-
tained using EHR data from the 3 years before each 
patient’s first visit during the study period. Age, sex, 
and race and ethnicity were ascertained at the time of 
cohort entry. Height and weight recorded closest to 
cohort entry were obtained. Medication use was as-
sessed on the basis of any medications listed in the 
EHR in the 3 years before cohort entry. Laboratory 
values were assessed within the 1 year before cohort 
entry. Current smoking status was assessed using the 
most recent smoking status update in the EHR before 
cohort entry. PR interval was extracted from ECGs 
and classified as shortened (<120 milliseconds), normal 
(120–200 milliseconds), or prolonged (>200 millisec-
onds).31 We used patient home zip code to link to the 
National Neighborhood Data Archive and ascertain the 
percentage of the population within a zip code tabula-
tion area with household income of <$50 000.32

Features/Variables Defined Using Codified 
EHR Data

We used validated EHR algorithms to define the follow-
ing variables: obesity, diabetes, hypertension, congestive 
heart failure, coronary artery disease, peripheral vascular 

Table 1.  List of Clinical Features Considered in Codified-
Only and Codified+NLP models to Predict Incident AF

Variable Codified NLP

Age X

Sex X

Race and ethnicity X

Insurance X

Obesity X X

Current smoker X

Left ventricular hypertrophy X

Left atrial enlargement X

Mitral valve disease X X

Mitral valve prolapse X X

Mitral insufficiency X X

Mitral stenosis X X

Supraventricular tachycardia X X

Premature atrial contractions X X

Myocardial infarction X X

Chronic kidney disease X X

Chronic kidney disease: severe X X

Hyperlipidemia X X

Valvular disease X X

Prior stroke/transient ischemic attack X X

Systemic atherosclerosis X X

Cerebral atherosclerosis X X

Thyrotoxicosis X X

Hypothyroidism X X

Pulmonary disease X X

Chronic obstructive pulmonary disease X

Congenital heart disease X X

Cardiomegaly X X

Alcohol disorder X X

Pericarditis X X

Myocarditis X X

Sleep apnea X X

Prior cardiac surgery X

Hypertrophic cardiomyopathy X X

Other cardiomyopathy X X

Chronic liver disease X X

Cirrhosis X X

Liver complications X X

Diabetes X X

Hypertension X X

Congestive heart failure X X

Coronary artery disease X X

Peripheral vascular disease X X

Cerebrovascular disease X X

Long PR interval X

Shortened PR interval X

CRP X

NT-proBNP X

AF indicates atrial fibrillation; CRP, C-reactive protein; NLP, natural 
language processing; and NT-proBNP, N-terminal pro-B-type natriuretic 
peptide.
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disease, and cerebrovascular disease (Table  S1).33–36 
Comorbidities without a validated algorithm were iden-
tified by a single ICD-9/ICD-10 code before and within 
3 years of cohort entry. ICD-9/ICD-10 codes used are 
available in Table S2. We defined all components of the 
CHARGE-AF model using codified data (Table S3).

Features/Variables From the Narrative EHR Data 
Extracted Using NLP

All potential features were also ascertained using NLP, 
unless fully populated within structured fields (eg, de-
mographics) or if the positive predictive value of the 
NLP-derived variable was low (Table  1). Health care 
provider progress notes, visit notes, history and physi-
cal notes, discharge summaries, laboratory notes, 
and cardiology test reports were processed to extract 
information from narrative data using a published ap-
proach24 using Narrative Information Linear Extraction, 
an NLP package for EHR analysis (Figure 1).37 Briefly, 
we created a dictionary of terms corresponding to po-
tential model features (Table S4). The list of terms was 
mapped to concepts in the Unified Medical Language 
System.38 For example, the terms “atrial fibrillation” and 
“auricular fibrillation” are different ways of expressing 
the same concept and are assigned a concept unique 
identifier (C0004238). We then processed free-text 
clinical notes using NLP to count the number of posi-
tive mentions of each concept unique identifier, while 
disregarding negative mentions, such as “no evidence 
of ….” Patients with at least 1 positive concept unique 
identifier match before cohort entry were considered 
to have the feature at baseline. Medical record review 
of 100 randomly selected patients was performed by 
author J.M.A. for NLP-defined variables with >10% 

absolute increase compared with expected published 
prevalences (current smoking, myocardial infarction, 
mitral valve disease, mitral insufficiency, mitral valve 
prolapse, and mitral stenosis).39–43 Following this re-
view, specific acronyms to be excluded and negation 
terms to be added were identified. We did not con-
sider the NLP-defined variable for model inclusion if 
the positive predictive value on medical record review 
was <60%. For all features identified via NLP, we ran-
domly selected 20 patients per feature with positive 
concept unique identifier mentions for medical record 
review performed by J.M.A. No additional systematic 
problems were identified following this review.

Outcomes

The primary outcome was incident AF within 5 years 
of entry into the study cohort. Incident AF status was 
ascertained using a previously validated EHR algo-
rithm, which used problem list entries and inpatient 
or outpatient ICD-9/ICD-10 codes (positive predictive 
value, 96.3%).44 Cases included in analyses occurred 
between 2003 and 2018 for the development and in-
ternal validation cohorts, and between 2015 and 2020 
for the external validation cohort.

Model Derivation
In the development cohort, we developed 2 Cox pro-
portional hazards models to predict AF incidence 
within 5 years using the following: (1) codified+NLP data 
(codified+NLP) and (2) codified data only (codified-only). 
Censoring occurred at the time of death, last primary 
care visit if leaving the primary care cohort, or after 
5 years of follow-up. For variable selection in each model, 
we considered all potential model features in Table 1 and 

Figure 1.  Overview of the process of extracting and processing codified and narrative electronic 
health record (EHR) data to determine patient-level predictors of atrial fibrillation.
NLP indicates natural language processing.
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ran 10-fold cross-validated Cox proportional hazards 
models using a least absolute shrinkage and selection 
operator penalty.45 The largest tuning parameter (λ) was 
selected such that error was within 1 SD of the minimum 
cross-validated error.46 As shown in Table 1, most fea-
tures were defined by both codified and NLP data. For 
the codified+NLP model, the least absolute shrinkage 
and selection operator selection process was allowed to 
select the codified version of a feature, select the NLP 
version of a feature, or select both the codified and NLP 
version of the feature. If both the codified and NLP data 
version of a feature were selected, we recoded it into 
a single 4-level variable (0 indicates neither codified or 
NLP [feature not present]; 1, feature defined by codi-
fied data only; 2, feature defined by NLP data only; and 
3, feature defined by both codified and NLP data). For 
example, both the codified and NLP versions of mitral 
valve disorder were selected in the codified+NLP model. 
In this model, there is a single variable representing both 
variables (0 indicates no mitral valve disorder by either 
codified version or NLP; 1, mitral valve disorder present 
in codified data, but not NLP; 2, mitral valve disorder 
present in NLP data, but not codified; and 3, mitral valve 
disorder present in both codified and NLP data). The 
proportional hazards assumption was verified graphi-
cally by examining the log of the minus log of the survival 
curve for each predictor.47 Within each model, individual 
5-year risk of AF was calculated.

Statistical Analysis

In validation cohorts, we used the coefficients from the 
models established in the development cohort to esti-
mate predicted 5-year risks and used the product-limit 
method, which accounts for censoring, to calculate 
observed 5-year risks. In the external validation cohort, 
administrative censoring occurred at the end of follow-
up in 2020. Because many participants in the external 
validation cohort were not followed up for 5 years, we 
also evaluated models over a 3-year period in supple-
mentary analyses. For descriptive data, we calculated 
mean and SDs of numbers and percentages. In the 
validation data sets, we compared performance of the 
codified+NLP, codified-only, and CHARGE-AF models. 
To calculate the CHARGE-AF score, we used the pub-
lished components and coefficients (Table  S3).19 We 
compared hazard ratios (HRs) across groups, deter-
mined by the Cox method (based on the 16th, 50th, 
and 84th percentiles of the linear predictor values for 
each model).48 In a normal distribution, the 84th per-
centile corresponds to the mean of the linear predictor 
+1 SD, whereas the 16th percentile corresponds to the 
mean of the linear predictor −1 SD.48 We calculated 
the Harrell C-statistic to assess the model’s ability to 
separate who developed AF from those who did not. 
We also plotted cumulative incidence curves for risk 

groups. We compared the Harrell C-statistic between 
models with bias correction using 200 bootstrap sam-
ples. In addition to our main models, which included 
race as a predictor, we also assessed performance of 
models that included insurance and zip code–defined 
income instead of race in supplemental analyses. We 
assessed calibration by comparing the predicted and 
observed 5-year AF risks from each model with pa-
tients divided into risk groups based on deciles. To 
provide quantified summary measures of model cali-
bration, we calculated the Integrated Calibration Index, 
which represents the weighted average absolute differ-
ence between observed and predicted probabilities.49 
For CHARGE-AF, we also assessed calibration after 
recalibration. To recalibrate, instead of using the pub-
lished CHARGE-AF baseline survival when calculating 
predicted risk (published survival, 0.9718412736), we 
generated an updated baseline survival by calculat-
ing the average 5-year AF-free survival in the valida-
tion sample (updated baseline survival, 0.9331399).50 
To quantify how well each model reclassified subjects 
(codified+NLP compared with codified-only, and each 
compared with CHARGE-AF), we evaluated net reclas-
sification improvement (NRI) for time-to-event data with 
censoring51,52 using percentile-based cut points, which 
allows for generalizability of the NRI when standard 
risk cut points are not available.53 Percentile-based cut 
points were based on the 16th, 50th, and 84th percen-
tiles for each model in the validation data.48 Because 
the NRI may be sensitive to the cut points chosen, we 
also evaluated the NRI with 4 groups based on quar-
tiles (25th, 50th, and 75th percentiles). We considered 
a 2-sided P<0.05 to indicate statistical significance.

RESULTS
The development cohort included 32 960 patients aged 
≥65 years without a diagnosis of AF at baseline. The 
mean age was 70.3 (SD, 6.9) years, 57.4% were women, 
and 85.3% were non-Hispanic White race and ethnicity. 
The internal validation cohort included 16 233 patients 
meeting eligibility criteria, with 2311 patients missing 
data to calculate CHARGE-AF, resulting in a popula-
tion of 13 992 patients. The mean age was 69.5 (SD, 
6.2) years, 57.5% were women, and 86.0% were non-
Hispanic White race and ethnicity (Table 2). The external 
validation cohort included 42 234 patients meeting eligi-
bility criteria, with 3183 patients missing data to calculate 
CHARGE-AF, resulting in a population of 39 051 patients 
(mean age, 71.5 years). Additional baseline patient char-
acteristics for this cohort are included in Table S5.

Development Cohort
In the development cohort, there were 2839 inci-
dent AF diagnoses (5-year Kaplan-Meier cumulative 
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Table 2.  Baseline Patient Characteristics for Development and Internal Validation Cohorts

Characteristic
Development  
(n=32 960)

Internal validation  
(n=13 992)

External validation  
(n=39 051)*

Age, mean (SD), y 70.3 (6.9) 69.5 (6.2) 71.5 (6.8)

Aged 65–75 25 233 (76.6) 11 325 (80.9) 29 153 (74.7)

Aged 75–85 y 6200 (18.8) 2252 (16.1) 7680 (19.7)

Aged ≥85 1527 (4.6) 415 (3.0) 2218 (5.7)

Female sex 18 910 (57.4) 8041 (47.5) 24 391 (62.5)

Race and ethnicity

Non-Hispanic White 28 111 (85.3) 12 031 (86.0) 30 043 (76.9)

Black 1419 (4.3) 572 (4.1) 3280 (8.4)

Hispanic 1339 (4.1) 569 (4.1) 1911 (4.9)

Asian 1242 (3.8) 488 (3.5) 997 (2.6)

Unknown 447 (1.4) 177 (1.3) 1279 (3.3)

Other† 402 (1.2) 155 (1.1) 1541 (4.0)

Insurance

Commercial 6980 (21.2) 3009 (21.5) 11 557 (29.6)

Medicare 23 566 (71.5) 9984 (71.4) 26 383 (67.6)

Medicaid 993 (3.0) 401 (2.9) 908 (2.3)

Self-pay 1421 (4.3) 598 (4.3) 203 (0.5)

% With income <$50 000 
by zip code, mean (SD)‡

27.2 (14.6) 27.0 (14.5) 21.3 (16.4)

Characteristic Codified data NLP data Codified data NLP data Codified data NLP data

Obesity 7707 (23.4) 8107 (24.6) 3532 (25.2) 3668 (26.2) 17 398 (44.6) 10 785 (27.6)

Current smoker 997 (3.0) … 443 (3.2) … … …

Mitral valve disorder 2988 (9.1) 6266 (19.0) 1290 (9.2) 2704 (19.3) 1137 (2.9) 7776 (19.9)

Mitral valve prolapse 2781 (8.4) 923 (2.8) 1196 (8.6) 398 (2.8) 758 (1.9) …

Mitral valve insufficiency 326 (1.0) 5772 (17.5) 137 (1.0) 2504 (17.9) 328 (0.8) 7141 (18.3)

Mitral valve stenosis 73 (0.2) 95 (0.3) 25 (0.2) 44 (0.3) 32 (0.1) 265 (0.7)

Supraventricular 
tachycardia

297 (0.9) 1789 (5.4) 133 (1.0) 757 (5.4) 427 (1.1) 1276 (3.3)

Premature atrial 
contractions

106 (0.3) 5668 (17.2) 41 (0.3) 2357 (16.9) 91 (0.2) 6858 (17.6)

Left ventricular hypertrophy … 3803 (11.5) … 1623 (11.6) … 6241 (16.0)

Left atrial enlargement … 5543 (16.8) … 2387 (17.1) … …

Myocardial infarction 1953 (5.9) 4683 (14.2) 782 (5.6) 2018 (14.4) 1565 (4.0) 4847 (12.4)

Chronic kidney disease 1033 (3.1) 915 (2.8) 475 (3.4) 385 (2.8) 3408 (8.7) 3036 (7.8)

Chronic kidney disease: 
severe

108 (0.3) 383 (1.2) 48 (0.3) 182 (1.3) 647 (1.7) 802 (2.1)

Hyperlipidemia 20 243 (61.4) 13 356 (40.5) 8605 (61.5) 5927 (42.4) … …

Valvular disease 941 (2.9) 491 (1.5) 391 (2.8) 213 (1.5) 1402 (3.6) …

Prior stroke/transient 
ischemic attack

2182 (6.6) 7064 (21.4) 827 (5.9) 2980 (21.3) 2332 (6.0) …

Systemic atherosclerosis 941 (2.9) 327 (1.0) 401 (2.9) 135 (1.0) 751 (1.9) …

Cerebral atherosclerosis 
(codified)

1062 (3.2) … 404 (2.9) … … …

Thyrotoxicosis 1115 (3.4) 1190 (3.6) 484 (3.5) 508 (3.6) … …

Hypothyroidism 5219 (15.8) 4246 (12.9) 2197 (15.7) 1849 (13.2) … …

Pulmonary disease 6632 (20.1) 1926 (5.8) 2855 (20.4) 879 (6.3) … …

Chronic obstructive 
pulmonary disease

3211 (9.7) … 1338 (9.6) … 2328 (6.0) …

 (Continued)
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incidence, 9.5% [95% CI, 9.2%–9.9%]) and 8517 death 
events that occurred before an AF diagnosis or at the 
end of 5 years of follow-up (25.8%). The mean dura-
tion of follow-up among the entire development sam-
ple was 4.29 years; and among censored patients, it 
was 4.48 years. The estimated β coefficients and HRs 
for variables included in the codified+NLP model (22 
features) and the codified-only model (23 features) are 
shown in Table 3. The codified+NLP model included 3 
features defined from structured demographics fields, 
5 features defined from codified data only, 7 features 
defined from NLP data only, and 7 features where both 
the codified and NLP versions were selected. For the 
7 features where both the codified and NLP versions 
were selected, the prevalence identified by codified 
data only, NLP data only, and by both codified and 
NLP data is shown in Figure S1.

For the codified+NLP model, risk groups were de-
fined on the basis of the ≥84th percentile of 5-year 
predicted risk (≥14.6%), the 50th to <84th percentile 
(6.5%–<14.6%), the 16th to <50th percentile (3.6%–
<6.5%), and the <16th percentile (<3.6%). For the 
codified-only model, the risk groups were defined 
as ≥84th percentile (≥14.4%), the 50th to <84th per-
centile (6.8%–<14.4%), the 16th to <50th percentile 
(3.8%–<6.8%), and the <16th percentile (<3.8%). HRs 

for incidence of AF within 5 years by risk group for 
each model are shown in Table 4. The C-statistic for 
the codified+NLP model was 0.744 (95% CI, 0.735–
0.753), which was significantly greater (P<0.001) than 
the C-statistic for the codified-only model (0.730 [95% 
CI, 0.720–0.739]). Cumulative incidence plots strati-
fied by groups of predicted risk for both models are 
shown in Figure 2. C-statistics were similar, although 
slightly reduced, in models excluding race and eth-
nicity and adding insurance and neighborhood-based 
income (Table  S5). Calibration plots of both models 
are presented in Figure 3, with both models demon-
strating good calibration (codified+NLP: Integrated 
Calibration Index=0.014 [95% CI, 0.003–0.024]; 
codified-only: Integrated Calibration Index=0.011 [95% 
CI, 0.001–0.021]).

Internal Validation Cohort
In the internal validation cohort, there were 1057 
incident AF diagnoses (Kaplan-Meier cumulative 
incidence, 8.1% [95% CI, 7.7%–8.6%]) and 3201 
death events (22.9%). The mean duration of fol-
low-up among the entire internal validation sample 
was 4.44 years; and among censored patients, it 
was 4.61 years. Both the codified+NLP data model 
(mean, 8.4%; median, 5.8%) and codified-only model 

Characteristic Codified data NLP data Codified data NLP data Codified data NLP data

Congenital heart disease 468 (1.4) 32 (0.1) 176 (1.3) 20 (0.1) 316 (0.8) …

Cardiomegaly 2353 (7.1) 788 (2.4) 955 (6.8) 332 (2.4) 300 (0.8) …

Alcohol disorder 554 (1.7) 1944 (5.9) 260 (1.9) 819 (5.9) … …

Pericarditis 315 (1.0) 548 (1.7) 150 (1.1) 225 (1.6) … …

Myocarditis 37 (0.1) 125 (0.4) 11 (0.1) 57 (0.4) … …

Sleep apnea 1093 (3.3) 1278 (3.9) 491 (3.5) 584 (4.2) … …

Prior cardiac surgery 848 (2.6) … 364 (2.6) … … …

Hypertrophic 
cardiomyopathy

83 (0.3) 132 (0.4) 24 (0.2) 52 (0.4) … …

Other cardiomyopathy 1296 (3.9) 873 (2.7) 489 (3.5) 358 (2.6) 630 (1.6) 2186 (5.6)

Chronic liver disease 2521 (7.7) 176 (0.5) 1160 (8.3) 90 (0.6) … …

Cirrhosis 260 (0.8) 524 (1.6) 135 (1.0) 278 (2.0) … …

Liver complications 358 (1.1) 1294 (3.9) 183 (1.3) 670 (4.8) … …

Diabetes 4063 (12.3) 11 999 (36.4) 1741 (12.4) 5280 (37.7) … …

Hypertension 16 295 (49.4) 21 339 (64.7) 6914 (49.4) 9093 (65.0) … 26 678 (68.3)

Congestive heart failure 663 (2.0) 2757 (8.4) 245 (1.8) 1134 (8.1) 3013 (7.7) 3344 (8.6)

Coronary artery disease 2973 (9.0) 8983 (27.3) 1163 (8.3) 3752 (26.8) 1196 (3.1) 13 330 (34.1)

Peripheral vascular disease 777 (2.4) 1951 (5.9) 328 (2.3) 855 (6.1) 172 (0.4) 1576 (4.0)

Cerebrovascular disease 954 (2.9) 781 (2.4) 407 (2.9) 339 (2.4) … …

Long PR interval … 156 (0.5) … 68 (0.5) … …

Shortened PR interval … 57 (0.2) … 32 (0.2) … …

Data are given as number (percentage), unless otherwise indicated. NLP indicates natural language processing.
*Only final model parameters were ascertained in external validation cohort.
†“Other” Race represents American Indian/Alaskan Native, Indian, Middle Eastern, Multiracial, and those with “Other” listed in registration data.
‡Ascertained from National Neighborhood Data Archive.32 Missing income data in development population: n=1498; missing income data in internal validation 

population: n=507; missing income data in external validation population: n=54.

Table 2.  Continued
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Table 3.  Estimated β Coefficients and HRs for Features Included in the Codified+NLP Data Model and the Codified-Only 
Data Model in the Development Cohort

Variable Codified+NLP model Codified-only model

Estimated β (SE) HR (95% CI) Estimated β (SE) HR (95% CI)

Age (per 5 y) 0.067 (0.002) 1.40 (1.37–1.43) 0.067 (0.002) 1.40 (1.37–1.43)

Sex (female) −0.504 (0.039) 0.60 (0.56–0.65) −0.505 (0.040) 0.60 (0.56–0.65)

Race and ethnicity

Black −0.221 (0.167) 0.80 (0.58–1.11) −0.089 (0.166) 0.92 (0.66–1.27)

Hispanic −0.103 (0.172) 0.90 (0.64–1.26) 0.014 (0.171) 1.01 (0.73–1.42)

Other* −0.516 (0.303) 0.60 (0.33–1.08) −0.464 (0.303) 0.63 (0.35–1.14)

Unknown 0.454 (0.195) 1.58 (1.08–2.31) 0.469 (0.195) 1.60 (1.09–2.34)

Non-Hispanic White 0.273 (0.124) 1.31 (1.03–1.68) 0.347 (0.124) 1.41 (1.11–1.80)

Obesity

Codified data … … 0.245 (0.044) 1.28 (1.17–1.39)

NLP data 0.222 (0.044) 1.25 (1.14–1.36) … …

Mitral valve disorder

Codified data −0.101 (0.199) 0.90 (0.61–1.33) −0.110 (0.193) 0.90 (0.61–1.31)

NLP data 0.219 (0.165) 1.25 (0.90–1.72) … …

NLP+codified data 0.159 (0.246) 1.17 (0.72–1.90) … …

Mitral valve prolapse 
(codified)

0.312 (0.182) 1.37 (0.96–1.95) 0.455 (0.187) 1.58 (1.09–2.27)

Mitral valve insufficiency

Codified data … … 0.208 (0.144) 1.23 (0.93–1.63)

NLP data −0.152 (0.168) 0.86 (0.62–1.19) … …

Mitral valve stenosis

Codified data −0.085 (0.343) 0.92 (0.47–1.80) 0.641 (0.198) 1.90 (1.29–2.80)

NLP data 0.521 (0.262) 1.68 (1.01–2.82) … …

NLP+codified data 1.112 (0.233) 3.04 (1.93–4.79) … …

Supraventricular tachycardia

Codified data 0.659 (0.212) 1.93 (1.28–2.93) 0.668 (0.121) 1.95 (1.54–2.47)

NLP data 0.405 (0.068) 1.50 (1.31–1.71) … …

NLP+codified data 0.634 (0.146) 1.89 (1.42–2.51) … …

Premature atrial contractions

Codified data … … 0.543 (0.190) 1.72 (1.19–2.50)

NLP data 0.350 (0.046) 1.42 (1.30–1.55) … …

Left ventricular 
hypertrophy (NLP)

0.159 (0.053) 1.17 (1.06–1.30) … …

Myocardial infarction

Codified data … … 0.136 (0.066) 1.15 (1.01–1.30)

NLP data 0.131 (0.052) 1.14 (1.03–1.26) … …

Chronic kidney disease

Codified data … … 0.097 (0.073) 1.10 (0.96–1.27)

NLP data 0.041 (0.104) 1.04 (0.85–1.28) … …

Chronic kidney disease: severe

Codified data … … 0.378 (0.138) 1.46 (1.11–1.91)

NLP data 0.367 (0.145) 1.44 (1.09–1.92) … …

Valvular disease (codified) 0.216 (0.087) 1.24 (1.05–1.47) 0.194 (0.097) 1.21 (1.01–1.47)

Stroke/transient ischemic 
attack (codified)

… … 0.165 (0.061) 1.18 (1.05–1.33)

Systemic atherosclerosis 
(codified)

0.120 (0.081) 1.13 (0.96–1.32) 0.166 (0.081) 1.18 (1.01–1.38)

 (Continued)
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(mean, 9.0%; median, 6.4%) predicted higher AF 
risk than CHARGE-AF (mean, 5.6%; median, 5.6%). 
Distributions of risk predictions for all 3 models are 
displayed in Figure 4.

In the internal validation cohort, the C-statistic was 
modestly higher in the codified+NLP data model (0.735 
[95% CI, 0.720–0.749]) compared with the codified-
only model (0.729 [95% CI, 0.715–0.744]; P=0.06) and 
the CHARGE-AF model (0.717 [95% CI, 0.703–0.731]; 
P=0.002). The C-statistic for the codified-only model 
was also significantly higher than for CHARGE-AF 
(P=0.01). HRs for AF by risk groups defined by the 16th, 
50th, and 84th percentiles for each model are shown 
in Table 5. Like the development cohort, the C-statistic 
was similar, but slightly reduced, when excluding race 
and ethnicity and adding insurance and neighborhood-
based income to the model (Table S5). Cumulative in-
cidence plots stratified by risk groups of predicted risk 
are shown in Figure 5. Each model demonstrates sepa-
ration in the cumulative incidence curves by risk group, 
with the codified+NLP data model (Kaplan-Meier esti-
mate for ≥84th percentile, 21.9%; and 50th–<84th per-
centile, 9.1%) and codified-only model (Kaplan-Meier 
estimate for ≥84th percentile, 21.4%; and 50th–<84th 
percentile, 9.1%) having greater separation between 
the highest and next highest risk group compared 

Variable Codified+NLP model Codified-only model

Estimated β (SE) HR (95% CI) Estimated β (SE) HR (95% CI)

Chronic obstructive 
pulmonary disease 
(codified)

0.150 (0.053) 1.16 (1.05–1.29) 0.221 (0.053) 1.25 (1.13–1.38)

Congenital heart disease 
(codified)

… … 0.236 (0.107) 1.27 (1.03–1.56)

Cardiomegaly (codified) 0.340 (0.061) 1.41 (1.25–1.58) 0.473 (0.059) 1.60 (1.43–1.80)

Other cardiomyopathy

Codified data 0.162 (0.082) 1.18 (1.00–1.38) 0.176 (0.075) 1.19 (1.03–1.38)

NLP data 0.377 (0.121) 1.46 (1.15–1.85) … …

NLP+codified data 0.059 (0.117) 1.06 (0.84–1.34) … …

Hypertension (NLP) 0.212 (0.048) 1.24 (1.13–1.36) … …

Congestive heart failure

Codified data 0.788 (0.203) 2.20 (1.48–3.27) 0.453 (0.087) 1.57 (1.33–1.87)

NLP data 0.137 (0.064) 1.15 (1.01–3.30) … …

NLP+codified data 0.397 (0.103) 1.49 (1.22–1.82) … …

Coronary artery disease

Codified data 0.298 (0.207) 1.35 (0.90–2.02) 0.220 (0.057) 1.25 (1.12–1.39)

NLP data 0.030 (0.051) 1.03 (0.93–1.14) … …

NLP+codified data 0.024 (0.065) 1.02 (0.90–1.16) … …

Peripheral vascular disease

Codified data 0.195 (0.145) 1.22 (0.91–1.61) 0.242 (0.087) 1.27 (1.07–1.51)

NLP data 0.184 (0.072) 1.20 (1.05–1.38) … …

NLP+codified data 0.242 (0.104) 1.27 (1.04–1.56) … …

All risk factors are classified at the start of follow-up. The presence of an estimated β and HR indicates the variable was included in the corresponding model. 
For the codified+NLP model, features may be defined by only codified data (only “codified data” row has a β), defined by only NLP (only “NLP data” row has a 
β), or defined by both codified and NLP (“codified data,” “NLP data,” and “NLP+codified data” rows have a β). An ellipses indicates the variable was not selected 
for inclusion in the model. HR indicates hazard ratio; and NLP, natural language processing.

*“Other” Race represents American Indian/Alaskan Native, Indian, Middle Eastern, Multiracial, and those with “Other” listed in registration data.

Table 3.  Continued

Table 4.  HRs and 95% CIs for Incidence of AF by Risk 
Groups Defined by the 16th, 50th, and 84th Percentiles for 
Each Model in the Development Cohort

Variable
Codified+NLP HR 
(95% CI)

Codified-only HR 
(95% CI)

≥84th Percentile 15.66 
(12.68–19.34)

12.73 (10.50–15.42)

50th–<84th Percentile 5.82 (4.71–7.20) 4.53 (3.73–5.49)

16th–<50th Percentile 2.19 (1.75–2.74) 2.03 (1.65–2.48)

<16th Percentile … …

The 5-year risk of AF was calculated for each model as 1 − s
exp(

∑

�X−
∑

�Y)
0

 
where s0 is the average AF-free survival probability at 5 years in the sample, 
∑

�X is an individual’s risk score calculated using the regression coefficients 
from the development model (β) and the level for each risk factor (X), and 
∑

�Y  is the average score of the sample. For the codified+NLP model, 
risk was calculated as 1 − 0.925769

exp(
∑

�X−5.1621047); and for codified-only 
model, as 1 − 0.9234408

exp(
∑

�X−4.9497951). AF indicates atrial fibrillation; HR, 
hazard ratio; and NLP, natural language processing.
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with CHARGE-AF (Kaplan-Meier estimate for ≥84th 
percentile, 19.3%; and 50th–<84th percentile, 9.9%). 
Table  6 summarizes percentile-based NRI results. 
Codified+NLP and codified-only models demonstrate 

significantly improved reclassification compared with 
CHARGE-AF according to the overall NRI, with both 
positive event and nonevent NRI. The overall NRI com-
paring codified+NLP and the codified-only model was 

Figure 2.  Cumulative incidence plots stratified by groups of predicted risk in development cohort.
A, Depicts the cumulative risk of atrial fibrillation (AF) by groups defined by <16th percentile (green, <3.6%), 16th to <50th percentile 
(blue, 3.6%–<6.5%), 50th to <84th percentile (orange, 6.5%–<14.6%), and ≥84th percentile (red, ≥14.6%) of predicted AF risk for the 
codified+natural language processing (NLP) model. B, Depicts the cumulative risk of AF by groups defined by <16th percentile (green, 
<3.8%), 16th to <50th percentile (blue, 3.8%–<6.8%), 50th to <84th percentile (orange, 6.8%–<14.4%), and ≥84th percentile (red, 
≥14.4%) of predicted AF risk for the codified-only model.

Figure 3.  Calibration plots of observed 5-year atrial fibrillation (AF) risk vs predicted 5-year AF risk with patients divided 
into risk groups based on deciles in the development cohort.
A, Depicts the plot of observed 5-year AF risk (y axis) vs predicted 5-year AF risk (x axis) for the codified+natural language processing 
(NLP) model in blue, whereas the optimal calibration is shown in gray. B, Depicts the plot of observed 5-year AF risk (y axis) vs 
predicted 5-year AF risk (x axis) for the codified-only model in blue, whereas the optimal calibration is shown in gray.
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small, and the CI crosses 0. NRI results were similar 
when establishing groups based on quartiles.

The codified+NLP data model and the codified-only 
model both appeared well calibrated in the internal 
validation cohort (Figure 6). In contrast, calibration of 
CHARGE-AF was poor, with the plot of observed 5-year 
AF risk versus predicted 5-year AF risk demonstrating 
underestimation of AF risk (Figure  6). Calibration re-
mained poor, even after recalibrating CHARGE-AF with 
the baseline survival of the internal validation sample 
(Figure S2). The Integrated Calibration Index estimate 
was smallest for the codified+NLP model (0.011 [95% 

CI, 0.002–0.020]), compared with codified-only (0.016 
[95% CI, 0.006–0.027]) and CHARGE-AF (0.023 [95% 
CI, 0.009–0.036]).

External Validation Cohort
In the external validation cohort, there were 2226 in-
cident AF diagnoses (Kaplan-Meier cumulative inci-
dence, 7.3% [95% CI, 7.0%–7.6%]). The mean duration 
of follow-up among the entire external validation sam-
ple was 3.64 years; and among censored patients, 
it was 3.75 years. The C-statistic was higher in the 

Figure 4.  Distributions of predicted risk for codified+natural language processing (NLP), codified-
only, and Cohorts for Heart and Aging Research in Genomic Epidemiology Atrial Fibrillation 
(CHARGE-AF) models in the internal validation cohort.
AF indicates atrial fibrillation.

Table 5.  HRs and 95% CIs for Incidence of AF by Risk Groups Defined by the 16th, 50th, and 84th Percentiles for Each 
Model in Internal Validation Cohort

Variable Codified+NLP HR (95% CI) Codified-only HR (95% CI) CHARGE-AF HR (95% CI)

≥84th Percentile 16.28 (11.31–23.43) 14.71 (10.47–20.66) 13.05 (9.20–18.53)

50th–<84th Percentile 6.19 (4.30–8.92) 5.67 (4.03–7.98) 6.35 (4.48–9.00)

16th–<50th Percentile 2.59 (1.77–3.80) 2.54 (1.77–3.63) 2.60 (1.81–3.75)

<16th Percentile … … …

The 5-year risk of AF was calculated for each model as 1 − s
exp(

∑

�X−
∑

�Y)
0

 where s0 is the average AF-free survival probability at 5 years in the sample. 
For codified+NLP and codified-only, 

∑

�X is an individual’s risk score calculated using the regression coefficients from the development model (β) and the 
level for each risk factor (X), and 

∑

�Y  is the average score of the sample. For CHARGE-AF, 
∑

�X is an individual’s CHARGE-AF score calculated using the 
regression coefficients from the original CHARGE-AF publication (β) and the level for each risk factor (X), and 

∑

�Y  is a published constant (12.5815600).19 
For the codified+NLP model, risk was calculated as 1 − 0.925769

exp(
∑

�X−5.1621047); for codified-only, as 1 − 0.9234408
exp(

∑

�X−4.9497951); and for CHARGE-AF, 
as 1 − 0.9718412736

exp(
∑

�X−12.5815600). AF indicates atrial fibrillation; CHARGE-AF, Cohorts for Heart and Aging Research in Genomic Epidemiology AF; HR, 
hazard ratio; and NLP, natural language processing.



J Am Heart Assoc. 2022;11:e026014. DOI: 10.1161/JAHA.122.026014� 12

Ashburner et al� NLP to Predict Risk of Atrial Fibrillation

codified+NLP data model (0.750 [95% CI, 0.740–0.760]) 
compared with the codified-only model (0.738 [95% 
CI, 0.727–0.748]; P<0.001) and the CHARGE-AF model 
(0.735 [95% CI, 0.725–0.746]; P<0.001). HRs for AF by 
risk groups defined by the 16th, 50th, and 84th percen-
tiles for each model are shown in Table S6. Cumulative 
incidence plots stratified by risk groups of predicted risk 
are shown in Figure S3. Table S7 summarizes the NRI 
results. In external validation, the codified+NLP model 
demonstrated significantly improved reclassification 
compared with CHARGE-AF and codified-only by over-
all NRI, with most of the improvement attributable to 
correctly up-classifying events. The codified+NLP and 
codified-only models were not as well calibrated in the 
external validation cohort, with both models overesti-
mating AF risk (Figure S4). Evaluation of model perfor-
mance was similar when limiting to 3 years of follow-up 
(Table S8 and Figures S5 and S6).

DISCUSSION
In >86 000 older primary care patients, we derived 
and validated models to predict the incidence of AF. In 
one model, we used only codified data. In the second 
model, we added information from narrative data using 

NLP to codified data. We observed that incorporat-
ing codified and NLP-derived data modestly improved 
model performance compared with using only codi-
fied data. Furthermore, both newly developed models 
were superior to an established AF prediction model, 
CHARGE-AF. In external validation, performance re-
mained modestly greater for the model that incorpo-
rated NLP-derived data. Our findings suggest that 
incorporating narrative EHR data using NLP may im-
prove identification of clinical predictors of AF and yield 
a better prediction model.

Our results demonstrate that clinical and demo-
graphic features routinely ascertained from the EHR 
can predict 5-year risk of AF, and that incorporating 
narrative data from the EHR using NLP can mod-
estly improve model performance compared with 
using codified data only. We developed 2 models to 
predict incident AF in this study, 1 using only codi-
fied EHR data to identify clinical features and 1 that 
added narrative data using NLP. Prior studies have 
demonstrated the utility of NLP in increasing the sen-
sitivity and positive predictive value of clinical features 
compared with using codified data only.22–26,54 NLP 
may reduce misclassification of clinical features by 
extracting information from narrative text that would 

Figure 5.  Cumulative incidence plots stratified by groups of predicted risk in the internal validation cohort.
A, Depicts the cumulative risk of atrial fibrillation (AF) by groups defined by <16th percentile (green, <3.4%), 16th to <50th percentile 
(blue, 3.4%–<5.8%), 50th to <84th percentile (orange, 5.8%–<12.5%), and ≥84th percentile (red, ≥12.5%) of predicted AF risk for the 
codified+natural language processing (NLP) model. B, Depicts the cumulative risk of AF by groups defined by <16th percentile (green, 
<3.7%), 16th to <50th percentile (blue, 3.7%–<6.4%), 50th to <84th percentile (orange, 6.4%–<13.2%), and ≥84th percentile (red, 
≥13.2%) of predicted AF risk for the codified-only model. C, Depicts the cumulative risk of AF by groups defined by <16th percentile 
(green, <1.8%), 16th to <50th percentile (blue, 1.8%–<3.5%), 50th to <84th percentile (orange, 3.5%–<8.8%), and ≥84th percentile 
(red, ≥8.8%) of predicted AF risk for the Cohorts for Heart and Aging Research in Genomic Epidemiology AF (CHARGE-AF) model.

Table 6.  Percentile-Based NRI With Groups Determined by 16th, 50th, and 84th Percentiles of Each Model in Internal 
Validation Cohort

Variable Overall NRI Event NRI Nonevent NRI

Codified+NLP vs CHARGE-AF 0.070 (0.033–0.113) 0.052 (0.017–0.093) 0.018 (0.006–0.029)

Codified-only vs CHARGE-AF 0.054 (0.015–0.091) 0.036 (−0.002–0.069) 0.019 (0.007–0.030)

Codified+NLP vs codified-only 0.016 (−0.012–0.044) 0.020 (−0.007–0.046) −0.004 (−0.013 to −0.005)

CHARGE-AF indicates Cohorts for Heart and Aging Research in Genomic Epidemiology Atrial Fibrillation; NLP, natural language processing; and NRI, net 
reclassification improvement.
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otherwise not be considered for an algorithm. Using 
least absolute shrinkage and selection operator as a 
variable selection strategy, we found the NLP version 
of several features to be selected in the model over the 
codified version (eg, obesity). In other situations, both 
the NLP and codified versions were selected in the 
models (eg, supraventricular tachycardia). Among 22 
model features included in the codified+NLP model, 
the NLP version was selected instead of the codified 
version for 6 features (eg, obesity), whereas both the 
NLP and codified versions were selected for 7 features 
(eg, supraventricular tachycardia) (Table 3). In the de-
velopment and validation populations, the C-statistic 
and NRI were better in the model incorporating NLP 
compared with the model using codified data only. 
However, the magnitude of the improvement was 
modest. Accurately and efficiently assessing individual 
risk estimates for AF in clinical settings may enable tar-
geted risk-based screening or prevention interventions 
and may be implemented within the EHR to guide clini-
cal decision making. For example, assessing risk of AF 
could serve as a guide for use of longer-term cardiac 
monitor in survivors of acute stroke.17,35

The CHARGE-AF risk model was developed in 
community-based research cohorts, which may rep-
resent subjects at lower underlying risk of developing 
AF and include more accurate assessment of covari-
ates. External validation of CHARGE-AF in EHR-based 
cohorts has demonstrated poor calibration.20,21,35 
Within both our internal and external validation sam-
ples, CHARGE-AF underestimated risk of develop-
ing AF, even after recalibrating to the baseline risk of 
each sample. In contrast, our newly developed mod-
els using codified data only or NLP and codified data 

demonstrated modestly improved C-statistics com-
pared with CHARGE-AF and were well calibrated in an 
internal validation population, although calibration was 
not as good in external validation. Our findings support 
prior work suggesting that prediction models devel-
oped within a clinical setting using EHR data perform 
better in real-world clinical settings than models de-
rived from community-based research cohort data.21 
This may be the result of differences in data quality 
and/or differences in populations between research 
cohorts and clinical settings.

NLP provides an opportunity to access the vast 
amount of data in narrative notes within EHRs. The use 
of NLP as part of clinical operations will be dependent 
on scaling the rapid processing of large amounts of 
data and optimizing the ability of NLP tools to efficiently 
and accurately identify clinical factors.55–57 Quality of 
narrative data in the EHR may differ over time and by 
provider and institution. Thus, porting our algorithm to 
another institution will require at minimum validation, 
and potential refitting before implementation if there 
are large differences in the population. In our samples, 
the addition of NLP provided a statistically significant 
improvement in predictive performance, but the mag-
nitude of improvement was modest. Most components 
of the codified+NLP model, except for those extracted 
from cardiology reports, were available in a codified 
format. However, we did observe for most variables 
that either the NLP version was more predictive or the 
combination of codified and NLP was more predictive. 
If easily implemented, using NLP may be worthwhile 
to achieve the best possible model. The added ben-
efit of NLP may differ at different institutions, depend-
ing on the quality of codified and narrative data. For 

Figure 6.  Calibration plots of observed 5-year atrial fibrillation (AF) risk vs predicted 5-year AF risk with patients divided 
into risk groups based on deciles in the internal validation cohort.
A, Depicts the plot of observed 5-year AF risk (y axis) vs predicted 5-year AF risk (x axis) for the codified+natural language processing 
(NLP) model in blue, whereas the optimal calibration is shown in gray. B, Depicts the plot of observed 5-year AF risk (y axis) vs 
predicted 5-year AF risk (x axis) for the codified-only model in blue, whereas the optimal calibration is shown in gray. C, Depicts the 
plot of observed 5-year AF risk (y axis) vs predicted 5-year AF risk (x axis) for the Cohorts for Heart and Aging Research in Genomic 
Epidemiology AF (CHARGE-AF) model in blue, whereas the optimal calibration is shown in gray.
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institutions unable to implement NLP, our model using 
only codified data performed well and was an improve-
ment over CHARGE-AF.

This study has several potential limitations. Our mod-
els were developed within a single-center tertiary aca-
demic primary care practice network with patients who 
were largely of European ancestry, so generalizability 
may be limited. Like CHARGE-AF, we included race and 
ethnicity in our models.19 Although Black individuals have 
consistently had a lower prevalence of clinically detected 
AF compared with White individuals, this may represent 
differential detection rather than a biological mecha-
nism.58 Race and ethnicity may represent, and poten-
tially poorly represent, a proxy for social determinants 
of health. As such, we presented models and evaluated 
the C-statistic adding insurance and insurance plus zip 
code–defined income as predictors instead of race and 
ethnicity and the performance of the models did not 
materially deteriorate. Ascertainment of clinical features 
and incidence of AF were based on retrospective as-
sessment of EHR documentation, which may be asso-
ciated with misclassification when classifying features 
using codified or NLP data. Data on clinical features and 
ascertainment of incident AF are limited to what is avail-
able within the Mass General Brigham EHR. We do not 
have the ability to fully ascertain information on clinical 
features or incident diagnoses of AF for patients seen 
outside of our network.

In conclusion, estimation of the 5-year risk of AF in 
a primary care population can be modestly improved 
by using NLP to incorporate narrative EHR data. The 
amount of data available in unstructured form within 
EHRs is immense. Optimizing the use of NLP tools to 
meaningfully process these data offers an opportunity 
to improve prognostic models used within clinical care.
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Table S1. Validated algorithm to ascertain obesity from electronic health record 
Eligibility: Inclusion Criteria Adult patients (18 and older) with 

1) Height and weight measurement at 
a frequency based upon patient age 
from structured data field in 
physical examination section of 
electronic health record 

2) Assessment of body mass index 
(BMI = Weight / [Height]2) to 
categorize individuals as follows 

1. BMI ≥ 30 
2. Most recent BMI ≥29 w/ any 
BMI ≥30 in the past year 

3. No BMI data available 
3) If no BMI data available, obesity 

define based upon 
1. ICD-9/10 diagnosis code or 
2. Problem list term 

Eligibility: Exclusion Criteria 1) Most recent BMI < 30  
2) Most recent BMI ≤ 29 with no BMI ≥ 30 

in the past year 
Frequency of weight/height 
measurements 

1) Weight measurement at a frequency 
based upon age 
a) Patients age ≥65, most recent weight 

in past 2 years 
b) Patients age 40-64, most recent 

weight in past 3 years 
c) Patients age 23-39, most recent 

weight in past 5 years 
d) Patients aged 22, most recent weight 

in past 4 years 
e) Patients aged 21, most recent weight 

in past 3 years 
f) Patients aged 18-20, most recent 

weight in past 2 years 
2) Height measurement at a frequency 

based upon age  
a) Patients aged ≥28, most recent 

height in past 10 years  
b) Patients aged 27, most recent 

height in past 9 years 
c) Patients aged 26, most recent 

height in past 8 years 



d) Patients aged 25, most recent 
height in past 7 years 

e) Patients aged 24, most recent 
height in past 6 years 

f) Patients aged 23, most recent 
height in past 5 years 

g) Patients aged 22, most recent 
height in past 4 years 

h) Patients aged 21, most recent 
height in past 3 years  

i) Patients aged 18-20, most recent 
height in past 2 years 

 
Data Sources 1) Problem list terms (any prior) 

2) ICD 9/10 diagnosis codes in prior 3 
years 
a) Hospitalization or any outpatient 

visit 
b) Any primary or secondary codes 

3) Physical exam / flow sheets 
Problem List Terms Obese; Obesity; Morbid Obesity; Simple 

Obesity; Body Mass Index 30 + -Obesity 
ICD-9 codes 278.00: Obesity, unspecified 

278.01: Morbid obesity 
278.03: Obesity Hypoventilation syndrome 

ICD-10 Codes E66.01: Morbid (severe) obesity due to excess 
calories 
E66.09: Other obesity due to excess calories 
E66.1: Drug-induced obesity 
E66.2: Morbid (severe) obesity with alveolar 
hypoventilation 
E66.3: Overweight 
E66.8: Other obesity 
E66.9: Obesity, unspecified 
Z68.30: Body mass index (BMI) 30.0-30.9, 
adult 
Z68.31: Body mass index (BMI) 31.0-31.9, 
adult 
Z68.32: Body mass index (BMI) 32.0-32.9, 
adult 
Z68.33: Body mass index (BMI) 33.0-33.9, 
adult 
Z68.34: Body mass index (BMI) 34.0-34.9, 
adult 
Z68.35: Body mass index (BMI) 35.0-35.9, 
adult 



Z68.36: Body mass index (BMI) 35.0-35.9, 
adult 
Z68.37: Body mass index (BMI) 37.0-37.9, 
adult 
Z68.38: Body mass index (BMI) 38.0-38.9, 
adult 
Z68.39: Body mass index (BMI) 39.0-39.9, 
adult 
Z68.41: Body mass index (BMI) 40.0-44.9, 
adult 
Z68.42: Body mass index (BMI) 45.0-49.9, 
adult   
Z68.43: Body mass index (BMI) 50-59.9 , adult 
Z68.44: Body mass index (BMI) 60.0-69.9, 
adult 
Z68.45: Body mass index (BMI) 70 or greater, 
adult   

Cut off values for height and weight 1) Max height: 84 inches 
2) Min height: 48 inches 
3) Max weight: 515 pounds 
4) Min weight: 60 pounds 

Chart Review Selection Criteria 1) Blinded list of 630 patients (25 positive 
and 10 negative patients per primary 
care practice in the network) 

2) Review performed by a Research Nurse 
Chart Review Results Sensitivity: 98% 

Specificity: 97% 
Positive predictive value: 97% 
Negative predictive value: 96% 

BMI: body mass index  



Table S2. ICD-9/10 codes used to define codified predictors not ascertained using validated 
algorithms 
Variable ICD-9/10 Codes 
Myocardial Infarction 410.00, 410.01, 410.02, 410.10, 410.11, 410.12, 410.20, 

410.21, 410.22, 410.30, 410.31, 410.32, 410.40, 410.41, 
410.42, 410.50, 410.51, 410.52, 410.60, 410.61, 410.62, 
410.70, 410.71, 410.72, 410.80, 410.81, 410.82, 410.90, 
410.91, 410.92, 412, 429.79, I21.01, I21.02, I21.09, 
I21.11, I21.19, I21.21, I21.29, I21.3, I21.4, I21.9 , 
I21.A1, I21.A9, I22.0, I22.1, I22.2, I22.8, I22.9, I23.0, 
I23.1, I23.2, I23.3, I23.4, I23.5, I23.6, I23.7, I23.8, I24.1, 
I25.2, 

Chronic Kidney Disease 250.4, 250.41, 250.42, 250.43, 403, 403.01, 403.1, 
403.11, 403.9, 403.91, 404, 404.01, 404.02, 404.03, 
404.1, 404.11, 404.12, 404.13, 404.9, 404.91, 404.92, 
404.93, 582, 582.1, 582.2, 582.4, 582.81, 582.89, 582.9, 
583, 583.1, 583.2, 583.4, 583.6, 583.7, 583.81, 583.89, 
583.9, 584.5, 584.6, 584.7, 584.8, 584.9, 585.1, 585.2, 
585.3, 586, 587, 588, 588.81, 588.89, 588.9, 753, 753.12, 
753.13, 753.14, 753.15, 753.16, 753.17, 753.19, 788.5, 
792.5, V42.0, V45.11, V45.12, V56.0, V56.1, V56.2, 
V56.31, V56.32, V56.8, E08.22, E09.22, E10.22, E11.22, 
E13.22, I12.0, I12.9, I13.0, I13.1, I13.10, I13.11, I13.2, 
N18.1, N18.2, N18.3, N18.4, N18.5, N18.9, N19, N99.0, 
R34, Z49.01, Z49.02, Z49.31, Z49.32, Z99.2 

Chronic Kidney Disease - Severe 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 
404.92, 404.93, 585.4, 585.5, 585.6, 788.5, 792.5, V42.0, 
V45.11, V45.12, V56.0, V56.1, V56.2, V56.31, V56.32, 
V56.8, I12.0, I13.11, I13.2, N18.4, N18.5, N18.6, R34, 
Z99.2 

Hyperlipidemia 272, 272.1, 272.2, 272.3, 272.4, 272.5, 272.6, 272.7, 
272.8, 272.9, 759.9, E71.30, E75.21, E75.22, E75.5, 
E75.6, E77.0, E77.1, E78.0, E78.1, E78.2, E78.3, E78.4, 
E78.5, E78.6, E78.7, E78.70, E78.79, E78.81, E78.89, 
E78.9, E88.1, E88.89 

Valvular Disease 35.05, 35.12, 35.10, 35.11, 35.14, 35.20, 35.21, 35.06, 
35.13, 35.22, 35.24, 35.25, 35.26, 35.27, 35.28, 35.96, 
35.23, 394.1, 394.2, 396.3, 396.2, 396.9, 394.9, 396.0, 
396.1, 396.8, 394.0, V42.3, V43.3, I05.0, I05.1, I05.2, 
I05.8, I05.9, I06.8 , I06.9, I07.8, I07.9, I08.0, I08.1, 
I08.3, I08.8, I08.9, I09.1, I34.0, I34.1, I34.2, I34.8, I34.9, 
I35.0, I35.1, I35.2, I35.8, I35.9, I36.0, I36.1, I36.2, I36.8, 
I36.9, I37.0, I37.1, I37.2, I37.8, I37.9, I38 

Prior Stroke / Transient Ischemic 
Attack 

362.31, 362.32, 362.33, 362.34, 388.02, 430, 431, 432.9, 
433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.00, 
434.01, 434.10, 434.11, 434.91, 435.0, 435.1, 435.2, 



435.3, 435.8, 435.9, 437.1, 437.7, 437.9, 438.10, 438.11, 
438.12, 438.13, 438.14, 438.20, 438.21, 438.22, 438.81, 
438.82, 438.83, 438.89, 438.9, 997.02, V12.54, G45.0, 
G45.1, G45.2, G45.3, G45.4, G45.8, G46.3, G46.4, 
H34.00, H34.01, H34.02, H34.03, H34.10, H34.11, 
H34.12, H34.13, H34.211, H34.212, H34.213, H34.219, 
H34.231, H34.232, H34.233, H34.239, H93.099, I60.9, 
I61.9, I62.9, I63.00, I63.011, I63.012, I63.019, I63.111, 
I63.112, I63.119, I63.12, I63.131, I63.132, I63.139, 
I63.19, I63.20, I63.211, I63.212, I63.219, I63.22, 
I63.231, I63.232, I63.239, I63.29, I63.30, I63.311, 
I63.312, I63.319, I63.321, I63.322, I63.329, I63.331, 
I63.332, I63.339, I63.341, I63.342, I63.349, I63.40, 
I63.411, I63.412, I63.419, I63.421, I63.422, I63.429, 
I63.431, I63.432, I63.439, I63.49, I63.50, I63.511, 
I63.512, I63.519, I63.521, I63.522, I63.529, I63.531, 
I63.532, I63.539, I63.541, I63.542, I63.549, I63.59, 
I63.6, I63.8, I63.9, I66.01, I66.02, I66.03, I66.09, I66.11, 
I66.12, I66.13, I66.19, I66.21, I66.22, I66.23, I66.29, 
I66.3, I66.8, I66.9, I67.81, I67.82, I67.841, I67.848, 
I67.89, I67.9, I69.80, I69.81, I69.820, I69.821, I69.822, 
I69.823, I69.828, I69.831, I69.832, I69.833, I69.834, 
I69.839, I69.841, I69.842, I69.843, I69.844, I69.849, 
I69.851, I69.852, I69.853, I69.854, I69.859, I69.861, 
I69.862, I69.863, I69.864, I69.865, I69.869, I69.890, 
I69.891, I69.892, I69.893, I69.898, I69.90, I69.91, 
I69.920, I69.921, I69.922, I69.923, I69.928, I69.931, 
I69.932, I69.933, I69.934, I69.939, I69.941, I69.942, 
I69.943, I69.944, I69.949, I69.951, I69.952, I69.953, 
I69.954, I69.959, I69.961, I69.962, I69.963, I69.964, 
I69.965, I69.969, I69.990, I69.991, I69.992, I69.993, 
I69.998, I97.810, I97.811, I97.820, I97.821, Z86.73, 
G45.9 

Systemic Atherosclerosis 441, 441.01, 441.02, 441.03, 441.1, 441.2, 441.3, 441.4, 
441.5, 441.6, 441.7, 441.9, I70.0, I71.00, I71.01, I71.02, 
I71.03, I71.1, I71.2, I71.3, I71.4, I71.5, I71.6, I71.8, 
I71.9 

Cerebral Atherosclerosis 433, 433.01, 433.1, 433.11, 433.2, 433.21, 433.3, 433.31, 
433.8, 433.81, 433.91, 434.9, 434.91, 435, 435.1, 435.2, 
435.3, 437, 437.1, 438.13, 438.14, G45.0, G45.8, I63.00, 
I63.011, I63.012, I63.019, I63.111, I63.112, I63.119, 
I63.12, I63.131, I63.132, I63.139, I63.19, I63.20, 
I63.211, I63.212, I63.219, I63.22, I63.231, I63.232, 
I63.239, I63.29, I63.30, I63.311, I63.312, I63.319, 
I63.321, I63.322, I63.329, I63.331, I63.332, I63.339, 
I63.341, I63.342, I63.349, I63.40, I63.411, I63.412, 



I63.419, I63.421, I63.422, I63.429, I63.431, I63.432, 
I63.439, I63.49, I63.50, I63.511, I63.512, I63.519, 
I63.521, I63.522, I63.529, I63.531, I63.532, I63.539, 
I63.541, I63.542, I63.549, I63.59, I65.01, I65.02, I65.03, 
I65.09, I65.1, I65.21, I65.22, I65.23, I65.29, I65.8, I65.9, 
I66.9, I67.2, I67.81, I67.82, I67.89 

Thyrotoxicosis 242.00, 242.01, 242.10, 242.11, 242.20, 242.21, 242.30, 
242.31, 242.40, 242.41, 242.80, 242.81, 242.90, 242.91, 
E05.00, E05.01, E05.10, E05.20, E05.21, E05.80, 
E05.41, E05.90, E05.30, E05.31, E05.40, E05.81, 
E05.11, E05.91 

Hypothyroidism 243, 244, 244.1, 244.8, 244.9, 245, 245.1, 245.2, 245.9, 
E03.1, E03.8, E03.9, E06.1, E06.3, E06.5, E06.9, E89.0 

Pulmonary Disease 490, 491.0, 491.1, 491.20, 491.21, 491.22, 491.8, 491.9, 
492.0, 492.8, 493.00, 493.01, 493.02, 493.10, 493.11, 
493.12, 493.20, 493.21, 493.22, 493.81, 493.82, 493.90, 
493.91, 493.92, 494.0, 494.1, 495.0, 495.1, 495.2, 495.3, 
495.4, 495.5, 495.6, 495.7, 495.8, 495.9, 496, 500, 501, 
502, 503, 504, 505, 506.0, 506.1, 506.2, 506.3, 506.4, 
506.9, A15.0, A52.72, B38.1, B39.1, B40.1, D86.0, 
D86.2, E84.0, J40, J41.0, J41.1, J41.8, J42, J43.0, J43.1, 
J43.2, J43.8, J43.9, J44, J44.0, J44.1, J44.9, J45.20, 
J45.21, J45.22, J45.30, J45.31, J45.32, J45.40, J45.41, 
J45.42, J45.50, J45.51, J45.52, J45.901, J45.902, J45.909, 
J45.990, J45.991, J45.998, J47, J47.0, J47.1, J47.9, J60, 
J61, J62.0, J62.8, J63.0, J63.1, J63.2, J63.3, J63.4, J63.5, 
J63.6, J64, J65, J66.0, J66.1, J66.2, J66.8, J67.0, J67.2, 
J67.4, J67.5, J67.6, J67.7, J67.8, J67.9, J671, J673, J68.0, 
J68.1, J68.2, J68.3, J68.4, J68.9, J70.1, J70.3, J70.4, 
J81.8, J82, J84.02, J84.03, J84.10, J84.112, J84.115, 
J84.17, J84.82, J84.842, J84.89, J84.9, J95.3, J98.2, 
J98.3, M30.1, M32.13, M34.81, M35.02 

Chronic Obstructive Pulmonary 
Disease 

491, 491.0, 491.1, 491.2, 491.20, 491.21, 491.22, 491.8, 
491.9, 492, 492.0, 492.8, 493.2, 493.20, 493.21, 493.22, 
496, J44, J44.0, J44.1, J44.9, J41, J41.0, J41.1, J41.8, 
J42, J43, J43.1, J43.2, J43.8, J43.9, J45.5, J45.50, J45.51, 
J45.52 

Congenital Heart Disease 745.0, 745.1, 745.2, 745.4, 745.5, 746.1, 746.2, 746.3, 
746.4, 746.5, 746.6, 746.7, 746.81, 746.82, 746.83, 
746.85, 746.86, 747.1, 747.11, 747.29, 747.31, 747.49, 
745.7, 745.11, 745.3, 745.12, 745.8, 746.9, 745.69, 
745.9, 746.01, 746.02, 746.09, 746.00, 746.1, 746.89, 
747.6, 747.0, 747.9, 748.5, Q20.0, Q20.3, Q21.3, Q21.0, 
Q21.1, Q22.4, Q22.5, Q23.0, Q23.1, Q23.2, Q23.3, 
Q23.4, Q24.4, Q24.2, Q24.3, Q24.5, Q24.6, Q25.1, 
Q25.2, Q25.3, Q25.4, Q25.8, Q25.9, Q25.5, Q25.6, 



Q25.7, Q26, Q20.8, Q20.1, Q20.2, Q20.4, Q20.5, Q20.6, 
Q20.8, Q20.9, Q21.2, Q21.4, Q21.8, Q21.9, Q22.0, 
Q22.1, Q22.2, Q22.3, Q22.6, Q22.8, Q22.9, Q23.8, 
Q23.9, Q27.4, Q24.8, Q24.9, Q25.0, Q28.9, Q33.2 

Cardiomegaly 429.3, I51.7 
Mitral Valve Disorder 394, 394.0, 394.1, 394.2, 394.9, 424.0, I34, I34.0, I34.1, 

I34.2, I34.8, I34.9, I05, I05.0, I05.1, I05.2, I05.8, I05.9 
Mitral Stenosis 394.0, 394.2, I05.0, I05.2, I34.2 
Mitral Insufficiency 394.1, 394.2, I05.1, I34.0, I05.2 
Mitral Valve Prolapse I34.1, 424.0 
Supraventricular Tachycardia 427.0, I47.1 
Premature Atrial Contractions 427.61, I49.1 
Alcohol Use – Heavy 303, 303.0, 303.00, 303.01, 303.02, 303.9, 303.90, 

303.91, 303.92, 305, 305.00, 305.01, 305.02, F10.1, 
F10.10, F10.12, F10.120, F10.121, F10.129, F10.14, 
F10.15, F10.150, F10.151, F10.159, F10.18, F10.180, 
F10.181, F10.182, F10.188, F10.19, F10.2, F10.20, 
F10.22, F10.220, F10.221, F10.229, F10.23, F10.230, 
F10.231, F10.232, F10.239, F10.24, F10.25, F10.250, 
F10.251, F10.259, F10.26, F10.27, F10.28, F10.280, 
F10.281, F10.282, F10.288, F10.9, F10.92, F10.920, 
F10.921, F10.929, F10.94, F10.95, F10.950, F10.951, 
F10.959, F10.96, F10.97, F10.98, F10.980, F10.981, 
F10.982, F10.988, F10.99 

Pericarditis 036.41, 074.21, 093.81, 420, 098.83, 420.9, 420.99, 
423.1, 423.2, 393, 420.91, 420.9, 115.93, 391.0, 115.03, 
115.13, 115.93, 423.0, 423.3, 423.8, 423.9, 420.0, 
A39.53, B33.23, I01.0, I09.2, I30.0, I30.1, I30.8, I30.9, 
I31.0, I31.1, I31.2, I31.3, I31.4, I31.8, I31.9, I32 

Myocarditis 42.9, 032.82, 036.43, 074.23, 093.82, 13.03, 391.2, 
398.0, 422.0, 422.90, 422.91, 422.92, 422.93, 422.99, 
I40.0, I40.1, I40.8, I40.9, I41, I51.4, J10.82, J11.82, 
A38.1, A39.52, B26.82, B33.22, B58.81, D86.85, I01.2, 
I09.0 

Obstructive Sleep Apnea 780.57, 327.23, G47.30, G47.33, G47.39 
Prior Cardiac Surgery 35.00, 35.01, 35.02, 35.03, 35.04, 35.11, 35.22, 35.31, 

35.32, 35.33, 35.34, 35.35, 35.39, 35.41, 35.42, 35.5, 
35.51, 35.52, 35.53, 35.54, 35.55, 35.6, 35.61, 35.62, 
35.63, 35.7, 35.71, 35.72, 35.73, 35.8, 36.03, 36.04, 
36.07, 36.09, 36.10, 36.1, 36.11, 36.12, 36.13, 36.14, 
36.15, 36.16, 36.17, 36.19, 36.2, 37.0, 37.1, 37.11, 37.12, 
37.2, 37.21, 37.22, 37.23, 37.24, 37.25, 37.26, 37.27, 
37.28, 37.29, 37.3, 37.31, 37.32, 37.33, 37.34, 37.35, 
37.36, 37.37, 37.4, 37.41, 37.49, 37.7, 37.8, 37.9, 
I97.190, Z98.61, I25.700, I25.701, I25.708, I25.709, 
I25.710, I25.711, I25.718, I25.719, I25.720, I25.721, 



I25.728, I25.729, I25.730, I25.731, I25.738, I25.739, 
I25.790, I25.791, I25.798, I25.799, I25.810, I25.811, 
I25.812, I97.0, I97.110, I97.120, I97.130, V45.82, 
Z45.018, Z45.02, Z45.09, Z48.21, Z48.280, Z95.1, 
Z95.2, Z95.811, Z95.812 

Hypertrophic Cardiomyopathy 425.1, 425.11, 425.18, I42.1, I42.2 
Other Cardiomyopathy 425, 425.0, 425.2, 425.3, 425.4, 425.5, 425.7, 425.8, 

425.9, I42, I42.0, I42.3, I42.4, I42.5, I42.6, I42.7, I42.8, 
I42.9 

Chronic Liver Disease 070.0, 070.20, 070.21, 070.22, 070.23, 070.30, 070.31, 
070.32, 070.33, 070.41, 070.42, 070.43, 070.49, 070.51, 
070.52, 070.53, 070.54, 070.59, 070.6, 070.70, 070.71, 
070.9, 273.4, 275.01, 275.1, 453.0, 570, 571.1, 571.3, 
571.40, 571.41, 571.49, 571.8, 571.9, 573.0, 573.1, 
573.2, 573.3, 573.4, 573.8, 573.9, 576.1, B15.0, B15.9, 
B16.0, B16.1, B16.2, B16.9, B17.0, B17.10, B17.11, 
B17.2, B17.8, B17.9, B18.0, B18.1, B18.2, B18.8, B18.9, 
B19.0, B19.10, B19.11, B19.20, B19.21, B19.9, B94.2, 
K70.0, K70.10, K70.11, K70.2, K70.30, K70.31, K70.9, 
K71.0, K71.10, K71.11, K71.2, K71.3, K71.4, K71.50, 
K71.51, K71.6, K71.7, K73.0, K73.1, K73.2, K73.8, 
K73.9, K74.0, K74.1, K75.3, K75.4, K75.8, K75.89, 
K75.9, K76.89, Z22.50, Z22.51, Z22.52, Z22.59, K72.00, 
K72.01, K72.1, K72.10, K72.22, K72.90, K72.91 

Cirrhosis 571.2, 571.5, 571.6, K70.40, K70.41, K71.9, K74.2, 
K74.3, K74.5, K74.60, K74.69, K744, K7460, K75.0, 
K75.2 

Liver Complications 456.0, 456.20, 456.1, 456.21, 572.2, 572.3, 572.4, 572.8, 
573.5, 567.0, 567.23, 567.21, 567.29, 567.1, 567.89, 
567.9, 789.5, 789.59, K76.0, K76.1, K76.2, K76.3, 
I85.01, I85.11, I85, K76.6, K76.7, K76.81, K76.80, 
K76.8, K65.0, K65.2, K65.8, K65.9, R18, R18.0, R18.8 

ICD: International Classification of Disease  



Table S3. CHARGE-AF score components and weights* 
 

Covariate Estimated β (SE) 

Age (per 5-year increase) 0.508 (0.022) 

Race (white) 0.465 (0.093) 

Height (per 10 cm increase), cm 0.248 (0.036) 

Weight (per 15 kg increase), kg 0.115 (0.033) 

Systolic blood pressure (per 20 mmHg increase), mmHg 0.197 (0.033) 

Diastolic blood pressure (per 10 mmHg increase), mmHg -0.101 (0.032) 

Current smoker 0.359 (0.091) 

Anti-hypertensive medication use 0.349 (0.063) 

Diabetes 0.237 (0.073) 

Heart failure 0.701 (0.106) 

Myocardial infarction 0.496 (0.089) 

CHARGE-AF: Cohorts for Heart and Aging Research in Genomic Epidemiology Atrial 
Fibrillation; SE: standard error 
* Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial 
fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J 
Am Heart Assoc. 2013;2(2):e000102.  



Table S4. Concept unique identifiers (CUIs) mapped to potential predictors from linkage to 
the Unified Medical Language System (UMLS)* 
 

Variable CUI 
Alcohol Abuse C0085762 
Alcohol Abuse C0001973 
Alcohol Abuse C0560219 
Cardiomegaly C0018800 
Cerebral Atherosclerosis C4024924 
Cerebrovascular disease C0007775 
Cerebrovascular disease C0007820 
Chronic Kidney Disease - Severe C2316810 
Chronic Kidney Disease C1561643 
Chronic Liver Disease C0341439 
Chronic Liver Disease C0085605 
Chronic Obstructive Pulmonary Disease C0024117 
Chronic Obstructive Pulmonary Disease C0034067 
Chronic Obstructive Pulmonary Disease C0008677 
Cirrhosis C0023890 
Congenital Heart Disease C0152021 
Congestive heart failure C0018802 
Coronary artery disease C0010054 
Coronary artery disease C0010068 
Diabetes C0011849 
Diabetes C0011860 
Diabetes C0011854 
Hyperlipidemia C0020473 
Hypertension C0020538 
Hypertrophic Cardiomyopathy C0007194 
Hypertrophic Cardiomyopathy C4551472 
Hypothyroidism C0020676 
Left atrial enlargement C0232309 
Left atrial enlargement C0232310 
Left atrial enlargement C0238705 
Left Ventricular Hypertrophy C0149721 
Left Ventricular Hypertrophy C0232306 
Left Ventricular Hypertrophy C0344398 
Liver Complications C0015695 
Liver Complications C0267821 
Liver Complications C0014867 
Liver Complications C0019151 
Liver Complications C0020541 
Liver Complications C0019212 
Liver Complications C0600452 



Mitral Insufficiency C0026266 
Mitral Stenosis C0026269 
Mitral Valve Disease C0026265 
Mitral Valve Prolapse C0026267 
Myocardial Infarction C0027051 
Myocarditis C0027059 
Obesity C0028754 
Obesity C0028756 
Obstructive Sleep Apnea C0520679 
Other Cardiomyopathy C0878544 
Other Cardiomyopathy C0007193 
Other Cardiomyopathy C0007192 
Other Cardiomyopathy C0264834 
Pericarditis C0031046 
Peripheral vascular disease C0085096 
Premature atrial contractions C0033036 
Prolonged PR Interval C0600125 
Pulmonary Disease C0024115 
Shortened PR Interval C0520878 
Stroke C0038454 
Supraventricular Tachycardia C0039240 
Supraventricular Tachycardia C1963244 
Supraventricular Tachycardia C3815188 
Supraventricular Tachycardia C0030590 
Systemic Atherosclerosis C0155733 
Thyrotoxicosis C0040156 
Thyrotoxicosis C0020550 
Transient Ischemic Attack C0007787 
Valvular Disease C3258293 
Valvular Disease C0018824 

CUI: concept unique identifier; UMLS: Unified Medical Language System 

* Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical 
terminology. Nucleic Acids Res. 2004;32:D267-270.   



Table S5. C-statistics and hazard ratios in prediction models that exclude race and include 
social determinants of health 
 

 C-statistic  
(95% CI) 

Hazard Ratio  
(95% CI) 

Development (Add insurance)   
     Codified+NLP 0.742 (0.733-0.751)  
          ≥ 84th percentile  15.91 (12.88-19.64) 
          50-<84th percentile  5.74 (4.65-7.10) 
          16-<50th percentile  2.32 (1.86-2.90) 
          < 16th percentile  - 
     Codified-only 0.728 (0.719-0.737)  
          ≥ 84th percentile  12.80 (10.55-15.52) 
          50-<84th percentile  4.64 (3.82-5.63) 
          16-<50th percentile  2.17 (1.77-2.66) 
          < 16th percentile  - 
   
Development (Add insurance + Income)*   
     Codified+NLP 0.741 (0.732-0.750)  
          ≥ 84th percentile  15.44 (12.52-19.04) 
          50-<84th percentile  5.81 (4.71-7.17) 
          16-<50th percentile  2.29 (1.83-2.86) 
          < 16th percentile  - 
     Codified-only 0.727 (0.717-0.736)  
          ≥ 84th percentile  12.59 (10.33-15.36) 
          50-<84th percentile  4.68 (3.84-5.72) 
          16-<50th percentile  2.13 (1.73-2.63) 
          < 16th percentile  - 
   
Internal Validation (Add insurance)   
     Codified+NLP 0.731 (0.716-0.746)  
          ≥ 84th percentile  12.91 (9.42-17.71) 
          50-<84th percentile  4.38 (3.18-6.02) 
          16-<50th percentile  2.00 (1.43-2.80) 
          < 16th percentile  - 
     Codified-only 0.722 (0.707-0.737)  
          ≥ 84th percentile  12.02 (8.76-16.50) 
          50-<84th percentile  4.74 (3.45-6.52) 
          16-<50th percentile  1.96 (1.40-2.74) 
          < 16th percentile  - 
   
Internal Validation (Add insurance + 
Income)* 

  

     Codified+NLP 0.731 (0.716-0.746)  
          ≥ 84th percentile  12.72 (9.27-17.46) 
          50-<84th percentile  4.26 (3.09-5.86) 



          16-<50th percentile  1.95 (1.39-2.73) 
          < 16th percentile  - 
     Codified-only 0.722 (0.707-0.738)  
          ≥ 84th percentile  11.36 (8.27-15.60) 
          50-<84th percentile  4.55 (3.31-6.25) 
          16-<50th percentile  1.99 (1.42-2.78) 
          < 16th percentile  - 

NLP: natural language processing; CI: confidence interval 

* Income represents proportion of population by zip code with income < $50,000 from 2008-
2012 ascertained from Melendez, Robert, Clarke, Philippa, Khan, Anam, Gomez-Lopez, Iris, Li, 
Mao, and Chenoweth, Megan. National Neighborhood Data Archive (NaNDA): Socioeconomic 
Status and Demographic Characteristics of ZIP Code Tabulation Areas, United States, 2008-
2017. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 
2020-07-30. https://doi.org/10.3886/E120462V1. Missing income data in development 
population: n=1,498; Missing income data in internal validation population: n=507 

  



Table S6. Hazard ratios and 95% confidence intervals for incidence of AF by risk groups 
defined by the 16th, 50th, and 84th percentiles for each model in the external validation 
cohort 
 Codified+NLP 

HR (95% CI) 

Codified-only 

HR (95% CI) 

CHARGE-AF 

HR (95% CI) 

≥ 84th percentile 17.74 (13.59-23.16) 13.26 (10.47-16.78) 14.60 (11.37-18.77) 

50-<84th percentile 5.67 (4.34-7.43) 4.26 (3.36-5.41) 5.24 (4.07-6.74) 

16-<50th percentile 2.41 (1.82-3.20) 2.01 (1.56-2.58) 2.23 (1.71-2.90) 

< 16th percentile - - - 

AF: atrial fibrillation; NLP: natural language processing; CI: confidence interval 

  



Table S7. Percentile-based net reclassification improvement (NRI) with groups determined 
by 16th, 50th, 84th percentile of each model in external validation cohort 
 

 Overall NRI  

(95% CI) 

Event NRI  

(95% CI) 

Non-event NRI  

(95% CI) 

Codified+NLP vs. 

CHARGE-AF 

 

0.044 (0.018 - 0.069) 0.040 (0.016 – 0.064) 0.003 (-0.003 – 0.010) 

Codified-only vs. 

CHARGE-AF 

 

0.001 (-0.025 - 0.026) -0.003 (-0.026 – 0.021) 0.004 (-0.002 – 0.011) 

Codified+NLP vs. 

Codified-only 

0.051 (0.027 - 0.072) 0.055 (0.033 – 0.075) -0.004 (-0.010 – 0.002) 

NRI: net reclassification improvement; NLP: natural language processing; CI: confidence 
interval; CHARGE-AF: Cohorts for Heart and Aging Research in Genomic Epidemiology Atrial 
Fibrillation 
 

 
  



Table S8. C-statistics and hazard ratios in external validation cohort over 3-years of follow-
up 
 

 C-statistic  
(95% CI) 

Hazard Ratio  
(95% CI) 

   
     Codified+NLP 0.758 (0.746-0.769)*  
          ≥ 84th percentile  19.36 (14.29-26.21) 
          50-<84th percentile  5.93 (4.37) 
          16-<50th percentile  2.39 (1.73-3.30) 
          < 16th percentile  - 
     Codified-only 0.745 (0.733-0.757)  
          ≥ 84th percentile  13.22 (10.15-17.23) 
          50-<84th percentile  4.35 (3.33-5.69) 
          16-<50th percentile  1.79 (1.34-2.38) 
          < 16th percentile  - 
    CHARGE-AF 0.741 (0.730-0.753)  
          ≥ 84th percentile  16.89 (12.51-22.82) 
          50-<84th percentile  6.00 (4.43-8.12) 
          16-<50th percentile  2.44 (1.78-3.36) 
          < 16th percentile  - 
   

CI: confidence interval, NLP: natural language processing; CHARGE-AF: Cohorts for Heart and 
Aging Research in Genomic Epidemiology Atrial Fibrillation 
* p<0.001 comparing C-statistic in Codified+NLP compared to codified-only and CHARGE-AF  

  



Figure S1. Prevalence of features identified by codified data only, NLP data only, and by 
both codified and NLP data among those where both the codified and NLP version were 
selected for inclusion in the codified+NLP model in the development cohort 
 

 

NLP: natural language processing  



Figure S2. Plot of observed 5-year AF risk versus predicted 5-year AF risk for recalibrated 
CHARGE-AF with patients divided into risk groups based on deciles in the internal 
validation cohort 
 

 

AF: atrial fibrillation; CHARGE-AF: Cohorts for Heart and Aging Research in Genomic 
Epidemiology Atrial Fibrillation   



Figure S3. Cumulative incidence plots stratified by groups of predicted risk for codified + 
NLP, codified-only, and CHARGE-AF models in external validation cohort 
 

 

NLP: natural language processing; AF: atrial fibrillation; CHARGE-AF: Cohorts for Heart and 
Aging Research in Genomic Epidemiology Atrial Fibrillation 

 

 

 

 

 



Figure S4. Plots of observed 5-year AF risk versus predicted 5-year AF risk with patients 
divided into risk groups based on deciles in external validation cohort 
 

 

AF: atrial fibrillation; NLP: natural language processing 

  



Figure S5. Cumulative incidence plots stratified by groups of predicted risk for codified + 
NLP, codified-only, and CHARGE-AF models in external validation cohort over 3-years of 
follow-up 
 

 

NLP: natural language processing; CHARGE-AF: Cohorts for Heart and Aging Research in 
Genomic Epidemiology Atrial Fibrillation; AF: atrial fibrillation 

  



Figure S6. Plots of observed 3-year AF risk versus predicted 3-year AF risk with patients 
divided into risk groups based on deciles in external validation cohort 
 

 

AF: atrial fibrillation; NLP: natural language processing 
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