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A B S T R A C T

The COVID-19 pandemic further highlighted the need to use low-cost remote monitoring procedures for
medical patients. Since the results reported in the literature have shown that the use of Channel State
Information (CSI) from Wi-Fi networks to remotely monitor patients can provide means to obtain a powerful
medical information package in a non-invasive way and at low cost, a consistent review and analysis of the
state of the art on this applied technique is developed in the present work. Initially, a mathematical overview
of the CSI technology and its functional model is done. Subsequently, details about the technical approach
necessary to use CSI in medical applications and a summary of the studies reported in the literature with such
applications are presented. Based on the analyses and discussions carried out throughout this work, a better
understanding of the current state of the art is achieved. Challenges and perspectives for future research are
also highlighted.
. Introduction

Several medical devices have been used to help monitor, diagnose,
nd treat many diseases. These devices usually provide an internal
r external communication link to allow monitoring, configuration,
ontrol, or even remote exchange of information in real-time. The
ontinuous monitoring of the patient’s health offers a better knowl-
dge of his/her condition and allows a better flow of information
or supervision, treatment, and recovery [1]. Due to the Covid-19
andemic, we have been facing an increasing number of patients that
emand healthcare. As it is a highly contagious and sometimes lethal
isease, the monitoring of patients should be as contactless as possible.
he healthcare professionals who treat Covid-19 patients need to use
ersonal protective equipment to minimize the risk of contagion [2,3].

Several proposals have been studied in the literature for contactless
atient monitoring aiming to deal with this demand. In [4] for exam-
le, the authors proposed to use Frequency Modulated Carrier Wave
FMCW) technology to detect human activities through radio frequency
ignals. However, FMCW has a high cost, which makes this technology
ot accessible to all. Another possible solution for contactless patient
onitoring is the use of Radio Frequency Identification (RFID) tech-
ology [5]. RFID is an interesting approach, but it depends on RFID
ags to be connected to patients. Therefore, the search for a new and
ess expensive approach without using invasive devices has shown that

i-Fi radio signals can be used to track human activities, movements,
nd vital signs [6,7].
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Nowadays, Wi-Fi devices are available in almost every medical and
residential environment. Wi-Fi technology is widespread, and applying
this technology for health monitoring is non-invasive and low cost.
The electromagnetic waves of Wi-Fi signals have the particularity of
crossing walls, and do not even require a transmission with line of sight
to the patient.

Radio signals (electromagnetic waves) can be used to track human
activities. The radio waves are affected by human movements changing
the characteristics of the received waves [8,9]. These changes can be
recognized in a data set called Channel State Information (CSI). CSI
provides channel status information at the physical (PHY) layer such as
amplitude, phase, and/or Received Signal Strength Indicator (RSSI) for
each subcarrier involved in the multicarrier transmission [10,11]. Cur-
rent Wi-Fi standards, such as 802.11n/ac, use Orthogonal Frequency
Division Multiplexing (OFDM) modulation at the physical layer. OFDM
is a modulation technique that divides the transmission frequency
band into several subbands, also called subcarriers. Each subcarrier
can provide detailed information about the channel state [12]. CSI
represents the Channel Frequency Response (CFR) for each subcarrier
between the pairs of transmitting and receiving antennas.

CSI can capture how the human body interferes the electromagnetic
signal in time, frequency, and spatial domains. This information can
be used for different human sensing applications, like human presence
detection, motion detection, human identification, fall detection, ges-
ture recognition, human localization, and health monitoring. For health
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monitoring, OFDM subcarriers are used as multiple sensors to detect
a person’s physical change. A CSI waveform analysis is performed to
detect minimal human body activities such as respiration, heartbeat,
and others [9,12,13].

In the literature, several studies emphasize the use of CSI as a tech-
nology accessible to all for monitoring human activities [6,7,10,11]. In
addition, CSI is considered a non-invasive tool for the patient, which
generates greater acceptance of its use.

Many survey papers have been published with the focus on compar-
ing different wireless sensing technologies [6,10,14], behavior recog-
nition [7,11], and localization [15,16]. In [14], the authors focused
on reviewing the differences between CSI from Wi-Fi devices (Wi-
Fi CSI), RFID, and backscatter. The authors of [10] analyzed the
key components and core characteristics of the system architecture of
human behavior recognition. In [6] the authors presented a review
of signal processing techniques, algorithms, applications, and perfor-
mance results. Yousefi et al. [7] presented the advances in passive
human behavior recognition. In [11] the authors surveyed the existing
wireless sensing systems in terms of their basic principles, techniques,
and system structures. Xiao et al. [15] also gives a survey on both
device-free and device-based indoor localization, and [16] presented a
survey on localization with emphasis on the basic principles and future
trends. The latter also highlighted the differences between CSI and RSSI
in terms of network layering, time resolution, frequency resolution,
stability, and accessibility.

Different from existing works, this survey focuses on the analysis of
CSI data for monitoring human vital signs. It discusses detection, recog-
nition, and estimation techniques that can help achieving this goal.
This survey gives a comprehensive guideline to adopt CSI for medical
purposes under a safe, scalable, and low-cost perspective. Finally, this
survey presents future trends and challenges for enhancing existing Wi-
Fi sensing capabilities and enabling new Wi-Fi sensing applications for
health monitoring.

The remainder of the text is organized as follows. In Section 2, we
present the mathematical model of CSI and its current extraction tools.
We also show the general architecture of CSI for the detection of human
activities. Then, in Section 3, we present several studies found in the
literature that address the detection of vital signs, more specifically
respiration and heart rate. In addition, some applications using CSI are
presented. In Section 4, we present challenges and perspectives for the
use of CSI in healthcare. Finally, Section 5 brings our final remarks.

2. Wi-Fi CSI overview

This section presents an overview of how CSI data is obtained
from Wi-Fi devices and how it can be processed and used in some
applications. Fig. 1 (adapted from [6]) shows the general architecture
of the system used for collection, treatment, and estimation of human
activities using Wi-Fi CSI data.

In general, the CSI collection process is carried out by a device
equipped with network interface card (NIC). Then, the chosen suitable
base signal such as amplitude and/or phase must be extracted from
the collected information. The extracted signal feeds the signal pre-
processing module in a next step. In this phase, in order to remove
out the noise of the signal and obtain more accurate CSI data, pre-
processing approaches become essential. It is performed through noise
reduction, signal transformation, and filtering techniques [6,8,9]. This
paper presents some of the most used techniques to obtain precise
CSI data. After signal pre-processing, an analysis of human activities
through theoretical modeling-based algorithms and/or learning-based
algorithms follows. The modeling-based algorithm usually utilizes typ-
ical models, such as Fresnel zone model and angle-of-arrival (AoA).
The modeling-based approach faces challenges on building a model.
The learning-based approach is mostly used in movement identification
applications. Despite requiring a training stage, it can achieve good
performance. Finally, the application can detect, estimate, or recognize
some human activities and vital signs [6,17,18].
100
Fig. 1. Wi-Fi CSI system framework.

In short, the architecture shown in Fig. 1 gives a general overview
of the CSI-based structure for vital signs monitoring. A more detailed
analysis is presented in the following sections.

2.1. Mathematical modeling

In this section, we present a mathematical model of the system used
to collect the CSI data.

While propagating in a wireless channel we can observe that the
signal reflects on the obstacles. Thus, the received signal is composed
by an overlay of multiple copies of the signal which travel over different
paths, that is what we call the multipath effect. The signal undergoes
changes as a consequence of the multipath channel such as time delay,
amplitude attenuation, and phase shift. These changes can be expressed
in the form of the channel impulse response (CIR) defined in the time
domain, and/or the channel frequency response (CFR) defined in the
frequency domain. The CIR can be mathematically described as:

ℎ(𝑡) =
𝐼
∑

𝑖=1
𝑎𝑖𝑒

−𝑗𝜃𝑖𝛿(𝑡 − 𝜏𝑖), (1)

where 𝑎𝑖 represents the attenuation, 𝜃𝑖 the initial phase offset, and 𝜏𝑖
the delay of the 𝑖th path. Also, 𝐼 is the number of paths.

In the IEEE 802.11g/n/ac specification [19–21], the physical layer
of Wi-Fi communication systems uses orthogonal frequency division
multiplexing (OFDM) technique for both 2.4 GHz and 5 GHz frequency
bands. OFDM is a modulation technique that uses a pre-defined num-
ber of orthogonal subcarriers [22]. In addition, information can be
independently transmitted over different OFDM symbols. The OFDM
features make it a good solution for multipath channels and also for
multiple-input multiple-output (MIMO) systems.

In the frequency domain, the narrowband flat fading channel model
of MIMO system is given by:

𝑌 = 𝐇𝑋 +𝑁, (2)

here 𝑌 ∈ C𝑛×𝑛𝑠𝑐 and 𝑋 ∈ C𝑚×𝑛𝑠𝑐 represent the received and trans-
itted OFDM symbols respectively, with 𝑚 transmitting antennas, 𝑛

eceiving antennas and 𝑛𝑠𝑐 subcarriers. 𝐇 ∈ C𝑛×𝑚 is a complex matrix
hat contains the CSI, and 𝑁 ∈ C𝑛×𝑛𝑠𝑐 represents the noise [12].

To measure CSI, the Wi-Fi transmitter sends Long Training Fields
(LTFs), which contain predefined information in each subcarrier, in the
frame preamble. The Wi-Fi receiver estimates the matrix (𝐇) that con-
tains the CSI information, using the received signal and the transmitted

LTFs.
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Table 1
Tools for CSI data extraction.

Tool Supported
Chipsets

Max. BW Technology

Linux 802.11n CSI
Tool [24]

IWL5300 40 MHz 802.11n

Atheros CSI Tool
[25]

AR9580, AR9590
AR9344, QCA9558

40 MHz 802.11n

OpenFWWF CSI
Tool [26]

BCM4318 20 MHz 802.11g

Nexmon CSI
Extractor [27]

BCM4365, 66
BCM4339, 58, 455

80 MHz 802.11ac

GNU Radio [28] USRP B200 80 MHz 802.11ac

Wi-ESP [29] ESP32 40 MHz 802.11n

Considering a MIMO Wi-Fi system operating under IEEE 802.11n
pecification, and with 𝑚 transmitting antennas and 𝑛 receiving anten-

nas, the signal that contains the estimated CSI of each data streams can
be mathematically expressed as

𝐇 =

⎛

⎜

⎜

⎜

⎜

⎝

𝒉1,1 𝒉1,2 … 𝒉1,𝑛
𝒉2,1 𝒉2,2 … 𝒉2,𝑛
⋮ ⋮ ⋱ ⋮

𝒉𝑚,1 𝒉𝑚,2 … 𝒉𝑚,𝑛

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

where 𝒉𝑖,𝑗 represents the CSI between the 𝑖th transmission antenna
and the 𝑗th receiving antenna. Let 𝑐 be the number of subcarriers
used to estimate the CSI, thus, the state information of the channel
established between a pair of antenna (𝑖, 𝑗), defined by 𝒉𝑖,𝑗 ∈ C(𝑐×1),
can be mathematically represented by a vector with 𝑐 elements. We
use 𝒉 to represent a generic 𝒉𝑖,𝑗 as

𝒉 =
[

ℎ1, ℎ2,… , ℎ𝑐
]T . (4)

The analysis using Wi-Fi CSI can provide more information than
RSSI since the matrix of collected data is similar to a digital image with
a high spatial resolution.

2.2. CSI data collection tools

After presenting the mathematical model of how CSI data is ob-
tained, in this section, we briefly describe some tools used to capture
and collect CSI data. Multiple tools have been proposed in the literature
to access the CSI on network cards of Wi-Fi devices. Table 1 summarizes
some of the most known tools [23].

Linux 802.11n CSITool is a extraction tool that use Intel Wi-Fi
Wireless Link 5300 802.11n MIMO radio. It is a modified firmware
that includes all the proper procedures for capturing, collecting, and
analyzing the CSI data of a wireless channel using an open-source
Linux wireless network driver. This tool includes all the software
and scripts necessary to run experiments, read, and analyze channel
measurements, which makes it a good alternative for health monitoring
through Wi-Fi CSI. The chipset IWL5300 provides 802.11n channel state
information in a format that reports the channel matrices and each
channel matrix entry is a complex number, with signed 8 bits resolution
for the real and imaginary parts. It specifies the gain and phase change
of the path between a single transmit–receive antenna pair.

Atheros-CSI-Tool is another tool for capturing, collecting, and ana-
lyzing CSI data. It allows extraction of detailed wireless communication
information from Atheros Wi-Fi network cards. Atheros-CSI-Tool is
a modified firmware on an open-source Linux kernel that supports
802.11n chips, and works on various Linux distributions, for example,
Ubuntu, OpenWRT, and Linino. Therefore, it is available for personal
computers, embedded devices such as Wi-Fi routers, and IoT (Internet
of Things) devices.

OpenFWWF CSI Tool (Open FirmWare for Wi-Fi networks) is a
project focused on providing a complete and economical platform
101
to implement new medium access control (MAC) protocols in which
it is easier to perform tests. It also offers open-source firmware for
Broadcom chips and adopts a reverse engineering method to obtain CSI
data.

Nexmon was proposed to enable researchers access to lower-layer
frame processing and advanced physical-layer functionalities. It is a C-
based firmware for Broadcom/Cypress Wi-Fi chips that mainly focuses
on enabling monitoring mode for CSI data extraction. It allows the ex-
traction of information from wireless communication channels between
two Wi-Fi devices. Nexmon CSI works on Wi-Fi MIMO devices with
up to 80 MHz bandwidth, besides it is compatible with 802.11a/n/ac
standards. It can be used on mobile devices (smartphones) and on cheap
devices such as Raspberries.

GNU Radio is an open-source software that allows the graphical
development of signal processing modules. It is used without specific
hardware in a simulated way, or with external RF hardware such as
USRP. The USRP is designed for RF applications from DC to 6 GHz,
including MIMO systems. Examples of application areas include mobile
phones, public safety, spectrum monitoring, radio networks, cognitive
radio, satellite navigation, and ham radio. Spectrum monitoring is how
GNU radio and USRP are used to collect, extract, and analyze CSI
data.

ESP32 was created by Espressif Systems. It is a low-cost, and low-
power system with a series of integrated chips with features like
dual-mode Wi-Fi and Bluetooth. It is an ideal integrated board for
the development of mobile applications, IoT, wearable, among others.
Regarding its wireless card, it supports several technologies such as
802.11b/g/n. In addition, it supports bandwidths of up to 40 MHz. This
indicates that it can obtain CSI information for at least 128 subcarriers.
Wi-ESP developers claim that ESP32 can support up to 16 antennas via
an external antenna switch, indicating that more CSI information can
be obtained.

2.3. Signal pre-processing

Following the architecture presented in Fig. 1, in stage 2 the signal
into equal segments and calculates the FFT in each independent seg-
ment, Discrete Hilbert Transform (DHT) that incorporates a phase shift
and is useful to find instantaneous changes in a given time within the
signal, and Discrete Wave Transform (DWT) [30–33] which provides
good resolution of the captured signal.

Signal Extraction is the last step within signal pre-processing. It
can be performed by filtering and thresholding the signal, where the
high-pass [34], low-pass [35], and band-pass filters [36] are widely
used to extract signals with certain dominant frequencies. Signal Com-
prehension is important to reduce signals to a few or a dimension
that represents the enormous amount of captured signals. For doing
this, some of the used techniques include Principal Component Analysis
(PCA) [37], Independent Component Analysis (ICA) [38,39], Singular
Value Decomposition (SVD) [33], Self/Cross Correlation, Euclidean
Distance, Distribution Function, among others.

Finally, Signal Composition is a technique used to estimate or
detect a phenomenon using various devices or frequency band charac-
teristics. Some Wi-Fi detection applications require CSI from multiple
peripherals, carrier bands, data packets, etc. for a good accuracy. We
can cite, for example, SpotFi [40], which requires CSI from several
Wi-Fi devices and data packets to accurately estimate AoA and ToF
considering decimeter localization precision. Also, in Chronos [41],
the authors proposed a system that requires multiple frequency bands
for decimeter-level localization using a single Wi-Fi access point (AP).
These proposals exemplify the need of a signal composition stage to be
able to achieve their goals.
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2.4. Detection algorithms

The third stage of the architecture presented in Fig. 1 is the us-
age of detection algorithms. Three groups of different algorithms can
be used in this stage: modeling-based, learning-based, and hybrid.
Modeling-based algorithms are supported by physical theory such
as signal analysis models. For this analysis, the signal obtained from
the pre-processing stage is analyzed and the effects produced on the
contained CSI information through various phenomena are examined.
For example, the CSI amplitude attenuation and the phase shift can be
affected by the distance between the transmitter and the receiver and
multipath effects including radio reflection, refraction, diffraction, ab-
sorption, polarization, and scattering [28,30,32,34–36,42–50]. Within
the modeling-based algorithms there are statistical models, based on
empirical measurements or probabilities, such as the model used to
determine the state of the wireless channel (Power Spectral Density,
Coherence Time/Frequency, Self/Cross Correlation, so on) [31,32,39,
43,48,51,52]. These types of algorithms are widely used for estimating
human vital signs.

Another group of used algorithms is the Learning-based group.
Learning-based algorithms are mainly used for recognition of human
gestures, position, and detection of people. Learning is carried out using
the previous training set of CSI, where the effect of the phenomenon to
be detected is reflected in the CSI. Some of the most used algorithms
are: Naive Bayes, k Nearest Neighbor, Support Vector Machine, Con-
volutional/Recurrent Neural Network, and Long Short-Term Memory
[12,39,45,53].

On the other hand, the fusion of algorithms has led to the use
of Hybrid Algorithms. Hybrid Algorithms combine the benefits of
modeling-based algorithms and learning-based algorithms. This com-
bination can be beneficial for the development of more robust and
complete detection. Studies that use hybrid algorithms include [45,54–
57].

3. Wi-Fi CSI applications

Several studies related to different human activities apply the
CSI analysis for detection, recognition, and estimation [8,9,13,17,18].
Those work can serve as a starting point to develop health monitoring
applications, leading to a robust system for detecting and monitoring
vital signs.

For example, in [9], the authors proposed a system called EmoSense
to detect human emotions. EmoSense analyzes the time and frequency
fingerprints in wireless channel data induced by the physical expression
of emotion. In [8] the authors proposed a system called MoSense to
detect the movements that are critical indicators of human presence
and human activities. Also, in [17], a radioelectric tomography was
proposed to detect people and the passage of water. Another approach
was carried out in [18], where the authors proposed a system called
WiDriver to monitor the activities of a heavy vehicle driver. Activities
such as steering wheel movements, answering phone calls, and writing
text messages on a cell phone were detected. More recently, in [13],
the authors tackled various human activities such as walking, sitting,
standing, and running.

CSI has a high potential of becoming a powerful and promising tech-
nology to monitor the physical aspects of the environment in general. In
this survey, we focus on using CSI to monitor human vital signs. These
vital signs are classified mainly in (i) respiration rate, which is the
number of breaths that a person takes per minute; (ii) heart rate, which
is the number of times the heart beats or contracts during a certain
period of time, generally one minute (bpm). These two vital signs,
counted in a number of breaths or beats, offer important information
to determine the patient current health state. It is worth mentioning
that we can find in the literature several studies to detect, recognize,
and estimate these vital signs. The Wi-Fi CSI based techniques for
102
monitoring vital signs become more appealing due to their low-cost,
contact-free and easy-to-deploy properties.

This section describes studies that use Wi-Fi CSI to monitor vi-
tal signs. For this purpose, we highlight the monitored vital signs
and the application relevant features, real-time or non real-time, and
multi-person, or single-person, as displayed in Fig. 2. In the following
sections, the vital signs monitoring applications are described, the
techniques used in the signal processing and modeling are classified
according to the classification introduced in Section 2.

3.1. Respiration rate monitoring

Many studies turn to CSI for monitoring the vital signs of a patient.
To the best of our knowledge, WiSleep [33] was the first work to
detect human respiration rate for sleep monitoring based on CSI using
commodity Wi-Fi devices. The proposed device-free approach has the
potential to be widely deployed in home and many other clinical and
non-clinical environments.

Since then, several studies have been developed in an attempt to
improve breath rate monitoring using Wi-Fi CSI signals. In [43] for
example, the authors first introduced the Fresnel model in free space,
then they verified the Fresnel model for Wi-Fi radio propagation in an
indoor environment. They developed a theory to relate one’s respiration
depth, location, and orientation to the detectability of respiration.
With the developed theory, not only does when and why human
respiration is detectable using Wi-Fi devices become clear, but it also
sheds light on understanding the physical limit and the foundation
of Wi-Fi based sensing systems. Along the same line of reasoning,
the authors of [46] compared the pattern-based and modeling-based
approaches to monitor the respiration rate. They proposed to expand
the sensing range of the used Fresnel Zone (FZ) model to the vast
regions outside of the first Fresnel zone. They showed the superiority
of the Fresnel Zone model-based human sensing over pattern-based
approaches, and argued that the Fresnel Zone model-based approaches
have great potential in achieving centimeter and even millimeter scale
in human activity sensing, enabling a wide spectrum of applications.
Besides, the authors in [42] also used the Fresnel Zone model, and
showed how a centimeter-scale position change affects the respiration
detection performance.

Also with the focus on the Fresnel Zone model, the authors of [36],
utilized the Fresnel diffraction model to accurately quantify the rela-
tionship between the diffraction gain and the human target’s subtle
chest displacement and thus successfully turn the previously considered
destructive obstruction diffraction in the First Fresnel Zone (FFZ) into
beneficial sensing capability. They were able to present the detailed
heatmap of the sensing capability at each location inside the FFZ to
guide the respiration sensing so users clearly know where are the
proper positions for respiration monitoring and if located at a bad
position, how to move just slightly to reach a good position.

Another system, called BreathTrack, was proposed in [34] to track
the state of human respiration using CSI Wi-Fi signals. They proposed
hardware and software correction methods to remove both the time-
invariant and time-variant phase distortions (e.g., Carrier Frequency
Offset (CFO), Sampling Frequency Offset (SFO), Packet Detection Delay
(PDD), and PLL Phase Offset (PPO)), and thus obtain accurate CSI. They
also proposed a joint Angle of Arrival (AoA)-Time of Flight (ToF) sparse
recovery method to obtain the corresponding complex attenuation
coefficient, eliminate the multipath effect in the indoor environment,
and extract the information of the dominant path to track the status of
breath. Also, regarding the phase of Wi-Fi signals, the authors of [47]
discovered that its amplitude and phase are perfectly complementary
to each other. They revealed the mathematical model behind and
exploited the complementary nature to design and implement a real-
time respiration detection system with commodity Wi-Fi devices. They
have also used the Fresnel Zone model. Besides, the authors of [45]
used the CSI phase difference to intelligently estimate respiration rates
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Fig. 2. Vital signs applications diagram.
for multiple people with commodity Wi-Fi devices. At first CSI phase
difference data between pairs of antennas at the Wi-Fi receiver were
used to create CSI tensors. Then, the Canonical Polyadic Decomposition
(CPD) was applied to obtain the desired respiration signs.

In another approach, the authors of [30] explored the detection
of multiple persons’ respiration at a time. For mitigating the effect
caused by other people, they put a receiver besides each user, then
they filtered out the data whose Time of Arrival (ToA) was bigger
than a truncation threshold. Also with the focus on multiple people,
in [51], the authors introduced TR-BREATH, a time-reversal (TR)-based
breathing monitoring system. It is capable of respiration detection
and multi-person respiration rate estimation within a short period of
time. TR-BREATH projects CSIs into the TR resonating strength (TRRS)
feature space and analyzes the TRRS using the Root-MUSIC and affinity
propagation algorithms to magnify the CSI variations. If respiration
is detected, TR-BREATH estimates the multi-person respiration rates
via affinity propagation, likelihood assignment, and cluster merging.
Besides, it can estimate the number of people in the room with an error
of around 1, which is assumed to be known in advance in previous
work.

The MultiSense system [38] was developed to robustly and contin-
uously sense the detailed respiration patterns of multiple persons, even
if they have very similar respiration rates and are physically closely
located. The commodity Wi-Fi hardware nowadays is usually equipped
with multiple antennas. Thus, each individual antenna can receive a
different mix copy of signals reflected from multiple persons. They
successfully proved that the reflected signals are linearly mixed at each
antenna and proposed to model the multi-person respiration sensing as
a Blind Source Separation (BSS) problem. Then, they solved it using
ICA to separate the mixed signal and obtain the reparation information
of each person.

In [44], the authors further used the variation of the Doppler spec-
tral energy extracted from the CSI collected by Wi-Fi devices to track
the chest displacement induced by respiration. The respiration sign is
extracted from the accumulated spectral energy change of Doppler shift
at zero frequency according to the periodicity of respiration action.

The FarSense proposal, introduced in [58], presents the first real-
time system that can reliably monitor human respiration when the
target is far away (within 8 m) from the Wi-Fi transceiver pair, bridging
the gap between lab prototype and real-life deployment. The authors
proposed a method called CSI-ratio that establishes the corresponding
relationship between human movement and CSI-ratio, based on the
amplitude and phase of the signal.

More recently, a system called Wi-COVID, was introduced in [37].

It is a non-invasive and non-wearable technology to monitor patients
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and track respiration rate for the healthcare provider. The authors
explored the possibility of using the Wi-Fi based technology to monitor
diagnosed COVID-19 patients who are performing self-isolation in real-
time. They proposed the use of a low-cost Raspberry Pi to act as a CSI
data collector on the Wi-Fi network. On the software side, they used
open-source codes for implementing the CSI processing in a Raspberry
Pi. In [37] the authors used Nexmon to extract CSI of OFDM-modulated
Wi-Fi frame 802.11n on a per frame basis with up to 80 MHz bandwidth
on the Broadcom Wi-Fi chip of a Raspberry Pi. Thus, their implementa-
tion was simpler than others as they only needed an off-the-shelf Wi-Fi
router and a Raspberry Pi.

Some recent works using the Nexmon firmware for respiratory
detection are presented in [54,59]. In [54], the authors show a signal
reflection model in a non-line-of-sight NLoS environment called Wi-
Phone. They use Nexmon inside a smartphone to capture and process
the signals that are reflected in an environment in which the patient
does not have a line of sight with the Router or Access Point of the
Wi-Fi network. This processing yields breathing patterns obtained from
the signals reflected in the environment. In [59], they use a smartphone
with Nexmon firmware to estimate a respiration rate. The authors use
a selection of optimal subcarriers based on a Fresnel zone model. The
model is used to estimate breathing in scenarios with one and several
people at the same time.

In Table 2, we present a summary and comparison of the cited
studies on breath monitoring by using Wi-Fi CSI analysis together with
their own characteristics. We present the used signal processing tools
such as noise filtering (NF), signal transform (ST), and signal extraction
(SE) tools. Details of which algorithms use which signal processing
techniques and for which Wi-Fi sensing applications they are used are
also discussed. We also compare whether the operation is performed in
real-time or not.

From Table 2 we can observe that most studies used Linux 802.11n
CSI Tool. This fact is due to the nature of the most part of Wi-Fi devices
that use Linux. It is worth mentioning that a new proposal has been
recently applied to Wi-Fi CSI health monitoring systems using Nexmon.
It is a promising technology, since it offers simple usage on devices such
as smartphones and Raspberries. Another important point to observe is
the real-time implementation. Some studies have been developed with
the aim of operating in real-time, which makes them more appropriate
to work in real environments. On the other hand, several proposals
have high accuracy; especially when only one person is considered in
the test environment, and the accuracy decreases with the increase in
the number of people. Also, the correct environment settings and the
person position influence the accuracy of the proposal, offering the best
results when patients are in good position, that is, the First Fresnel

Zone.
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Table 2
Respiration rate monitoring using Wi-Fi CSI signals.

Ref. year Extraction tool Pre-processing Detection
algorithm

Multi-person Real-time Performance summary

[42] 2016 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No No N/A

[43] 2016 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No No N/A

[36] 2018 Linux 802.11n CSI
Tool

Noise Reduction
Signal Extraction

Modeling-based No No Accuracy: good positions 98.8%, bad
positions 61.5%

[34] 2019 Linux 802.11n CSI
Tool

Noise Reduction
Signal Extraction

Modeling-based No No Accuracy: over 99%

[44] 2021 Linux 802.11n CSI
Tool

Noise Reduction
Signal Transform

Modeling-based No No Max. error <0.7 bpm, average errors
≈0.15 bpm

[38] 2020 Linux 802.11n CSI
Tool

Signal Extraction Modeling-based Yes No Error rate of 0.73 bpm (breaths per
minute)

[45] 2017 Linux 802.11n CSI
Tool

Noise Reduction Hybrid Yes No Accuracy: 1 person 96% less than 0.5
bpm, 2 and 3 person 93% smaller than
0.5 bpm, and 5 person 62% less than
0.5 bpm

[46] 2017 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No N/A Median error: 0.09 bpm, 0.15 bpm, 0.06
bpm for three different detectable
regions

[30] 2017 Linux 802.11n CSI
Tool

Signal Transform Modeling-based Yes Yes Accuracy: >95% (1 person) >88% (2
persons)

[51] 2017 Linux 802.11n CSI
Tool

Signal Transform Modeling-based No Yes Mean accuracy: single-person NLOS
99%, dozen people LOS 98.65%, 9
people NLOS 98.07%

[47] 2018 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No Yes Reported accuracy of nearly 100% in
LOS

[58] 2019 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No Yes Reported overall detection rate of nearly
100%; mean absolute error less than 0.3
bpm for breath rate

[37] 2021 Nexmon CSI Extractor Noise Reduction
Signal Extraction

Modeling-based No Yes N/A

[54] 2021 Nexmon CSI Extractor Noise Reduction
Signal Extraction

Hybrid No No N/A

[59] 2022 Nexmon CSI Extractor Noise Reduction
Signal Extraction

Modeling-based Yes No Accuracy: over 93%

[60] 2022 Wi-ESP Noise Reduction
Signal Extraction

Modeling-based Yes No Accuracy between 91% and 99%.

[61] 2020 Linux 802.11n Signal Transform Modeling-based Yes N/A Accuracy: 1 person 98.8%, 2 person
98.4%, 3 person 97.5%.

[62] 2021 Linux 802.11n Signal Transform Modeling-based No Yes Phase and amplitude based
measurements had median percentage
errors of 8.5% and 7.4% respectively

[53] 2021 Linux 802.11n Noise Reduction
Signal Extraction

Learning-based No N/A K-nearest neighbor classifier using relief
feature selection techniques: 85.12%.
3.2. Heart rate monitoring

Heart rate monitoring is another relevant task in vital signs monitor-
ing. Several studies monitor heart rate and respiration simultaneously,
but we have found only one proposal for monitoring heart rate only.

The CardioFi system, proposed in [63], monitors the heart rate via
Wi-Fi hardware with omnidirectional antennas. The main challenge
was the considerable radio frequency noise that affects Wi-Fi trans-
missions in real-world environments. CardioFi uses a scheme called
Dynamic-Window to observe an anomalous behavior in the signal and
discard the signals that do not represent greater sensitivity. Thus, they
obtain highly sensitive frequencies. CardioFi was tested in non-line-of-
sight scenarios with a low Signal-to-Noise Rate (SNR) and improved
its percentile error. This solution considers the monitoring of a person,
which can be performed in real time. However, only the architecture
used for heart rate estimation is presented, needing to be extended to
support a real-time medical application.
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3.3. Respiration rate and heart rate monitoring

We can also find in the literature more ambitious work, which have
focused not just on breath monitoring, or heart rate monitoring, but
both at the same time. For example, in [48] Liu et al. proposed to track
both respiration and heart rate during sleep by using off-the-shelf Wi-Fi
devices. The developed algorithm makes use of the channel information
in both time and frequency domain to estimate respiration and heart
rates, and it works well when either individual or two persons are in
bed. Also in [52], Liu et al. reused the existing Wi-Fi network to track
the respiration and heartbeat concurrently during sleep. The results
showed that the proposed system provides an accurate respiration rate
and heart rate estimation not only under typical settings, but also
covering challenging scenarios including the long distance between
the Wi-Fi device and the Access Point (AP), non-line-of-sight (NLOS)
situation, and different sleep postures.
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Fig. 3. Practical scheme.

Also following the direction of monitoring multiple vital signs,
PhaseBeat [32] leverages CSI phase differences between two receiv-
ing antennas on Wi-Fi devices to detect and monitor the respiration
rate and heart rate in real-time. The authors discovered that the CSI
phase difference data are quite stable after suitable calibration. They
also proved that, for indoor multipath environments under small-scale
fading, the CSI phase difference data is a periodic signal with the same
frequency as the respiration sign when the wireless signal is reflected
from the chest of a person. They also showed that PhaseBeat is highly
robust for respiration rate estimation under various environments, such
as different distances between the transmitter and receiver.

In [35], the authors designed a Wi-Fi signal-based breath and
heartbeat recognition system called Wi-Health. They have determined
whether or not a human being is alive, and the number of heartbeats
and breaths. They also proposed to eliminate similar human activities,
which have similar frequency with respiration (0 Hz–1 Hz), such as
waving hands. It is necessary to eliminate these activities effectively,
otherwise, they may introduce extra peaks in the spectrum and cause
inaccurate estimation.

Besides, in [12], the authors proposed a method to recognize and
distinguish a person’s respiration and heart rate pattern changes by
using the Wi-Fi CSI signal. The amplitude of signal waves can represent
the periodic up-and-down chest movements caused by respiration and
heartbeat, and prominent changes of the signal pattern can be detected
by using the Dynamic Time Warping (DTW) algorithm. The authors
showed that this method can identify the person’s physical status.
Besides, they evaluated the method through various experiments with
10 participants.

More recently, another system that detects respiration and heart
rate named PhaseBeat was featured in [31]. A rigorous analysis of
channel state information phase difference with respect to its stability
and periodicity was conducted. They showed that for indoor multipath
environments under small-scale fading, the CSI phase difference data
are periodic and have the same frequency as the respiration sign when
the Wi-Fi signal is reflected from a person chest. Moreover, CSI phase
difference is also more robust than RSSI in various deployment sce-
narios, such as different distances, obstacles/walls, and orientations. In
that proposal, the most sensitive subcarrier was selected and processed
by DTW to obtain the respiratory sign and the reconstructed cardiac
sign. Finally, they applied FFT to measure the respiratory and cardiac
rates.

The summary of Wi-Fi based respiration and heartbeat rate appli-
cations is shown in Table 3. As we can notice, when the focus is on
expanding the vital signs monitored, the most part of research drop
off the real time operation. It can be seen that in general the accuracy
of the proposals is higher and the average error is lower for respiration
rate detection compared to the heart rate detection. Also, most of these
studies only consider single-person monitoring.
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Likewise, in Fig. 3 we show a practical scheme that exemplifies
the process of estimating vital signs (breathing and heart rate). In this
example, we start with the collection of CSI data on a common Wi-Fi
network, and with the use of a Raspberry Pi device running NEXMON,
the CSI data is captured. Notice that other devices and tools for CSI
data extraction can be used as shown in Table 1. Once the CSI data is
collected, pre-processing is performed since the CSI data may contain
noise. To clean the signal, filters are used that eliminate noise, such as
the Hampel Filter, or other filters discussed in Section 2.3. Also, outliers
are removed and the signal is smoothed with the use of techniques such
as the Savitzky–Golay filter, moving average, among others. Next, the
vital signs estimation stage begins by making a selection of subcarriers
that contain relevant information. This is done by applying signal
extraction techniques such as bandpass, lowpass, or highpass filters. In
the same sense, signal compression techniques are applied to reduce
signals to a smaller dimension that represents the enormous amount of
captured signals. A widely used technique is PCA. Finally, we estimate
vital signs using signal processing techniques such as FFT, STFT, among
others shown in Section 2.4.

3.4. Multiple-signs applications

In addition to the respiration rate and heartbeat, some studies
proposed new sensing modalities of human activities such as change
in position, micro-movements, tremors, fall detection, among others.
The WiSleep [33] proposal, for example, focused on extracting from the
CSI rhythmic patterns associated with respiration and abrupt changes
due to the body movement. The WiSleep proposal was further extended
in [64]. To reliably identify respiration rate in the presence of noise,
the respiration is assumed to be periodic. However, an undesirable
consequence is that information like abnormal respiration (e.g., sleep
apnea) that violates the periodic assumption is not easily identified.
Compared with the existing works, the system proposed in [64] can
track abnormal respiration (e.g., sleep apnea) and can also provide
respiration information when the person is under different sleeping
positions.

WiCare [39] system is another example of work that uses Wi-Fi CSI
signals to monitor different vital signs in parallel: respiration rate with
the coexistence of some micro-motions (e.g., reading, writing, using the
phone). More specifically, WiCare is able to distinguish micro-motions
of a specific individual from his/her respiration. This approach is based
on the fact that respiration results in CSI fluctuations with narrower
frequency band compared to that of micro-motions.

In [28] the authors presented a two-dimensional phase extraction
system using passive Wi-Fi sensing to monitor three basic elderly
care activities including respiration rate, essential tremor, and falls.
The entire implementation was performed using software-defined ra-
dios, and they also used signal processing techniques to analyze the
cross-ambiguity function and identify phase variations in two separate
planes.

The authors of [50] proposed a motion detection capability en-
hancement method based on Rice-K theory and Fresnel theory. Move-
ments such as turning over will affect the accuracy of vital signs
monitoring, thus, they also proposed a sleep motion positioning al-
gorithm based on regularity detection for quickly distinguishing such
movements.

The difficulty of monitoring multi-person sleeping respiration gener-
ally comes from the necessity of separate the effects of multiple persons’
respiration. Another problem is that even though the separation can be
feasible with some complicated algorithms, it is still really hard to map
the multiple identified respiration states to the corresponding persons.
For solving this problem, the authors of [49] proposed an approach
via the deployment of Wi-Fi transceivers. A carefully placed Wi-Fi
transceiver may only be affected by the person in a certain location.
Furthermore, they considered the sleeping movements of people as
well as the sleeping posture change to improve the robustness of the
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Table 3
Respiration rate and heartbeat rate monitoring using Wi-Fi CSI signals.

Ref. year Extraction tool Pre-processing Detection
algorithm

Multi-person Real-time Performance summary

[48] 2015 Linux 802.11n CSI
Tool

Noise Reduction
Signal Transform

Hybrid No No Respiration Rate Error: <1.1 bpm (1
person), <1.2 bpm (2 persons); Heart
Rate Error: <5 bpm (1 person)

[12] 2018 Linux 802.11n CSI
Tool

Signal Transform
Signal Extraction

Modeling-based No No Accuracy: respiration rate 94% heart
rate about 82%

[52] 2018 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No No Accuracy: 80% < 0.5 bpm for breath rate,
90% < 4 bpm for heart rate

[31] 2020 Linux 802.11n CSI
Tool

Signal Transform Modeling-based No No Median error of 0.25 breaths per minute
(bpm) for respiration rate, and 1.19 bpm
for heart rate

[35] 2016 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based No N/A Average estimation error under: 0.6 bpm
(respiration rate), 6 bpm (heart rate)

[32] 2017 Linux 802.11n CSI
Tool

Noise Reduction
Signal Transform

Modeling-based No Yes Estimation error: <0.85 bpm (respiration
rate), <10 bpm (heart rate)
Table 4
Multiple signs monitoring using Wi-Fi CSI signals.

Ref. year Extraction tool Pre-processing Detection
algorithm

Multi-person Real-time Extra signal Performance summary

[64] 2016 Linux 802.11n CSI
Tool

Noise Reduction
Signal Transform

Modeling-based No No Posture Respiration Rate Estimation: greater
than 85%; Apnea Estimation: 82.1%,
Change position over 80%

[39] 2017 Linux 802.11n CSI
Tool

Noise Reduction
Signal Extraction

Modeling-based No No Micro-movements Estimation error <2 bpm for 80% of
experiments

[33] 2014 Linux 802.11n CSI
Tool

Noise Reduction
Signal Extraction

Modeling-based No Yes Posture Respiration Rate Estimation: 85%;
Posture change ≈80%

[28] 2017 USRP B200 Signal Transform Modeling-based No Yes Movement Accuracy: respiration 87%, detecting
falls 98%, tremor classification 93%

[49] 2018 Linux 802.11n CSI
Tool

Noise Reduction Modeling-based Yes Yes Posture Mean absolute error: Respiration 0.614
bpm in the middle of the FZ, 3.130 bpm
in the boundary; Apnea false alarm
6.8%, missed alarm 7.09%

[50] 2021 Linux 802.11n CSI
Tool

Noise-reduction Modeling-based No Yes Posture 96.618% for breath rate and 94.708%
for heart rate

[65] 2021 Linux 802.11n CSI
Tool

Noise-reduction Modeling-based No Yes Night movement The breath rate error varied between
0.34 BPM to more than 5 BPM

[66] 2021 Linux 802.11n CSI
Tool and Atheros

Noise Reduction
Signal Extraction

Modeling-based Yes N/A Nocturnal seizure Accuracy: 93.85%

[67] 2021 Linux 802.11n CSI
Tool

Noise Reduction
Signal Extraction

Modeling-based No Yes Sleep stage Accuracy: accuracy of 81.8%
system. Thus, they employed the difference between the maximum and
minimum value and the variation of the peak amplitude extracted from
the frequency domain among the CSI streams of all the subcarriers to
detect apnea.

In Table 4, we summarize and compare the cited studies on different
vital signs monitoring by using Wi-Fi CSI analysis. We also present
some of their characteristics such as signal processing and extraction
tools, used model, and performance. We also compare whether the
operation is performed in real-time or not. As shown in Table 4,
most studies focused on several vital signs monitoring consider also a
real-time implementation, and modeled-based detection algorithms. In
those ones, the respiration rate detection accuracy is slightly inferior
when compared to the single-person detection proposals seen in the
previous sections.

4. Challenges and perspectives

Monitoring vital signs and human activity using Wi-Fi CSI can sup-
port healthcare applications. However, challenges must be addressed
to achieve practical implementation. When referring to vital signs
detection, setting scenarios for capturing the CSI is not trivial. The
movements and daily activities have a larger impact on the CSI when
compared to breathing and heart rate. Therefore, vital signs detection
106
imposes a strict demand on signal reception and processing. In addition,
we face challenges, such as electromagnetic interference, the recogni-
tion of simultaneous movements of different body parts, multi-person
environments, and non-line-of-sight (NLS) scenarios. This section cov-
ers these challenges and addresses perspectives of future applications
and improvements of using Wi-Fi CSI for vital signs monitoring.

4.1. Challenges and open issues

The first stage of the CSI architecture is data capture. Here, the
antennas placed on the environment for transmitting and receiving Wi-
Fi signals vary in quantity and shape. There are scenarios set to use
a single antenna to transmit and a single antenna to receive (single
input single-output, SISO) in a point-to-point configuration. Another
configuration corresponds to MIMO technology, with several antennas
used to transmit and receive the CSI data. MIMO configuration are
necessarily governed by 802.11n/ac standard. In both configurations,
the convergence point is the amount of CSI information captured; the
greater the number of antennas or devices involved, the greater the
amount of data.

Specifically, the number of devices needed to obtain the necessary
information and increase the accuracy of behavior recognition is an
issue that needs to be studied. Studies such as Zhu et al. [68], and
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Li et al. [69] confirm that increasing the number of Wi-Fi devices
can improve system performance. However, increasing the AP den-
sity also increases the electromagnetic interference, and increasing
client density results in a packet collision increase, if the IEEE 802.11
RTS/CTS mechanism is disabled. This is one of the main challenges
when identifying vital signs.

Increasing the number of Wi-Fi devices allows enlarging the cover-
age area and improving the performance of models based on Fresnel
zones for example. However, the Fresnel zones of multiple links are
complex [70]. So, how to detect various Fresnel zone boundaries is a
big challenge. It is difficult to identify the best transceiver locations
and correct orientations [30]. The scenario configuration is a critical
step for efficient CSI data collection that allows more precise vital
signs detection. In addition, the number of devices depends solely on
the amount of information that we are capable to analyze, and if the
used tool supports this capture. The CSI data capture tools mentioned
in Section 2.2 differ according to the characteristics of the chosen
scenario.

A fundamental discussion for CSI capture performance is the line-of-
sight (LoS) of antennas and devices. In a scenario where the antennas
and devices have a line-of-sight between them and the patient, the
captured data is more robust and fully describes the vital signs to be
detected. However, in a scenario where the devices and antennas have
no line-of-sight (NLoS) between them and neither with the patient,
the results of data capture can be insufficient. In NLoS scenarios, the
raw phase variation becomes more unstable compared to LoS scenarios;
this is mainly due to the extra attenuation in the NLoS scenarios [34].
This makes the detection of vital signs in non-line-of-sight scenarios an
important challenge. These consequences occur due to the interference
in a LoS be lower than in NLoS setting.

In a scenario with line-of-sight, the detected interference is mainly
due to the patient, in whom the signals interfere (reflect, scatter,
attenuate, and so on), thus the CSI can be obtained to later infer
the vital signs. On the other hand, in a scenario without a line-of-
sight, not only the patient generates interference, but also other objects
e.g. concrete walls, which can distort the signal and CSI measurements.
Consequently, the captured information does not generate adequate
reliability for its subsequent treatment and vital signs inference.

Once the CSI data were captured, the next stage is the signal pre-
processing. This stage focuses on cleaning the signal as much as possible
from external noise. Gaussian, white, thermal, or any other inherent
noise in wireless communication are coupled to the signal with the
transmitted information. Various types of filters are applied in an
attempt to clean the signal, as described in Section 2.3. For further an-
alyzing the signal, filters must be applied to obtain a resulting signal as
reliable as possible, thus cleaning the signal becomes a challenge. It is
necessary that the cleaned signal defines the most reliable waveforms,
i.e. when the respiration frequency is detected, the signal is initially
analyzed in an interval of 0.2 Hz to 0.4 Hz, and the wave variation,
caused by the patient’s chest motion when inhaling or exhaling, can be
observed.

After the respiration rate detection, the heart rate detection is
carried out, which due to its inherent heartbeat process is represented
in less intensity compared to respiration. This cardiac detection can
be affected by the respiration rate, as the effect of respiration on
the CSI is considerably stronger when compared to the effect of the
heartbeat. In breath monitoring, the requirements for signal filtering
can be less complex and demanding compared to cardiac monitoring.
Cardiac detection requires that the resulting signal display the wave
peaks in detail while conserving the small wave distortions (peaks)
caused by the heartbeat. That is why it is important to use the most
appropriate filtering technique to clean the signal without losing the
heartbeat effect on the captured CSI.

The next stage is the detection of vital signs using various algorithms
shown in Section 2.4. What we find in the studies presented in the

literature is that there are two aspects in the detection of vital signs
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or human activities in general. When we talk about detecting a person,
recognizing gestures or estimating movements, the proposed studies
induce the use of artificial intelligence algorithms, specifically machine
learning. However, when we refer to the detection of vital signs, the
techniques involved are based on theoretical models. This is because,
as described above, when we detect vital signs such as heart rate,
it is necessary that the waveforms (peaks) are detailed as clearly as
possible, and for this, theoretical signal modeling techniques present
good performance. However, the lack of studies that use machine
learning algorithms to detect vital signs leads us to thinking about how
well they might perform for this type of detection. We start from the
point that, for example, for heart rate detection, the peaks produced by
the beats that affect the captured signal represent distortion patterns,
then these patterns could be identified by a machine learning algorithm
as a recurrence throughout monitoring, whereby the actual value of the
heart rate can be determined. In summary, at this stage the use of theo-
retical signal modeling techniques and machine learning algorithms for
the detection of vital signs varies according to the final detection pur-
pose. Likewise, the used algorithms and/or techniques have a different
behavior depending on the vital sign detected, which unleashes a need
for standardization of detection techniques or algorithms.

Detection of vital signs results in a challenging task, mainly due to
the simultaneous movements of different parts of the body and/or the
presence of several people in the same environment. Commonly people
perform multiple movements simultaneously and the collected CSI
contains the resulting mixed effect of all those moves. Distinguishing
the signal change caused by each movement of the body is the basis
for ensuring the best performance in detecting vital signs. However,
the simultaneous detection of body movements is a challenge to be
faced. On the other hand, some studies as TR-BREATH [30,71] have
shown that the increase in the number of users generally decreases
the recognition accuracy. It is also important to identify the presence
of several people in the same environment and eventually be able to
differentiate the effect of each person on the CSI. In this way, it would
be possible to monitor more than one person at the same time. Also,
avoiding interference by other people in the vital signs of the patient
being monitored. However multi-person behavior recognition becomes
a challenge as the number of people increases.

Finally, the last stage of application leads to the detection, esti-
mation, or recognition of some human activity. In the health field,
it is necessary that detection be taken as the main application. This
application leads to the detection of vital signs of people/patients.
One of the perspectives is that the detection of vital signs must be
carried out continuously, in real time. This ongoing evaluation is done
for the purpose of providing up-to-date medical information about the
patient to medical staff and making better decisions for the benefit
of the patient. Studies in the literature lack this adaptation of real-
time continuous detection and do not provide an applied approach
to the detection of vital signs. Also, new challenges such as security,
scalability, reliability and portability of detection information arise and
can generate complications in the continuous detection of vital signs.
These challenges emerge throughout the detection process and the
inherent wireless scenario, where detection takes place. Thus, security
can be affected in data capture since it is carried out in a wireless
environment. It may be subject to malicious attacks that can distort
captured CSI data.

Security can be improved by incorporating CSI with upper layers
such as Transport Layer Security (TLS), Secure Sockets Layer (SSL),
application layer, and user like suggested in [72]. Regarding scalability,
there are two important points to address. First, the studies found in
the literature that address the estimation of vital signs in two or more
people in the same environment are still poor. The need to find new
solutions that support or differentiate with better accuracy the vital
signs of a group of individuals and not just one, as is currently being
done, is an important approach. Second, the growth of devices that
collect, process, and estimate vital signs in various environments is still
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almost null. The need arises to develop an architecture that supports
this topology of CSI collector devices. In most jobs, only a single device
that collects CSI data is used in a single environment. So, if we think
of a healthy environment, it would be interesting for this CSI data
collection to be carried out massively in various environments and that
this incorporation of several CSI devices does not generate problems at
the network level, CSI data collection and even processing.

In the area of reliability, the information obtained by the treating
physician may not be reliable or even non-contiguous. Considering
portability, the need for monitoring equipment (antennas, devices) to
be as portable as possible for coupling to different types of applications
is crucial. In the same way, the final applications must be coupled to
the information provided by these monitoring devices. Therefore, the
problems and challenges increase as new elements are added to the
detection of vital signs. It is important to overcome these challenges
and propose technologies that work in conjunction with the detection
of vital signs and return a robust medical system that uses CSI technol-
ogy, but without affecting its initial purpose, which is the vital signs
detection for medical applications.

4.2. Future directions

Real-time monitoring allows reducing the risk in life-threatening.
When a patient faces a life-threatening situation, it can be identified
immediately and an alert signal can be triggered instantly. So, the
patient can receive the necessary medical assistance. Many events
as: Human Activity Recognition (HAR), fall detection, respiration and
heartbeat detection and even disease diagnosis, are of interest for
eHealth applications. One of these events or a combination of some of
them can indicate the need for medical help that a person may have.
Disease recognition using CSI is the least addressed in the literature and
it turns out an interesting open research field [49,64].

For feature extraction and activity classification, Machine Learning
(ML) techniques have become a promising alternative. In the literature,
among the main ML algorithms used for the detection and recognition
of human activity and vital signs are: LSTM [13,73,74], SVM [3,13,
68], k-NN [9], and Backpropagation Neural Network (BPNN) [75–77].
Those studies demonstrate the ability of ML algorithms for detection
and recognition of human activity and vital signs, and open the way
for new research focused on detecting diseases and improving eHealth
applications.

In the literature, studies show that the LSTM algorithm is capable of
extracting deep characteristics of the input data automatically without
the need to use complex techniques for the treatment of Wi-Fi CSI
signals. Therefore, LSTM is considered a good candidate for the classi-
fication task in real-time eHealth applications. So, it is an interesting
option to use LSTM to perform a deep analysis of respiration and
heartbeat sign extracted from CSI signals. Since the phase component
of the signal is sensitive to chest movement caused by respiration [78],
it is considered that classification algorithms can be used to estimate
human respiratory activity and eventually infer or detect respiratory
problems, such as sleep apnea.

A combination of detection of human activity and respiration sign,
similar to BodyScan [79], is an interesting approach. In BodyScan,
since CSI is captured by two designed wearable devices, it does not
fit the device-free activity detection classification, which is our main
focus. However, that proposal shows good results determining the
user’s respiration rate when motion is not detected and a body is in
a stationary state.

Identifying the effect of common human activities on the CSI may
improve vital sign extraction performance. Also, since knowing the
activity immediately before an anomaly on the respiration sign and
the heartbeat can help the classification and identification of health
issues or even a medical emergency. For example, when there is an
abnormality in the respiratory sign or heartbeat after a fall or after a

long walk. These sign anomalies could be associated with pulmonary
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deficiency, tachycardia, bradycardia or arrhythmia. In this way, hybrid
techniques are an interesting option to improve performance in the
detection of vital signs.

In the literature, some studies [9,80] show how sensitive CSI is to
small movements in the body and that is possible to detect an ana-
lyze fine-grained radio reflections from face movements. The fact that
common emotion and expressions of people can be recognized from
CSI [9] opens the possibility to also identify expressions associated with
pain and thus identify when a person is suffering some pain. Another
interesting possibility results in inferring a person’s risk of suffering
depression when a pattern of sadness becomes repetitive. Furthermore,
since it is possible to read the movements of the mouth and know
what a person is talking about from CSI, as shown in [80], words or
word sequences used by people to request help can be identified. That
application may be used to identify a person’s request for help with
cardiorespiratory attacks, in which the person is unable to emit the
sound of speech.

5. Conclusions

This work provided a survey on detecting vital signs using channel
state information from common Wi-Fi devices. We presented a general
overview of the channel state information, a brief description of the
general architecture of a CSI-based system, and its mathematical model.
According to the presented techniques, we discussed several studies
that mainly deal with the detection of human vital signs such as
respiration and heart rate based on CSI. These studies were classified
and described according to their signal processing techniques, detection
algorithms, application, features as real-time monitoring, or multi-
person capabilities, and the performance in the proposed scenarios.
These compelling Wi-Fi CSI studies for vital sign monitoring have
shown promising performance in various application cenarious. In
addition, we also point out the limitations of the current Wi-Fi CSI
based vital sign monitoring approaches and show a few challenges yet
to be overcome such that CSI analysis can be fully used in practice to
monitor vital signs and support a variety of eHealth applications.
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