MÆdiCA - a Journal of Clinical Medicine

REVIEW

# Sarcopenia in Urinary Bladder Cancer: Definition, Prevalence and Prognostic Value in Survival

Themistoklis Ch. BELLOS<sup>a</sup>, Lazaros I. TZELVES<sup>a</sup>, Ioannis S. MANOLITSIS<sup>a</sup>, Stamatios N. KATSIMPERIS<sup>a</sup>, Marinos V. BERDEMPES<sup>a</sup>, Andreas SKOLARIKOS<sup>a</sup>, Nikolaos D. KARAKOUSIS<sup>b</sup>

<sup>a</sup>2<sup>nd</sup> Department of Urology, Sismanoglio General Hospital of Athens, Athens, Greece

<sup>b</sup>Primary Healthcare, Internal Medicine Department, Amarousion, Attica, Greece

### -ABSTRACT-

Sarcopenia, defined as the systemic loss of muscle function and mass, is commonly seen in advanced oncologic states, usually in conjunction with cancer cachexia. Bladder cancer represents one of the most common neoplasms worldwide and affects mainly the elderly who are already frail. The purpose of this study is to review the potential association between sarcopenia and bladder cancer in patients receiving different types of treatments. A thorough MEDLINE/PubMed non-systematic literature review was conducted from 1990 to January 2022, using the following search terms: "sarcopenia and bladder cancer" and "low muscle mass and bladder cancer". Sarcopenia probably poses a negative impact on the prognosis of patients at any stage of bladder cancer, as it is linked with overall worse survival, cancer specific survival and progression-free survival in those treated, with either radical cystectomy or chemotherapy. In addition, sarcopenia seems to be a strong predictor concerning complications and a negative prognostic factor following chemotherapy and surgery for bladder cancer. On the other hand, it seems that sarcopenic patients who receive radiotherapy or immunotherapy are not so severely affected.

Keywords: sarcopenia, overall survival, bladder cancer, complications, radical cystectomy

### INTRODUCTION

arcopenia was first described by Irwin Rosenberg in 1989 and reflects the decrease of muscle mass due to aging (1). Decrease in muscle mass has been directly related to loss of independence, reduction of strength and falls (2). According to the European Working Group on Sarcopenia in Older People (EWGSOP), sarcopenia is the cooccurrence of low muscle mass and function, while the loss of muscle mass with preserved muscle function is defined as "pre-sarcopenia" (3). Even if strength is considered to be a stronger predictor of sarcopenia compared with lean muscle mass, it falls under subjective errors in measurement (1). Bladder cancer is the tenth most common form of cancer worldwide, accounting for 3% of global diagnoses and being four times more common in men than women

Address for correspondence: Nikolaos D. Karakousis, MD/MSc Chatziantoniou 15, Amarousion, Attica, Greece 15124 Email: karak2727@gmail.com

Article received on the 18th of April 2022 and accepted for publication on the 7th of June 2022

(4). In 2020, 81 400 new cases were diagnosed and 17 980 bladder cancer related deaths were recorded only in the USA (5). The purpose of this non-systematic review is to explore the potential interplay between these two entities.

## **Bladder cancer**

The most common histologic subtype of bladder cancer is derived from transitional bladder epithelium, forming urothelial carcinomas (4). Smoking is considered the main etiology of bladder cancer (4). This neoplasm is commonly seen in those who work in petroleum and aniline dyes industries (4). Hematuria is a common symptom before diagnosis being set by ultrasound, computed tomography (CT) or cystoscopy (4). Bladder cancer is categorized to non-muscle invasive (NMIBC) and muscle-invasive (MIBC) disease based on the histology after the first diagnostic transurethral resection of the bladder (TURB). This categorization is important, since the two subtypes are treated differently and associated with variable prognosis (4). The treatment for NMIBC consists of transurethral resection of the bladder tumor, followed by intravesical instillations of immunotherapy or chemotherapeutic agents, depending on the cancer stage and patient's baseline profile (4). Radical cystectomy with urinary diversion and pelvic lymphadenectomy is considered the gold standard for the treatment of MIBC and high grade NMIBC. This treatment can be followed by neoadjuvant chemotherapy. The five-year survival rates following this procedure are nearly 60% (1, 4). However, in case of metastatic disease, overall survival in most patients does not overpass 15 months despite systemic chemotherapy (4). There is encouraging data that innovative systemic immunotherapy may shift this paradigm (4).

# The concept of sarcopenia

Sarcopenia is a degenerative and systemic loss of skeletal muscle, ranging from 15-50% in patients older than 65 years (4, 6). Genes such as myostatin gene (MSTN), vitamin D receptor (VDR) and angiotensin converting enzyme (ACE) are associated with body muscle-distribution phenotype (4). Sarcopenia is usually associated with lower physical activity and thus with metabolic syndrome, insulin resistance and cardiovascular system diseases (4). Sarcopenia can be present due to advanced age (primary) or lack of exercise, cancer, poor nutritional status, endocrine or other systemic and inflammatory diseases (secondary) (1, 7). Inflammation, which is mediated by inflammatory and pro-inflammatory cytokines, can stimulate tumor cell proliferation as well as protein degradation and myofiber apoptosis. Inflammatory processes, along with oxidative stress, are also mediated by excessive fatty acid oxidation and lead to increased muscle wasting (4, 6, 8, 9).

There are several methods to assess sarcopenia. The most common method is the use of validated tools such as "Strength, Assistance with Walking, Rise from a Chair, Climb Stairs and Falls" (SARC-F) score, the "Short Portable Sarcopenia Measure" (SPSM) and the "Perioperative Nutrition Screen" (PONS) (10). Methods to quantify sarcopenia include dual energy X ray absorptiometry, bioelectrical impedance, ultrasound, magnetic resonance imaging (MRI) and CT (10); the latter provides an objective measurement of muscle mass with 1.4% precision error (1). Some authors report the use of skeletal muscle index, *i.e.*, the total skeletal muscle mass area adjusted for patient height or psoas muscle index, i.e., the total psoas muscle area again adjusted for height (1). Adjustment of height values is necessary for males (11). In skeletal muscle index sarcopenia is diagnosed as low muscle mass at the third lumbar vertebra (L3) (1). Another metric is skeletal muscle density measured in Hounsfield units (1, 4). Several muscles can be used for sarcopenia assessment, including the psoas, paraspinal, transverse abdominal, external oblique or internal oblique and rectus abdominis muscle (2). The most current cut off values of sarcopenia are defined by Martin et al (2). A main drawback of these clinical metrics is the incorporation of single muscle measurements, which cannot be a true representative of total muscle area in cancer patients (11). While the general population with a higher BMI have a high skeletal muscle mass, some people with "sarcopenia obesity" or myosteatosis characterized by excessive infiltration from adipose tissue and low lean muscle density (1, 8). This condition promotes systemic inflammation and insulin resistance (1). Myosteatosis increasingly gains popularity over sarcopenia as a preoperative marker in cancers of the gastrointestinal tract as well as pancreatic and ovarian cancer (8).

Because sarcopenia is significant and can adversely affect cancer prognosis, it would be wise to try and prevent or even reverse it. Ritch et al claim that perioperative oral nutrition can prevent sarcopenia, post-radical cystectomy complications and lower readmission rates. Evidence suggests that malnourished individuals should be adequately fed enterally or even parenterally for at least 7-10 days preoperatively, in order to increase protein synthesis and limit degradation with a protein rich diet (12). Anabolic effects of diet are dramatically enhanced by physical exercise, particularly in the form of anaerobic exercise and resistance training (10). Anabolic agents such as testosterone, estrogens and growth factors can also be used (2, 4).

Immunonutrition consists of diets rich in nutrients such as glutamine, arginine, omega-3 fatty acids and ribonucleic acids, which halt inflammation and promote protein anabolism (13). Medications such as actin related protein 2 b inhibitors (ActR2b) block skeletal muscle protein degradation, acting on ActR2b, a receptor for myostatin and activin A with studies showing skeletal muscle hypertrophy in mice (4). Drugs against insulin resistance and inhibitors of lipolysis are commonly employed in reversing the effects of sarcopenia (4). Hormone replacement therapy is commonly used in menopausal associated sarcopenia (4). Novel pharmaceutical agents such as magnolol, flucoidan and anamorelin are currently undergoing investigation for their effects in cachectic patients (14).

The enhanced recovery after surgery (ERAS) protocol has proven to be effective in lowering postoperative complications and shortening the hospital stay (6, 12). Discontinuation of smoking and excessive alcohol consumption is considered of paramount importance (15).

## Literature review

In this non-systematic review, PubMed and MEDLINE databases were thoroughly searched from 1990 to January of 2022, using "bladder cancer" AND "sarcopenia" OR "decreased muscle mass" as key terms, and were independently screened by one author and rechecked by other two authors. Any potential disputes were solved by a fourth author.

From the screened studies, the original ones were used in order to conduct the investigation of the potential interplay between these two entities, as shown in Table 1. Some systematic reviews were included in this article, because they contained definitions necessary for the present review. Studies using animal models were excluded.

# Association between sarcopenia and bladder cancer

Radical cystectomy (RC) is a major surgery with high complication rates and major changes in body image, patient functionality and independence (16).

Frailty is thought to lead to greater susceptibility to physical stress such as surgery. This is caused by the depletion of body physical reserves. Frailty can also encompass cognitive and psychosocial changes associated with many conditions (17). According to a recent medical consensus, frailty is defined as "a medical syndrome with multiple causes and contributors that is characterized by diminished strength, endurance and reduced physiologic function that increases an individual's vulnerability for developing increased dependency and/or death" (18). Malnourished patients can be identified at the presence of two of the following criteria: inadeguate food intake, weight loss, loss of subcutaneous tissue (fat or muscle mass), fluid accumulation and lower functional status (18). Malnutrition is prevalent in 14-55% of radical cystectomy patients (18).

Poor nutritional status together, catabolism and systemic inflammation commonly seen in terminally ill oncologic patients, especially in elderly and those with low exercise level, are linked with poor prognosis and lead to sarcopenia (4, 6, 8).

Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, which regulates muscle mass homeostasis, is thought to be the key regulator for the metabolic pathway of sarcopenia and cachexia (19).

Smith *et al* came to the conclusion that complications following RC were independent of sarcopenia (p=0.26), but when the results were divided for both sexes, a striking increase in major complications was observed in sarcopenic women, as 43% of them used to experience complications compared to 10% of non-sarcopenic (p <0.01) (20).

Mayr et al state that sarcopenia is an independent predictor of both 90-day mortality

(OR 2.59; 95% CI 1.13-5.95; p=0.025) and major complications, especially CD 4a-5 (p=0.003) (21). The incidence of grade 3 or higher complications according to the Clavien-Dindo system ranges between 5-26% (21). Gao et al reported that sarcopenia was an independent predictor of venous thromboembolism (VTE) in patients undergoing RC (10.6% vs 1.8%; p= 0.005) (22). Maeda et al state that male sarcopenic patients, especially those with psoas muscle index (PMI) <400 (p=0.02), have a greater length of hospitalization following surgery (p=0.04) and lower overall survival, (23). However, muscle loss alone due to sarcopenia does not explain the increased rate of complications. Some factors that enhance the adverse perioperative outcome include the muscle denervation due to aging and mitochondrial dysfunction, with both playing a role in muscle strength and function (24). Moreover, the effects of body mass index (BMI) on postoperative morbidity and mortality are unclear, most probably due to several definitions of sarcopenia and the need to distinguish obesity with low vs obesity with high lean muscle mass. According to Psutka et al, no obesity related five-year overall survival (OS) benefit was noted after stratifying patients based on sarcopenia (p=0.2-0.7), while initial evidence pointed that increased BMI was correlated with a better OS (p=0.03) (25). According to Yamashita *et al*, sarcopenia (p < 0.01) and myosteatosis (p=0.04) are associated with poor overall survival (8). Kwon et al concluded that obese and overweight patients had a better prognosis, as showed by recurrence free survival

TABLE 1. Studies concerning the potential interplay between sarcopenia and bladder cancer

| Authors (Ref)                | Year/study                        | Study population                                                                             | Findings                                                                                                                                 | Sarcopenia assessed by                                                        |
|------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Smith et al (20)             | 2013/retrospective                | 224 patients following radical cystectomy                                                    | Negative association between sarcopenia and major<br>complications in women                                                              | TPA as assessed by CT                                                         |
| Mayr et al (21)              | 2018/retrospective                | 327 patients following radical cystectomy                                                    | Negative association between sarcopenia and 90-day<br>postoperative complications                                                        | Lumbar skeletal muscle<br>mass index by CT                                    |
| Stangl-Kremser<br>et al (46) | 2018/retrospective                | 94 patients treated<br>with TURBT and<br>radiotherapy for UBC                                | High prevalence of sarcopenia in patients with<br>bladder cancer. Not prognostic of survival                                             | SMI according to Martins<br>criteria, BMI to assess for<br>sarcopenic obesity |
| Saitoh-Maeda<br>et al (23)   | 2017/retrospective                | 78 patients following RC                                                                     | Negative association between hospitalization, OS and sarcopenia in male sarcopenic patients                                              | PMI as measured by CT<br>normalized to height                                 |
| Wang et al (28)              | 2021/retrospective                | 112 patients with UBC following RC                                                           | Negative association between high AGS, low TPI in OS and DFS. CTAs predictive value for therapy                                          | TPI, AGS, CTA                                                                 |
| Wang et al (30)              | 2019/retrospective                | 285 patients with UBC                                                                        | No association between modifiable risk factors and sarcopenia                                                                            | SMI at L3 level                                                               |
| Mayr et al (2)               | 2018/multicenter<br>retrospective | 500 patients following<br>RC                                                                 | Negative association between sarcopenia and five-<br>year OS and CSS. Sarcopenia independent predictor<br>of CSS and all-cause mortality | Lumbar SMI                                                                    |
| Psutka et al (25)            | 2014/retrospective                | 262 patients with UCB treated with RC                                                        | No association between ACM and adiposity or<br>obesity in sarcopenic patients                                                            | FMI, SMI, BMI                                                                 |
| Psutka et al (31)            | 2014/retrospective                | 205 patients with UCB treated with RC                                                        | Negative association between ACM, CSS and<br>sarcopenia. Sarcopenia associated with increased<br>CSS and ACM                             | Lumbar SMI                                                                    |
| Ha et al (32)                | 2019/retrospective                | 80 patients with UCB<br>treated with RC                                                      | Sarcopenia independent predictor of OS                                                                                                   | Lumbar SMI                                                                    |
| Taguchi et al<br>(34)        | 2015/retrospective                | 100 patients with<br>metastatic UCB                                                          | Sarcopenia an independent predictor of poor CSS                                                                                          | TPA, lumbar SMI, U-TPT<br>TPT                                                 |
| Shimizu <i>et al</i> (35)    | 2022/retrospective                | 240 patients with UCB<br>treated with<br>chemotherapy                                        | Negative association between sarcopenia and OS                                                                                           | TPI, paraspinal SMI and total SMI                                             |
| Stangl-Kremser<br>et al (42) | 2018/retrospective                | 30 patients with UCB<br>who received upfront<br>cisplatin-based<br>chemotherapy before<br>RC | No association between pre-NAC sarcopenia and<br>response to therapy                                                                     | L3 SMI                                                                        |
| Lyon et al (39)              | 2019/retrospective                | 183 patients with UCB<br>who received NAC<br>before RC                                       | Negative association between post treatment sarcopenia and CSM                                                                           | L3 SMI                                                                        |
| Zargar et al (43)            | 2017/retrospective                | 60 patients with UCB<br>who were treated with<br>NAC and RC                                  | No association between PMV changes and response<br>to chemotherapy, postoperative complications or<br>survival                           | PMV                                                                           |

Continued on next page

| Kasahara <i>et al</i><br>(44) | 2017/retrospective | 27 patients who<br>received gemcitabine<br>and nedaplatin<br>chemotherapy for<br>advanced UBC | Sarcopenia is a negative predictor of OS                                                                      | РМІ                                                                                   |
|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Fukushima<br>et al (4)        | 2020/retrospective | 28 patients with<br>advanced UBC treated<br>with pembrolizumab                                | Lower ORR and PFS in sarcopenic patients                                                                      | SMI of two consecutive muscle groups by CT                                            |
| Ferini et al (47)             | 2021/retrospective | 28 patients who<br>received radiotherapy<br>for advanced UBC                                  | No association between OS, CSS and sarcopenia                                                                 | L3 lumbar SMI                                                                         |
| Almarzouq<br>et al (48)       | 2021/retrospective | 141 patients with<br>MIBC treated with<br>tetramodal therapy                                  | No association between OS, response to therapy and sarcopenia                                                 | Lumbar SMI                                                                            |
| Tanaka <i>et al</i><br>(49)   | 2020/retrospective | 154 patients with<br>MIBC treated with<br>tetramodal therapy                                  | No association between DFS, CSS and sarcopenia.<br>Higher complication rates in non-sarcopenic patients       | Lumbar SMI                                                                            |
| Gao et al (22)                | 2021/retrospective | 252 UBC patients<br>following RC                                                              | Sarcopenia an independent predictor of VTE                                                                    | L3 lumbar SMI                                                                         |
| Hirasawa et al<br>(33)        | 2016/retrospective | 136 who underwent<br>RC                                                                       | Sarcopenia independent predictor of worse prognosis                                                           | Lumbar SMI                                                                            |
| Yamashita et al<br>(8)        | 2021/retrospective | 123 patients following<br>RC                                                                  | Sarcopenia and myosteatosis independent predictor<br>of poor CSS                                              | L3 lumbar SMI                                                                         |
| Stangl- Kremser<br>et al (29) | 2021/retrospective | 441 patients with UCB<br>who underwent RC                                                     | Sarcopenia is predictive of early complications                                                               | L4 TPI                                                                                |
| Cohen et al (41)              | 2021/retrospective | 91 patients with UBC<br>treated with NAC and<br>RC                                            | Sarcopenia is predictive of high rates of<br>complications post RC                                            | L4 PMI                                                                                |
| Martini <i>et al</i><br>(51)  | 2021/retrospective | 70 patients treated<br>with immune<br>checkpoint inhibitors<br>for advanced UC                | High risk patients, <i>i.e.</i> sarcopenic patients shorter OS, PFS and lower chance of clinical benefit      | Measurement of body<br>composition risk score<br>which includes lumbar<br>SMI and VFI |
| Rimar et al (40)              | 2018/retrospective | 26 patients with MIBC<br>who received platinum<br>based chemotherapy                          | Decrease in lean muscle mass and increase in sarcopenic patients following chemotherapy                       | L3 SMI                                                                                |
| Regnier <i>et al</i><br>(45)  | 2021/retrospective | 82 patients treated<br>with NAC and RC                                                        | Changes in sarcopenic status during NAC.<br>Sarcopenia associated with risk of postoperative<br>complications | Lumbar SMI                                                                            |
| Kwon <i>et al</i> (26)        | 2014/retrospective | 714 patients who<br>underwent RC                                                              | Overweight and obesity is associated with favorable OS and pathological features                              | BMI used only                                                                         |

#### Continued from previous page

TPA: total psoas area; CT: computed tomography; TURBT: transurethral resection of the bladder tumor; UBC: urothelial bladder cancer; SMI: skeletal muscle index; BMI: body mass Index; RC: radical cystectomy; OS: overall survival; PMI: psoas muscle index; AGS: albumin globulin score; TPI: total psoas index; DFS: disease free survival; CTA: skeletal muscle measurement, combination of AGS and TPI; L3: 3<sup>rd</sup> lumbar vertebral body; CSS: cancer specific survival; ACM: all-cause mortality; FMI: fat muscle index; TPA: total psoas area; (U)-TPT: transversal psoas thickness (at umbilicus); CSM: cancer specific mortality; NAC: neoadjuvant chemotherapy; PMV: psoas muscle volume; PMI: psoas muscle index; PFS: progression free survival; MIBC: muscle invasive bladder cancer; VTE: venous thromboembolism; L4: 4<sup>th</sup> lumbar vertebral body; VFI: visceral fat index.

(RFS) (obese vs normal: P < 0.001; overweight vs normal: p=0.008) and cancer specific survival (CSS) (obese vs normal: p < 0.001; overweight vs normal: p=0.019) following RC (26).

Nomograms for bladder cancer have been developed incorporating predictors such as biomarkers of systemic inflammatory response, lymph node status and sarcopenia for predicting non-confined disease status, lymph node involvement and OS, but they either lack external validation or include small sample sizes (27). Wang *et al* concluded that albumin and globulin scores were related to TNM stage and could be a strong predictor of OS and DFS (28). In this study, Wang *et al* reported that a high AGR was associated with greater OS (p=0.036) and better DFS (p=0.016) (28). The same applies for high total psoas index (TPI) and survival rates (p=0.045 and 0.049, respectively) (28). The combination of TPI and albumin globulin score seems to be good predictor of OS and CSS following radical cystectomy (28). Stang-Kriemser *et al* proved that sarcopenia could predict early complications following RC (HR 0.95; 95% CI 0.92-0.99; p=0.02) (29).

Studies tried to show the extent to which non-modifiable risk factors, modifiable risk factors and cancer-related factors can affect sarcopenia in bladder cancer (24). According to Wang et al, modifiable risk factors such as diet (p=0.822), physical activity (p=0.830) and individual nutritional components (p=0.259-0.983) are not associated with skeletal muscle indices in patients with urothelial bladder cancer (UBC) (30). According to Mayr et al, sarcopenia is an independent predictor of CSS (HR1.42; 95% CI 1.09-1.87; p=0.01) and all-cause mortality (ACM) (HR 1.42; 95% Cl 1.00-2.02; p=0.048) in bladder cancer patients treated with RC (2). Five-year OS was lower in sarcopenic patients (38.3%) compared to non-sarcopenic ones (50.5%; p=0.002) following radical cystectomy (2). The same applies for five-year CSS (49.5% vs 62.3%; p=0.016) (2). Psutka et al demonstrated that sarcopenia was unfavorable for five-year OS (39% vs 70%; p=0.07) in non-sarcopenic patients and for ACM (49% vs 72%; p=0.03) in those with bladder cancer treated with radical cystectomy (31). Moreover, this study exhibited that sarcopenia was independently associated with an increased CSS (HR 2.14; p=0.07) and ACM (HR 1.93; p=0.04) (31). Similarly, Ha et al concluded that the decrease of muscle mass after radical cystectomy could be a negative prognostic factor in OS (p=0.012), with skeletal muscle index (SMI) decrease being an independent predictor for OS (HR 2.68; Cl 1.007-7.719; p=0.048) (32). Hirasawa et al proved that sarcopenia was an independent predictor of unfavorable prognosis (HR 2.3; p=0.015), as showed by CSS of patients who underwent RC (33).

Taguchi *et al* stated that sarcopenia is also connected with diminished CSS in patients with metastatic urothelial carcinoma (HR 2.07; 95% Cl 1.01-4.67) (34).

Shimizu *et al* pointed that sarcopenia leads to shorter survival rates, since OS was significantly longer in the non-sarcopenic study group (p=0.001) (35).

Radical cystectomy is associated with a wide range of perioperative and postoperative complications (4, 36). Radical cystectomy impairs gut motility and electrolyte balance partly due to bowel reconstruction, leading to significant weight loss, unmitigated protein wasting and increased fatty acid oxidation (10, 37). In case of neoadjuvant chemotherapy, the catabolic effects of the latter are added upon the already exhausting effects of surgical stress (38).

Sarcopenia is associated with increased cancer specific mortality after neoadjuvant chemotherapy according to Lyon et al (HR 1.90; 95% CI 1.02-3.56; p=0.04) (39). Sarcopenia after neoadjuvant chemotherapy (NAC) ranges between 2.6-6.4%, as measured in skeletal muscle indices (39). Rimar et al came to similar conclusions, with sarcopenic patients increasing after NAC from 69% to 81% (p=0.002) (40). Cohen et al stated that change in SMI after neoadjuvant chemotherapy (NAC) was associated with a higher rate of surgical complications following RC (HR 0.31; 95% CI 0.12-0.72; p=0.039) (41). However, according to Stangl-Kremser et al, if sarcopenia is present before initiation of chemotherapy, there is no clear association with the proportion of response to chemotherapy (p=0.16-0.65) (42).

In contrast, Zargar et al showed that there was no association between BMI, psoas muscle volume (PMV) changes and OS in patients treated with neoadjuvant chemotherapy and surgery (HR 1.01; 95% CI 0.95-1.08; p=0.74) (43). Kasahara et al described the prognostic significance of sarcopenia in patients receiving gemcitabine and nedaplatin based chemotherapy, which negatively affected OS (p=0.015)(223 days vs 561 days in the non-sarcopenic group) (44). According to Regnier et al, sarcopenic patients have an increased preponderance of early (HR 4.08; 95 CI 1.06-15.6; p=0.04) and late (HR 8.05; 95 Cl 0.96-66.9; p=0.053) postoperative complications following NAC and RC (45).

According to Stangl-Kremser *et al*, there is no association between sarcopenia and either OS (HR 1.36; 95% Cl 0.7-2.5; p=0.32) or CSS (HR 5.0; 95% Cl 1.4-16.7; p=0.34) in patients treated with radiotherapy and transurethral resection of bladder tumor (TURBT) for advanced bladder cancer (46). Similar results were reported by Ferini *et al* in patients treated only with curative radiotherapy, with no substantial differences in the sarcopenic and non-sarcopenic groups (median OS 15 vs 42 months, respectively) (47). In patients who underwent trimodal therapy, no association was detected between sarcopenia and response to therapy or OS

(p=0.22-0.49), as reported by Almarzoup et al (48). According to Tanaka et al, in those treated with tetramodal therapy, i.e., trimodal therapy plus partial cystectomy and lymph node dissection, there was no association between sarcopenia and survival rates being evident in five-year muscle invasive bladder cancer related regression free survival (MIBC-RFS) (97% and 97%, respectively, p=0.96) and CSS (94% and 94%, respectively; p=0.96) between sarcopenic and non-sarcopenic patients (49). In contrast to previous knowledge, complication rates were higher in non-sarcopenic patients than in those with established sarcopenia (22% vs 46%; p=0.02) (49). According to Fukushima et al, in patients undergoing immunotherapy it was demonstrated that sarcopenic ones had a lower response to therapy (21 vs 67% in non-sarcopenic patients (p=0.019) and lower progression free survival (PFS) (3 vs 15 months in non-sarcopenic patients; p=0.038) (50). According to Martini et al, sarcopenic patients receiving immune checkpoint inhibitors (ICI) for advanced urothelial cancer have a shorter OS (HR 6.72; p < 0.001), shorter PFS (HR 5.82; p<0.001) and a lower chance of clinical results (HR 0.02; p=0.003) (51).

#### DISCUSSION

From this non-systematic review, we concluded that sarcopenia was a bad prognostic factor for patients following RC, as it leads to increased 90-day mortality, ACM and complications, as well as decreased five-year OS and CSS. Some authors claim that an increased BMI has better prognosis in patients post-RC, as showed by their increased OS and CSS. This does not apply when an increased BMI is associated with sarcopenic obesity. Patients with metastatic UBC have poorer prognosis when the disease is associated with sarcopenia.

Neoadjuvant chemotherapy can lead to a decrease in muscle mass. Post-NAC sarcopenia can lead to higher complication rates following RC, while pre-NAC sarcopenia is not associated with patient's response to chemotherapy. Patients receiving systemic chemotherapy have a lower OS.

In the radiotherapy group, no significant differences between sarcopenic and non-sarcopenic patients were found. The same applies for patients who underwent trimodal or tetramodal therapy for UBC. In the group treated with immunotherapy, sarcopenic patients were less responsive to therapy with lower PFS.

Most of the studies included in this systematic review have a small sample number. Furthermore, they include a heterogeneous population and different tools of sarcopenia quantification, usually stemming from different definitions of sarcopenia. All studies were observational, retrospective and non-randomised. All the aforementioned factors necessitate the implementation of a larger multicenter randomized survey that uses a measurement of SMI derived from more than one muscle groups and encompasses the muscle strength as a criterion in the definition of sarcopenia.

### **CONCLUSION**

Son the prognosis of bladder cancer patients at any stage, as it seems to have a negative impact on OS, CSS and PFS both in those treated with radical cystectomy and chemotherapy. In addition, it seems to be associated with increased complication rates postoperatively. Recovery of skeletal muscle mass and reversal of sarcopenia should be sought with administration of several available options; however, more studies are needed to further explore the value of each of these interventions. Perhaps nutritional and physical support as well as a multidisciplinary approach could be the best strategy.

Conflict of interest: none declared. Financial support: none declared.

# References

- Hu X, Dou WC, Shao YX, et al. The prognostic value of sarcopenia in patients with surgically treated urothelial carcinoma: A systematic review and meta-analysis. *Eur J Surg Oncol* 2019;45:747-754.
- Mayr R, Gierth M, Zeman F, et al. Sarcopenia as a comorbidity-independent predictor of survival following radical cystectomy for bladder cancer. *Journal of Cachexia, Sarcopenia and Muscle* 2018;9:505-513.
- 3. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. *Age and Ageing* 2019;48:16-31.
- Fukushima H, Takemura K, Suzuki H, Koga F. Impact of Sarcopenia as a Prognostic Biomarker of Bladder Cancer. Int J Mol Sci 2018;19:2999.
- Ibilibor C, Psutka SP, Herrera J, et al. The association between sarcopenia and bladder cancer-specific mortality and all-cause mortality after radical cystectomy: A systematic review and meta-analysis. *Arab J Urol* 2021;19:98-103.
- 6. Ornaghi PI, Afferi L, Antonelli A, Cerruto MA, Odorizzi K, Gozzo A, et al. The impact of preoperative nutritional status on post-surgical complication and mortality rates in patients undergoing radical cystectomy for bladder cancer: a systematic review of the literature. World J Urol 2021;39:1045-1081.
- 7. Hansen TTD, Omland LH, von Heymann A, et al. Development of Sarcopenia in Patients With Bladder Cancer: A Systematic Review. Seminars in Oncology Nursing 2021;37:151108.
- Yamashita S, Iguchi T, Koike H, et al. Impact of preoperative sarcopenia and myosteatosis on prognosis after radical cystectomy in patients with bladder cancer. Int J Urol 2021;28:757-762.
- Fukushima H, Fujii Y, Koga F. Metabolic and Molecular Basis of Sarcopenia: Implications in the Management of Urothelial Carcinoma. *Int Mol J Sci* 2019;20:760.
- Michel C, Robertson HL, Camargo J, Hamilton-Reeves JM. Nutrition risk and assessment process in patients with bladder cancer undergoing radical cystectomy. Urol Oncol 2020;38:719-724.
- **11.** Sanchez A, Kissel S, Coletta A, et al. Impact of body size and body composition on bladder cancer outcomes: Risk stratification and opportunity for novel interventions. *Urol Oncol* 2020;38:713-718.
- **12.** Jensen BT, Lauridsen SV, Jensen JB. Prehabilitation for major abdominal

urologic oncology surgery. Curr Opin Urol 2018;28:243-250.

- Tobert CM, Hamilton-Reeves JM, Norian LA, et al. Emerging Impact of Malnutrition on Surgical Patients: Literature Review and Potential Implications for Cystectomy in Bladder Cancer. J Urol 2017;198:511-519.
- **14.** Lokeshwar SD, Press BH, Nie J, et al. Cachexia and bladder cancer: clinical impact and management. *Curr Opin Support Palliat Care* 2021;15:260-265.
- **15.** Jensen BT, Lauridsen SV, Jensen JB. Optimal Delivery of Follow-Up Care After Radical Cystectomy for Bladder Cancer. *Research and Reports in Urology* 2020;12:471-486.
- Holzbeierlein JM. Perioperative optimization of the genitourinary oncology patient. *Urol Oncol* 2021:S1078-1439(21)00178-2.
- 17. Sheetz T, Lee CT. Frailty and geriatric assessment in urologic oncology. *Curr Opin Urol* 2018;28:233-242.
- Psutka SP, Barocas DA, Catto JWF, et al. Staging the Host: Personalizing Risk Assessment for Radical Cystectomy Patients. Eur Urol Oncol 2018;1:292-304.
- Hutterer GC. Special Issue on Molecular Research Efforts in Urothelial Carcinoma: Summary of Included Topics. Int J Mol Sci 2019;20:3790.
- 20. Smith AB, Deal AM, Yu H, et al. Sarcopenia as a predictor of complications and survival following radical cystectomy. *J Urol* 2014;191:1714-1720.
- Mayr R, Fritsche HM, Zeman F, et al. Sarcopenia predicts 90-day mortality and postoperative complications after radical cystectomy for bladder cancer. World J Urol 2018;36:1201-1207.
- 22. Gao J, Shi Y, Zhou D, et al. Sarcopenia as an independent predictor for venous thromboembolism events in bladder cancer patients undergoing radical cystectomy. Supportive Care in Cancer 2022;30:1191-1198.
- **23.** Saitoh-Maeda Y, Kawahara T, Miyoshi Y, et al. A low psoas muscle volume correlates with a longer hospitalization after radical cystectomy. *BMC Urology* 2017;17:87.
- 24. Grimberg DC, Shah A, Molinger J, et al. Assessments of frailty in bladder cancer. *Urologic Oncology* 2020;38:698-705.
- 25. Psutka SP, Boorjian SA, Moynagh MR, et al. Mortality after radical cystectomy: impact of obesity versus adiposity after adjusting for skeletal muscle wasting.

J Urol 2015;193:1507-1513.

- **26.** Kwon T, Jeong IG, You D, et al. Obesity and prognosis in muscle-invasive bladder cancer: the continuing controversy. *Int J Urol* 2014;21:1106-1112.
- 27. Bandini M, Fossati N, Briganti A. Nomograms in urologic oncology, advantages and disadvantages. *Current Opinion in Urology* 2019;29:42-51.
- Wang K, Gu Y, Ni J, et al. Combination of Total Psoas Index and Albumin-Globulin Score for the Prognosis Prediction of Bladder Cancer Patients After Radical Cystectomy: A Population-Based Study. *Frontiers in Oncology* 2021;11:724536.
- Stangl-Kremser J, Ahmadi H, Derstine B, Wang SC, Englesbe MJ, Daignault-Newton S, et al. Psoas Muscle Mass can Predict Postsurgical Outcomes in Patients Who Undergo Radical Cystectomy and Urinary Diversion Reconstruction. Urology. 2021;158:142-149.
- Wang Y, Chang A, Tan WP, et al. Diet and Exercise Are not Associated with Skeletal Muscle Mass and Sarcopenia in Patients with Bladder Cancer. European Urology Oncology 2021;4:237-245.
- Psutka SP, Carrasco A, Schmit GD, et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. *Cancer* 2014;120:2910-2918.
- 32. Ha YS, Kim SW, Kwon TG, et al. Decrease in skeletal muscle index 1 year after radical cystectomy as a prognostic indicator in patients with urothelial bladder cancer. International Braz J Urol 2019;45:686-694.
- 33. Hirasawa Y, Nakashima J, Yunaiyama D, et al. Sarcopenia as a Novel Preoperative Prognostic Predictor for Survival in Patients with Bladder Cancer Undergoing Radical Cystectomy. *Annals of Surgical Oncology* 2016;23(Suppl 5):1048-1054.
- 34. Taguchi S, Akamatsu N, Nakagawa T, et al. Sarcopenia Evaluated Using the Skeletal Muscle Index Is a Significant Prognostic Factor for Metastatic Urothelial Carcinoma. *Clinical Genitourinary Cancer* 2016;14:237-243.
- **35.** Shimizu R, Honda M, Teraoka S, et al. Sarcopenia is associated with survival in patients with urothelial carcinoma treated with systemic chemotherapy. *Int J Clin Oncol* 2022;27:175-183.
- **36.** Anker MS, Holcomb R, Muscaritoli M, et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. *Journal of Cachexia, Sarcopenia and Muscle* 2019;10:22-34.

- **37. Alam SM, Michel C, Robertson H, et al.** Optimizing Nutritional Status in Patients Undergoing Radical Cystectomy: A Systematic Scoping Review. *Bladder Cancer* 2021;7:449-461.
- 38. Miyake M, Hori S, Itami Y, et al. Supplementary Oral Anamorelin Mitigates Anorexia and Skeletal Muscle Atrophy Induced by Gemcitabine Plus Cisplatin Systemic Chemotherapy in a Mouse Model. *Cancers* 2020;12:1942.
- **39.** Lyon TD, Frank I, Takahashi N, et al. Sarcopenia and Response to Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer. *Clinical genitourinary Cancer* 2019;17:216-222e5.
- **40. Rimar KJ, Glaser AP, Kundu S, et al.** Changes in Lean Muscle Mass Associated with Neoadjuvant Platinum-Based Chemotherapy in Patients with Muscle Invasive Bladder Cancer. *Bladder Cancer* 2018;4:411-418.
- **41.** Cohen S, Gal J, Freifeld Y, et al. Nutritional Status Impairment Due to Neoadjuvant Chemotherapy Predicts Post-Radical Cystectomy Complications. *Nutrients* 2021;13:4471.
- **42.** Stangl K, Mari A, D'Andrea D, et al. Sarcopenia as a Predictive Factor for

Response to Upfront Cisplatin-Based Chemotherapy in Patients with Muscle-Invasive Urothelial Bladder Cancer.

Urologia Internationalis 2018;101:197-200.

- **43.** Zargar H, Almassi N, Kovac E, et al. Change in Psoas Muscle Volume as a Predictor of Outcomes in Patients Treated with Chemotherapy and Radical Cystectomy for Muscle-Invasive Bladder Cancer. Bladder Cancer 2017;3:57-63.
- Kasahara R, Kawahara T, Ohtake S, et al. A Low Psoas Muscle Index before Treatment Can Predict a Poorer Prognosis in Advanced Bladder Cancer Patients Who Receive Gemcitabine and Nedaplatin Therapy. *Biomed Res Int* 2017;2017:7981549.
- 45. Regnier P, De Luca V, Brunelle S, et al. Impact of sarcopenia status of muscle-invasive bladder cancer patients on kidney function after neoadjuvant chemotherapy.
- Minerva Urol Nephrol 2021;73:215-224.
  46. Stangl-Kremser J, D'Andrea D, Vartolomei M, et al. Prognostic value of nutritional indices and body composition parameters including sarcopenia in patients treated with radiotherapy for urothelial carcinoma of the bladder.

Urologic Oncology 2019;37:372-379.

- 47. Ferini G, Cacciola A, Parisi S, et al. Curative Radiotherapy in Elderly Patients With Muscle Invasive Bladder Cancer: The Prognostic Role of Sarcopenia. In Vivo 2021;35:571-578.
- 48. Almarzouq A, Kool R, Al Bulushi Y, et al. Impact of sarcopenia on outcomes of patients treated with trimodal therapy for muscle invasive bladder cancer. Urologic Oncology 2021;40:194.e15-194.e22.
- 49. Tanaka H, Fukushima H, Kijima T, et al. Feasibility and outcomes of selective tetramodal bladder-preservation therapy in elderly patients with muscle-invasive bladder cancer.

International Journal of Urology 2020;27:236-243.

- 50. Fukushima H, Fukuda S, Moriyama S, et al. Impact of sarcopenia on the efficacy of pembrolizumab in patients with advanced urothelial carcinoma: a preliminary report. *Anti-cancer Drugs* 2020;31:866-871.
- 51. Martini DJ, Shabto JM, Goyal S, et al. Body Composition as an Independent Predictive and Prognostic Biomarker in Advanced Urothelial Carcinoma Patients Treated with Immune Checkpoint Inhibitors.

The Oncologist 2021;26:1017-1025.