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Abstract 

Melanoma is a type of skin lesion that is less common than other types of skin lesions, but it is fast growing and 
spreading. Therefore, it is classified as a serious disease that directly threatens human health and life. Recently, the 
number of deaths due to this disease has increased significantly. Thus, researchers are interested in creating com‑
puter‑aided diagnostic systems that aid in the proper diagnosis and detection of these lesions from dermoscopy 
images. Relying on manual diagnosis is time consuming in addition to requiring enough experience from derma‑
tologists. Current skin lesion segmentation systems use deep convolutional neural networks to detect skin lesions 
from RGB dermoscopy images. However, relying on RGB color model is not always the optimal choice to train such 
networks because some fine details of lesion parts in the dermoscopy images can not clearly appear using RGB 
color model. Other color models exhibit invariant features of the dermoscopy images so that they can improve the 
performance of deep neural networks. In the proposed Color Invariant U‑Net (CIU‑Net) model, a color mixture block is 
added at the beginning of the contracting path of U‑Net. The color mixture block acts as a mixer to learn the fusion of 
various input color models and create a new one with three channels. Furthermore, a new channel‑attention module 
is included in the connection path between encoder and decoder paths. This channel attention module is developed 
to enrich the extracted color features. From the experimental result, we found that the proposed CIU‑Net works in 
harmony with the new proposed hybrid loss function to enhance skin segmentation results. The performance of the 
proposed CIU‑Net architecture is evaluated using ISIC 2018 dataset and the results are compared with other recent 
approaches. Our proposed method outperformed other recent approaches and achieved the best Dice and Jaccard 
coefficient with values 92.56% and 91.40%, respectively.

Keywords: Channel‑wise attention, Hybrid loss Function, Color‑invariant Skin lesion segmentation, Color mixture 
block
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Introduction
The computer-aided diagnosis (CAD) system for mela-
noma detection requires an automatic discrimination 
between skin lesions and surrounding tissues. The study 
of dermoscopy images is an important support for clini-
cal decision-making and for image-based diagnosis to 
detect diseases such as melanoma. Using dermoscopy 

image is a non-invasive technique which is mainly used 
for the study of pigmented skin lesions and serve observ-
ers to check lesions with a little coloring [1]. It is per-
formed with an instrument called a dermatoscope which 
requires a high-quality magnifying lens and a powerful 
lighting system to let identification of morphological fea-
tures such as globules, lines, blue and white areas, and 
spots [2] more easier. This arrangement leads to a signifi-
cant reduction of errors and gives significant differentia-
tion of lesions from normal skin.

Automatic skin lesion segmentation from dermoscopy 
images determines lesion parts from the surrounding 
healthy parts by classifying each pixel as lesion or normal. 
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This task is challenging for many reasons: (1) poor con-
trast between the lesion parts (foreground) and the sur-
rounding skin area (background); (2) existence of some 
obstacles such as skin lines, air bubbles and hairs; and 
(3) color diversification at the borders of the lesion in the 
dermoscopy images. Figure 1 displays some challenges of 
skin lesion images from ISIC 2018 dataset. Among these 
challenges, the color divergence of skin images produces 
distracting features which deteriorate the performance 
of skin lesion segmentation methods. Precise color rep-
resentation of lesion provides important information for 
an accurate diagnosis. In addition, the extraction of any 
strange objects on the image such as (hair, pen marker, 
oil, gel,...etc) can be done easily if the network learned 
appropriate color representation of the input images.

Recently, many research works [3–10] tried to over-
come the segmentation task challenges by proposing skin 
lesion segmentation methods based on color invariant 
models to investigate the color variation in the images. 
These methods are usually supported by deep neural net-
works and exploits color model transformation-based 
approaches to extract features and recognize the lesion 
areas efficiently. Transformation of the RGB image to 
another color model was the common strategy between 
all these methods. The converted color models are used 
to train already existing deep convolutional neural net-
works (CNNs) with some modifications [11–17]. How-
ever, most transformed color models depends on a fixed 
transformation operation which ignore the specific char-
acteristics of medical images.

The motivation of this work is to overcome the color 
variations and low contrast problems exhibited in skin 

lesion images. Therefore, a new color mixture convo-
lutional block is devised to learn the fusion of multi-
ple color spaces. This work reviews the effect of fusing 
various color models using U-Net as a baseline network 
structure. U-Net is considered as one of the effective 
deep convolutional neural network (CNN) structures 
in biomedical image segmentation field. A new U-Net 
variant model called color invariant U-Net (CIU-Net) 
is proposed by adding a color mixture block to learn 
the fusion of multiple color spaces. The encoder branch 
of the proposed network receives multiple color models 
of the input skin image and apply a 1× 1 convolutional 
operation to fuse these multiple color channels. In addi-
tion, a new channel wise attention units is employed 
to interconnect the two U-Net paths to direct the net-
work to learn important color features. The proposed 
model passes the learned features from the encoder 
levels through an attention unit before sending them 
to the corresponding decoder’s level to pick up invari-
ant lesions color features to overwhelm color diversity 
issues. The resulted feature maps from encoder path are 
sent to a channel-wise attention unit, then it is received 
by the decoder branch to fuse each feature contribution 
into the concluding segmentation map. Due to the sig-
nificant impact of the loss function used in the network 
training, a combined binary-weighted loss function is 
employed to optimize the parameters of the network. 
The new proposed loss function includes cross-entropy, 
generalized dice, and sensitivity-specificity losses. Dif-
ferent evaluation metrics are used to estimate the seg-
mentation results. The following is a summary of our 
contributions:
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Fig. 1 Dataset obstacles in ISIC 2018 dataset a jel, b unclear lesion, c pen markers, d hair markers, e lesion with different colors, f dark‑colored lesion 
area irregular borders, g light‑colored lesion area, h oil , i yellow mark, j larg lesion area
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• Studying the effect of fusing multiple color models on 
the behavior of the new color invariant U-Net (CIU-
Net) model.

• Employing a color mixture block to learn the fusion of 
multiple color spaces.

• Using channel-wise attention in the connection path 
between encoder and decoder branches.

• Employing a hybrid binary-weighted loss function to 
optimize the network parameters.

• A benchmark skin lesion database is used in the exper-
iments to validate the effectiveness of the proposed 
model and to compare it with other methods.

The organization of the rest of this paper is as follows: 
Section 2 provides background on some related works in 
the same field. Section 3 presents the image pre-prepar-
ing and the structure of the new skin lesion segmentation 
model. The details of the obtained results from the imple-
mentation of our proposed architecture and composite 
loss function is explained in Sect. 4. Discussion is viewed 
in Sects. 5 and  6 includes conclusion of the paper.

Related work
Many research works have been presented to implement 
fully automated skin lesion image segmentation. These 
works aimed to overcome the existing obstacles and ful-
fill the segmentation process with high accuracy. There-
fore, in this section, we explain the most recent works 
which are concerned with the effect of fusing color mod-
els in skin lesion segmentation and we will focus on those 
approaches that are based on applying U-net architec-
ture to obtain features using deep learning Convolutional 
Neural Network (CNN) architecture.

Color space conversion is utilized in many works to 
improve skin lesion segmentation results. Ma et al. [18] 
converted the RGB dermoscopic images to L*u*v and 
L*a*b color spaces and employed the contained color 
information to distinguish between the infected and 
non-infected parts. They defined a speed function and 
a stopping criterion for the deformable model using the 
differences in the combined color channels. Their model 
was robust against the noise and provides an effec-
tive and flexible segmentation, but the initial curves of 
the deformable model need to be defined manually to 
avoid negative influence from the complicated imaging 
background.

A region growing method for automatic skin lesion 
segmentation and classification was developed by Sum-
ithra et al. [19]. They derived various statistical measures 
such as: mean, standard deviation, variation, and skew-
ness for each channel of HSV, RGB, NTSC, YCbCr, CIE 
L*u*v, and CIE L*a*b color models to evaluate the color 
presence in skin lesions. Their proposed method could be 

used as a supplementary tool for the experts to diagnose 
skin diseases. However, its performance was decreased 
for some classes that led to a degradation of the overall 
system performance. Pour et  al. [3] used a limited data 
size with no augmentation or pre-processing to train 
their proposed network. They used efficient feature maps 
concatenation from CIELAB color space with RGB color 
channels. Their proposed model needs no data augmen-
tation nor any pre-processing and improved the perfor-
mance of a not very deep and complex CNN. Although 
they achieved high performance using small dataset, the 
training of convolution neural network was longer and 
more complicated than traditional methods. In [20], 
Khan et al. extracted a discriminative deep features using 
fully automated method. They used color-controlled his-
togram intensity values (LCcHIV) and deep saliency seg-
mentation method to enhance the training images before 
feeding them to a ten-layers custom convolutional neu-
ral network (CNN). Finally, the Kernel extreme learning 
machine (KELM) classifier is used to classify the gener-
ated features. Employing the improved moth-flame opti-
mization (IMFO) algorithm improved the accuracy by 
removing irrelevant and redundant deep features, but on 
the other hand, it required a high computational time.

A deep fully Convolutional Deconvolutional Neural 
Network (CDNN) to handle images under varying condi-
tions proposed by Yuan et  al. [4]. They combined RGB, 
HSV color model, and they choose luminance (L) chan-
nel from Lab color model to train their suggested model. 
Their approach resulted in a fast segmentation process. 
De Angelo et  al. [5] developed an application to collect 
skin lesion images using smartphone. They presented an 
investigation regarding the color spaces and the post-
processing that raise some important remarks about 
the ground truth of skin lesion images. They associated 
conditional random fields techniques, deep learning, 
and color models to segment skin lesions. Their meth-
odology achieved a noteworthy performance to handle 
ink marks and brightness in the images. Although some 
color space combinations slightly improved the Jaccard 
index, they did not report a strong effect in the results. In 
[21], we proposed three variants of the U-Net model with 
single, dual, and triple inputs, namely, single input color 
U-Net (SICU-Net), dual input color U-Net (DICU-Net) 
and triple input color U-Net (TICU-Net). Each encoder 
sub-network is fed with different color space of the input 
image. Later, this work was extended to combine gradient 
and color information using a new dual gradient-Color 
U-Net (DGCU-Net) [22] architecture. The DGCU-Net 
model integrated features extracted from an invariant 
color image representation with the gradient informa-
tion of the input image to strengthen the borders of skin 
lesion.
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In the same context, Azad et  al. [23] relied on U-Net 
architecture in their proposed approach. They proposed a 
frequency re-calibration U-Net (FRCU-Net) for medical 
image segmentation and used a channel-wise attention 
mechanism. The FRCU-Net used to segment the medi-
cal images in order to generalize a low data regime and 
decrease the texture bias effect. They represented objects 
in terms of frequency to reduce the effect of texture bias 
and using the Laplacian pyramid to represent object in 
different frequency domains. Re-calibration of these fre-
quency representations resulted in a more distinct rep-
resentation to describe the object of interest. Tang et al. 
[24] applied stochastic weight averaging separable-U-Net 
to introduce a skin lesion segmentation approach for 
higher semantic feature information with ideal bounda-
ries. The Separable-Unet framework takes advantage of 
the separable convolutional block and U-Net architec-
tures in capturing the context feature channel correlation 
with higher semantic feature information. A Recurrent 
Convolutional Neural Network (RU-Net) and a Recur-
rent Residual Convolutional Neural Network (R2U-Net) 
based on U-Net are proposed by Alom et  al. [25] for 
improved representation of skin lesion. The residual unit 
helps to speed up the training process of deep architec-
ture. Feature accumulation with recurrent residual con-
volutional layers ensures better feature representation for 
segmentation tasks. They designed better U-Net archi-
tecture using same number of network parameters.

Asadi et al. [26] presented Multi-level Context Gating 
based on U-Net (MCGU-Net) which utilize multi-level 
bi-directional ConvLSTM (BConvLSTM) in the skip con-
nection. In addition, densely connected convolutional 
blocks and squeeze-excitation (SE) blocks are utilized in 
the decoding path. Batch normalization (BN) operation 
is employed after the up-convolutional layer for getting 
more precise results and capturing more discriminative 
information. The included BN after each up-convolu-
tional layer speed up the network learning process while 
dense blocks helped the network to increase the repre-
sentational power of deeper models. Using multi-level 
BConvLSTMs led to efficiently combine encoded and 
decoded features. However, this modified architecture 
increases the complexity of the network and need more 
computational time. Table  1 summarizes the important 
related works with advantages and disadvantages of each 
work.

Proposed method
Image pre‑processing
Color space representation of input skin images is sig-
nificantly affect the performance of segmentation results. 
In order to obtain the optimum feature representation, 
recent works using U-Net model [21] reported that 

the combination of RGB and XYZ color models pro-
duced the best results. Thus, this work fuses the RGB-
XYZ color spaces with other color models to fed a new 
modified U-Net architecture. In the proposed method, a 
simple image contrast normalization is applied on each 
component of the combined color models to enhance 
the contrast between lesion and normal skin pixels [21]. 
Applying the pre-processing operation on each color 
channel of the fused color models helps to improve the 
performance of the proposed network. In addition, using 
contrast normalized channel image for skin segmenta-
tion enhances the appearance of skin lesion in the input 
image. Figure  2 shows some examples of low contrast 
skin images with the effect of applying contrast normali-
zation on these images.

Color invariant U‑Net architecture
Semantic segmentation not only require discrimina-
tive features at pixel level but also need to reconstruct a 
labeled image from the resulted feature maps. This task 
can not be accomplished using traditional CNN archi-
tectures that are prevailed the image classification tasks. 
Therefore, there is a need for an alternative structure 
that is capable of doing image segmentation task using 
encoder-decoder architecture such as U-Net deep model. 
The original U-Net model introduced by Ronneberger 
et  al. [27] is utilized to segment various biomedical 
images and label each pixel in these image. It has a sim-
ple structure consisting of a repetition of basic building 
blocks so it is easy to implement. Moreover, it shows 
good performance with a little amount of training data 
and it can be fitted to solve any semantic segmentation 
problem. The U-net structure keeps the segmented image 
to be in the same size as the input image. This work pro-
poses a new modified U-Net model to tackle color varia-
tions problem in the skin lesion segmentation task.

The segmentation results of skin lesion images using 
classical U-Net model are usually unsatisfactory due to 
the existing obstacles in the image dataset. Especially, 
the low contrast of infected skin areas and the color 
blurring of skin lesions. To address these problems, we 
propose a new Color Invariant U-Net (CIU-Net) struc-
ture which learn the optimum mixture of various color 
models to represent invariant color information of skin 
lesion images. The proposed network includes a color 
mixture block along with the encoder path of U-Net 
structure. To further improve the feature representa-
tion, the encoder and decoder paths are interconnected 
with an attention units. The input image of the network 
is constructed by fusing multiple color models or some 
discriminative channels from multiple color models. The 
multi-color input image is fed into the color mixture 
convolutional block to learn the optimum three-channel 
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Table 1 A summary of crucial related works with their advantages and limitations

Refs. Color model Method Advantages/limitations

[18] L*a*b* Deformable model with speed function. Robust against the noise

L*u*v* Provides an effective and flexible segmentation

The initial curves of the deformable model need to be defined manually

[19] HSV Region growing Used as a supplementary tool for the experts in diagnose

RGB K‑NN classifier. Decreasing in the performance for some classes.

YCbCr

L*u*v

L*a*b

[3] L*a*b A deep CNN trained from scratch No data augmentation or pre‑processing

RGB Use multiple input color channels High performance on small dataset

Training is longer and more complicated.

[4] RGB
HSV
L*a*b

A deeper network with smaller kernels Boosting in the segmentation performance

[5] RGB Conditional random field Achieved a noteworthy performance to handle ink marks and brightness

HSV Deep CNN Slightly improving Jaccard index

L*a*b Color models Did not viewed a strong effect in the results

[23] RGB A frequency re‑calibration U‑Net. Reduces the texture bias effect

Channel‑wise attention mechanism. Representation of the object in different frequency domains

Increased computational cost and complexity.

[24] RGB Separable‑Unet Speed up the network learning

Stochastic weight averaging . Using limited datasets for evaluation

[25] RGB U‑Net model Ensuring better feature representation

Designing a network with the same number of parameters

Increased segmentation time due to recurrence operation.

[26] RGB Multi‑level bi‑directional ConvLSTM Speed up the network learning

Using dense convolutional blocks Increasing the representational power of deeper models

Squeeze excitation (SE) blocks. Combining paths features

Need more computational time

Original  Image

Image after contrast
     normalization

Fig. 2 The effect of applying contrast normalization on low contrast skin lesion images.
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color representation of the input image for subsequent 
processing.

The architecture of proposed CIU-Net model resem-
bles a ‘U’ letter shape that is why it is called by this name. 
Figure  3 displays the structure of proposed CIU-Net 
model. The CIU-Net architecture includes (1) The color 
mixture convolutional block (2) the contracting/encoder 
path, (3) bridge, and (4) the expanding/decoder path. In 
the proposed CIU-Net structure, a new color mixture 
convolutional block is added at the beginning of the con-
tracting/encoder path. It contains a 1× 1 convolution 
layer with 3 kernels followed by batch-normalization 
layer and ReLU activation function. This convolution 
layer acts as a mixer to learn the fusion of the input color 
models and create a new image with three channels. The 
contracting path consists of four blocks, each of them 
has two 3 × 3 convolution layers with ReLU activation 
function. Then, a max pooling layer with 2 × 2 size and 
stride 2 is followed to reduce the spatial resolution of the 
input feature maps by half. The number of feature maps is 
doubled after each max pooling layer. The encoder path 
starts with 64 feature maps in the initial stage, then it is 
increased by 2 until it reach 1024 in the bridge stage. The 
encoder path tries to pick up the contextual information 
of the image and outputting feature maps that will be 
sent to the corresponding decoder block via a channel-
wise attention unit. The third part is the bridge, which is 
placed between the ending of the encoder path and the 
beginning of the decoder path and consists of two 3 × 
3 convolution layers followed by 2 × 2 up-convolution 
layer followed by dropout operation. The final part is the 
expansion path which includes 4 blocks each with stride 
2 deconvolution layer concatenated with the correspond-
ing attentioned feature maps from the corresponding 
contracting path. It also contains a pair of 3 × 3 convolu-
tion layers with ReLU activation function. At the end of 
each decoder block, the number of feature maps shrinks 
by half to maintain similarity. In the final output stage, 
there is another attention unit attached with a 1× 1 con-
volutional layer with the number of features equal to 
the total number of classes in the segmentation task. In 
the CIU-Net structure, the color model/channels of the 
image can be selected according to the type of medical 
image. The segmentation can be enhanced by determin-
ing the appropriate color model which appropriately 
describe the classes of the dataset. CIU-Net model takes 
whole powers of original U-Net and adds the context and 
localization information required to predict segmenta-
tion map.

Channel‑wise attention unit
The proposed CIU-Net learns a set of feature maps after 
each stage of the encoder path. It is favorable to direct the 

attention of the network on vital feature maps to assert 
descriptive features while discard meaningless features. 
A channel-wise attention unit is employed to focus on 
efficient feature components. Channel-wise attention 
units are commonly based on understanding the corre-
lation between feature channels. The channel-wise atten-
tion unit accepts a set of features Fc ∈ ℜr×c×n obtained by 
applying a series of convolutional and pooling processes 
in the contracting path, where r, c,   and n are the num-
ber of rows, columns, and channels, respectively. The 
structure of channel attention unit adopted here is driven 
from [28] by employing average and max pooling process 
to obtain Favg and Fmax , respectively. Next, the derived 
pooled features are concatenated to get Fmax,avg as writ-
ten in Eq.  1 and delivered into two 1× 1 convolution 
layers with appropriate number of filters. Each convolu-
tion layer is followed by ReLU, then a Sigmoid activation 
function is appended to get the channel weights CMc ∈ 
ℜ1×1×n in Eq. 2. The input feature maps Fc is magnified 
by the learned weights CMc to obtain the attentioned fea-
ture maps in AFc Eq. 3. Figure 4 illustrates the channel-
wise attention unit structure. The following equations 
describe the channel attention operation steps:

where σ is sigmoid activation function. The attentioned 
feature maps AFc are obtained from:

where ⊗ is the element-wise multiplication and ECMc ∈ 
ℜr×c×n.

Proposed loss function
In the learning process of deep convolution neural net-
works, it is essential to choose an appropriate loss func-
tion to enhance the learning behavior of semantic 
segmentation problems. Loss function is utilized to check 
out the network performance by reducing the resulted 
training error. In our work, we use a hybrid loss function 
which comprise three fused binary weighted terms. The 
proposed binary weighted loss function (CE-Di-SS) com-
prises Sensitivity-Specificity (SS), Dice (Di), and Cross-
entropy (CE) loss functions. This hybrid loss function is 
very suitable to handle imbalance skin lesion datasets. 
Mathematically, it can be formulated as follows:

The cross-entropy loss measures the performance of 
model with output probability ranged between 0 and 1 

(1)Fmax,avg =concat(Fmax , Favg )

(2)
CMc =σ(Relu(Conv1×1(Relu(Conv1×1(Fmax,avg ))))

(3)AFc = Fc ⊗ CMc

(4)LCE−Di−SS = 1 ∗ LWCE + 2 ∗ LDice + 4 ∗ LSS
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Contracting Path Expansion Path

The bottleneck layer

16×16×512

256×256×9

256×256×64

256×256×64

64×64×128

64×64×256

64×64×256

32×32×256

32×32×512

32×32×512

16×16×1024

64×64×256

128×128×64

128×128×128

128×128×128

256×256×128

256×256×64

16×16×1024

32×32×512

16×16×1024

32×32×512
64×64×256

256×256×64

32×32×102432×32×512

128×128×128

128×128×128

128×128×128

64×64×256

32×32×512

64×64×256 64×64×512

128×128×128

256×256×64

256×256×64

256×256×2

32×32×512

Concatenation Layer

3×3 2D conv. Layer
Relu
Batch-normalization Layer 
2×2 Max-pooling
Dropout Layer
Transposed 2×2 Conv. 2D
Layer UpReLU Layer 

Feature maps

Copy and crop

128×128×256

Input image

Segmented  image

A

A

A

A

256×256×2

2×2 Max-pooling layer

Average-pooling layer

Fully connected layer
Fully connected +Relu+Sig

Multiplication layer
A Channel attention unit

1×1 conv. layer

Softmax layer

Final channel attention 
unit

Color fusion block

1×1 conv. +Relu+ Batch-
normalization layer

C

C

C

C

C

256×256×3

Fig. 3 Color invariant U‑Net (CIU‑Net) architecture
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and it increases as the predicted probability (P) diverges 
from the actual ground truth label (G). Weighted cross-
entropy loss is used to tackle the imbalanced data in 
background/foreground segmentation. The weighed 
cross-entropy (CE) loss function LWCE is defined as.

Dice loss function LDice is based on the Dice coefficient, 
which measure the overlap between two samples and 
ranged from 0 to 1 where a Dice coefficient of 1 denotes 
perfect overlap and 0 value for loss. It can be calculated 
as:

Sensitivity-specificity loss Lss is defined to address imbal-
anced semantic segmentation problems, where sensitiv-
ity is the first term and sensitivity is the second term. It 
can be formulated as:

where Pik and Gik define pairs of i pixel predicted and 
ground-truth values at a distinct class k, respectively.

Experimental results
This section explains the details of results obtained from 
experiments that were conducted using proposed CIU-
Net architecture and loss function. ISIC 2018 benchmark 

(5)
LWCE = −[wG log(P)+ (1− w)(1− G) log(1− P)],

(6)LDice = 1−

2
N∑

i=1

C∑

k=1

(GikPik)

N∑

i=1

C∑

k=1

G2
ik +

N∑

i=1

k∑

k=1

+P2
ik

(7)

LSS =

N∑

i=1

C∑

k=1

(Gik − Pik)
2Gik

N∑

i=1

C∑

k=1

Gik + ǫ

+

N∑

i=1

C∑

k=1

(Gik − Pik)
2(1− Gik)

N∑

i=1

C∑

k=1

(1− Gik)+ ǫ

dataset is utilized for evaluation. We also compare our 
results with other recent state-of-the-art methods. ISIC 
2018 is a large-scale dermoscopy image dataset published 
by International Skin Imaging Collaboration (ISIC)1. It 
has 2594 training RGB dermoscopic images with reso-
lution ranged from ( 576×768 ) to ( 6748×4499 ). In this 
work, the training images are divided into 2076 (80% ) 
images used for model training and 518 (20% ) images for 
testing with size of ( 160×224 ) pixels.

Implementation details
The experiments are conducted using Matlab 2021a run-
ning on PC with Windows 10, 32 GB RAM, Intel Core 
i7 processor and NVIDIA GeForce RTX 2080 Ti. The 
SGDM optimizer is employed to optimize the network 
parameters using following hyper-parameter values: The 
number of epochs equals 30, the learning rate is set to 
0.05 and the mini-batch size equals 4. Two techniques are 
implemented to avoid overfitting problem, the first one is 
using L2 regularization in the loss function and the sec-
ond is using dropout layers.

Evaluation Metrics
To check the quality of the segmentation results, it is 
essential to consider various evaluation metrics to com-
pare the obtained performance with recent methods. The 
commonly used evaluation metrics are: true positive rate 
(SEN) calculated from Eq. 8, true negative rate (SPE) in 
Eq. 9, False positive rate (FPR) in Eq. 10, Dice coefficient 
(DIC) in Eq. 11, Jaccard index (JAC) in Eq. 12, Accuracy 
(ACC) detailed in Eq. 13, Area Under Curve score (AUC) 
in Eq. 14 and Precision (PRE) in Eq. 15.

×
1×1×64

1×1×64

1×1×128

Features maps

Average pooling layer

Max pooling layer

1×1 convolution layer

1×1 convolution layer
Relu activation function

Sigmoid activation function

Multiplication Layer

Channel attention map

×

Fc

Fmax

Favg

CMc

Fmax,avg

ECMc

Fig. 4 The structure of channel‑wise attention module

1 https:// chall enge2 018. isic- archi ve. com/ task1/.

https://challenge2018.isic-archive.com/task1/
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where, FN, FP, TP, and TN are False Negative, False Posi-
tive, True Positive, and True Negative, respectively.

Studying the effect of using various color models 
on CIU‑Net model
In this experiment, the proposed CIU-Net is trained and 
tested using ISIC 2018 data set with different color mod-
els to illustrate the effect of varying the input color model 
on the (CIU-Net) performance. Results in Table 2 illus-
trate the superiority of using a fused input color model 
that consists of a combination of 7 channels (RGB-XYZ-
Gray) in most evaluation metrics. The fused input color 
model achieved 96.95% for sensitivity, 98.88% for speci-
ficity, 92.58% for dice coefficient, 91.40% for jaccard coef-
ficient,95.44% for accuracy, and 97.91% for AUC score. 
While the best false positive rate of 0.16% and the best 

(8)SEN =
TP

TP + FN

(9)SPE =
TN

TN + FP

(10)FPR =
FP

FP + TN

(11)F1score =Dice =
2TP

2TP + FP + FN

(12)JAC(WeightedIOU) =
TP

FN + FP + TP

(13)ACC =
TN + TP

FN + TN + TP + FP

(14)AUC =
SEN + SPE

2

(15)PRE =
TP

TP + FP

precision value 98.93% are achieved using the combina-
tion of (RGB-XYZ-LUV) channels.

State‑of‑the‑art comparison
This experiment presents a comparison between our pro-
posed model and other recent approaches which employ 
ISIC 2018 dataset. The results of the state-of-the-art 
approaches were obtained from [12, 25, 29, 30]. Table 3 
shows the evaluation metric values in comparison with 
our proposed model and other recent approaches. The 
proposed model achieves the best values for Sen, Spe, 
AUC, Dice and Jaccard coefficients with values of 96.95%, 
98.88%, 97.91%, 92.56% and 91.40%, respectively while 
the value of accuracy is close to the best approach. Fig-
ure  5 shows sample of segmentation results from CIU-
Net model using images from ISIC 2018 dataset. The 
performance of the proposed method is superior even for 
low contrast skin images.

Discussion
The proposed color invariant U-Net model (CIU-Net) 
utilizes a fusion of multi-color models to overcome the 
color variation and low contrast problems of skin lesion 
image segmentation. A new color mixture block with 
single convolution layer is added to learn invariant color 
representation which is subsequently fed to the modi-
fied U-Net model. This work analyzes the efficiency of 
fusing multiple color models for skin lesion segmenta-
tion. The proposed CIU-Net is provided with distinctive 
color models of the image to capture particular features 
which show up in some channels of different color mod-
els. The proposed model succeeds to enhance the behav-
ior of original U-Net semantic segmentation deep model. 
The inter-connections between the two network encoder 
and decoder paths using channel-wise attention unit 
improves the segmentation results by focusing on the 
meaningful features while suppressing irrelevant ones. 
However, one weakness of the introduced approach is 
increasing computational time due to the addition of the 
attention units. There are some involved remarks, which 
can be outlined as follows:

Table 2 The effect of using various combination of image color models on the CIU-Net for ISIC 2018 dataset

Bold indicates the best-achieved results

Input color model SEN% SPE% DICE% JAC% ACC% FPR% AUC% PRE%

RGB‑XYZ‑Gray 96.95 98.88 92.56 91.40 95.44 4.49 97.91 90.01

RGB‑XYZ‑YCbCr 93.73 96.20 91.73 90.61 95.02 3.98 94.97 90.81

RGB‑XYZ‑Lab 51.13 99.50 65.10 71.65 84.29 0.80 75.32 96.31

RGB‑XYZ‑YIQ 77.15 98.99 83.67 83.82 91.34 1.48 88.07 95.52

RGB‑XYZ‑HSV 66.97 99.89 78.06 79.80 89.11 0.64 83.43 97.75

RGB‑XYZ‑LUV 39.41 99.88 52.16 65.51 80.64 0.16 69.65 98.93
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Original images

Ground truth

Predicted images

The predicted image 
over the ground truth

Fig. 5 Segmentation results of CIU‑Net using chosen images from ISIC 2018 dataset

Table 3 Comparison between our proposed method and other recent state-of-the-art methods using ISIC 2018 dataset

Bold indicates the best-achieved results

Method Year SEN% SPE% DIC% JAC% ACC% AUC%

U‑Net [27] 2015 91.40 94.20 85.10 76.10 91.80 –

Deeplab [31] 2018 94.40 91.30 85.80 76.80 92.40 –

CENet [32] 2019 – – 87.50 80.00 95.50 –

Multi‑ResUnet [33] 2019 – – 80.30 – – –

CPFNet [34] 2019 – – 89.90 82.90 96.30 –

BCDU‑Net [35] 2019 78.50 98.20 85.10 93.70 93.70 97.88

R2U‑Net [25] 2019 89.40 96.70 86.10 78.20 92.00 –

Ensemble‑A [29] 2020 89.90 95.10 87.10 79.30 94.10 –

AFLN‑DGCL [12] 2021 – – 90.00 83.50 96.30 –

AFLN‑DGCL‑FUSION [12] 2021 – – 92.00 85.60 96.60 –

CKD‑Net [36] 2021 96.70 90.40 87.70 79.40 93.40 97.50

CIU‑Net [RGB‑XYZ‑Gray] 2022 96.95 98.88 92.56 91.40 95.44 97.91
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• The combination of RGB-XYZ-Gray color model is the 
best among others.

• Applying channel attention unit enhanced the results 
of some performance metrics.

• Utilizing hybrid loss function outperforms other sim-
ple loss functions.

Conclusion and future work
The variation of dermoscopy images’ colors contrast is an 
obstruction for distinguishing the infected regions from 
the surrounding un-infected ones. As a step toward solv-
ing this problem, this paper introduced a novel model for 
skin lesion segmentation based on U-Net deep learning 
model. The introduced CIU-Net model is able to achieve 
comparable results with other state-of-the-art techniques 
even for low contrast skin lesion images. The presented 
model is fed with a composite color spaces. The optimum 
choice of the fused color models significantly affects the 
behavior of the proposed CIU-Net segmentation results. 
In addition, the inclusion of the channel-wise attention 
units between the two network paths help to concentrate 
on the interesting features derived from the encoder part 
which lead to a significant improvement of segmenta-
tion results. The benchmark ISIC 2018 dataset is used to 
verify the robustness of the presented model. Additional 
advancements can be produced by using other attention 
network units to learn more descriminative features of 
skin images.
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