Skip to main content
. 2022 Aug 15;103:108325. doi: 10.1016/j.compeleceng.2022.108325

Table 2.

Comparison of hyperparameters between proposed and existing transfer learning framework.

Hyperparameter Existing transfer learning models
Proposed model
VGG19 InceptionV3 DenseNet169 ResNet50V2 Xception MobileNetV2
Input shape (224,224,3) (299,299,3) (224,224,3) (224,224,3) (299,299,3) (224,224,3) (224,224,3)
Model size 1.5GB 250 MB 152.75 MB 270 MB 250.6 MB 27.57 MB 11.72 MB
Total parameters 143 0667 240 23 851 784 14 307 880 25 613 800 22 910 480 3 538 984 961 923
Epochs 30 30
Batch size 32 32
Loss Categorical crossentropy Categorical crossentropy
Optimizer Adam (lr = 0.001) Adam (lr = 0.001)
Learning rate L=L0/(10(epoch/10)), L0=0.001 L=L0/(10(epoch/10)), L0=0.001