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Autism spectrum disorder (ASD) and schizophrenia (SZ) are separate clinical entities but share deficits in social–emotional processing
and static neural functional connectivity patterns. We compared patients’ dynamic functional network connectivity (dFNC) state
engagement with typically developed (TD) individuals during social–emotional processing after initially characterizing such dynamics
in TD. Young adults diagnosed with ASD (n = 42), SZ (n = 41), or TD (n = 55) completed three functional MRI runs, viewing social–
emotional videos with happy, sad, or neutral content. We examined dFNC of 53 spatially independent networks extracted using
independent component analysis and applied k-means clustering to windowed dFNC matrices, identifying four unique whole-brain
dFNC states. TD showed differential engagement (fractional time, mean dwell time) in three states as a function of emotion. During
Happy videos, patients spent less time than TD in a happy-associated state and instead spent more time in the most weakly
connected state. During Sad videos, only ASD spent more time than TD in a sad-associated state. Additionally, only ASD showed a
significant relationship between dFNC measures and alexithymia and social–emotional recognition task scores, potentially indicating
different neural processing of emotions in ASD and SZ. Our results highlight the importance of examining temporal whole-brain
reconfiguration of FNC, indicating engagement in unique emotion-specific dFNC states.
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Introduction
Although typically categorized as separate clinical enti-
ties, the neurodevelopmental disorders autism spectrum
disorder (ASD) and schizophrenia (SZ) share many clini-
cal attributes, including deficits in social–emotional (SE)
processing (Eack et al. 2013; Ciaramidaro et al. 2018).
Such deficits in these two clinical populations are often
a part of an overall impairment in social cognition (SC)
(Fernandes et al. 2018; Barlati et al. 2020; Pinkham et al.
2020). It remains unclear, however, if these shared SE
processing impairments are associated with deficits in
the same or different neural substrates.

The neural underpinnings of SE perception impair-
ments in both ASD and SZ are posited to involve, at
least in part, abnormal functional connectivity between
regions comprising the social brain (Eack et al. 2017; Bar-
lati et al. 2020; Nair et al. 2020). Functional connectivity

(FC) is defined as the temporal correlation of time
courses derived from functional magnetic resonance
imaging (fMRI) blood oxygenation level–dependent
(BOLD) signals from spatially distinct pairs of brain
regions. Abnormal connectivity, or dysconnectivity, is
then defined as any significant deviation from the
mean FC between brain regions occurring in typically
developed (TD) individuals and can appear in ASD or SZ
as either hypo- or hyperconnectivity (Damaraju et al.
2014; Padmanabhan et al. 2017; White and Calhoun
2019).

Evidence for functional dysconnectivity between
social brain regions in ASD and SZ has been found using
either seed- and/or ROI-based methods (Anticevic et al.
2012; Lynch et al. 2013; Ciaramidaro et al. 2015; Eack et al.
2017) or by examining functional “network” connectivity
(FNC) between intrinsic connectivity networks (ICNs)
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identified from spatial independent component analysis
(sICA) (Assaf et al. 2010; Das et al. 2012). Analysis of FC
between pairs of ICN time courses when performed using
the entire ICN time course is termed a “static” functional
network connectivity (sFNC) analysis.

Recently, however, studies have increasingly focused
on the analysis of time-varying or “dynamic” changes in
functional connectivity between independent networks.
The motivation for this change in focus is the observation
that functional connectivity during an fMRI run changes
continuously both in resting-state and task-based fMRI
(Hutchison et al. 2013; Allen et al. 2014; Calhoun et al.
2014; Du, Fu, et al. 2018b; Taghia et al. 2018; Iraji et al.
2020). In contrast, traditional seed- or ROI-based connec-
tivity and sFNC studies cannot capture such transient
changes in whole-brain functional connectivity. Several
studies have also demonstrated that dFNC is superior
to sFNC in predicting behaviors and symptoms. A recent
study of schizophrenia and bipolar patients showed that
dFNC outperformed sFNC in predictive accuracy (Rashid
et al. 2016). Furthermore, this study found that com-
bining sFNC and dFNC did not significantly improve
classification performance over dFNC alone. Also, in a
comparison of dynamic and static FC in a large cohort
of TD individuals, dynamic FC metrics when compared
with static FC were found to explain more than twice
the variance in 75 behaviors across different domains
including cognition and emotion (Jia et al. 2014).

Dynamic functional dysconnectivity has been found
between pairs of ROIs or networks in both ASD (Falah-
pour et al. 2016) and SZ (Mennigen et al. 2019) when
compared with TD individuals. Pairwise dysconnectivity
in dynamic FC studies often lasts for only a portion of an
fMRI run or occurs only when the brain enters a particu-
lar dynamic FC “state.” Studies of dynamic changes in FC
have shown that during an fMRI run, a relatively small
number of these dynamic FC “states” exist, typically five
or less, where each dynamic FC state represents a dis-
tinct pattern of function network connectivity between
all regions or ICN pairs encompassing the entire brain
(Calhoun et al. 2014; Du, Fu, et al. 2018b; Lurie et al. 2020).
These dynamic FC states can be identified using cluster-
ing methods, such as the k-means algorithm, applied to
overlapping, windowed FNC matrices from the ROI or ICN
time courses (Allen et al. 2014) or using machine learning
methods based on Bayesian switching linear dynamical
systems (BSDS; Taghia et al. 2018).

Once dynamic FC states are identified, it then becomes
possible to examine not only between-group differences
in pairwise FC in a given state, but also group differences
in properties of dynamic FC state “engagement.” In fact,
groups might have no differences in pairwise FC (i.e., no
dysconnectivity) but instead differ only on dynamic state
(dS) measures, such as number of transitions between
states, probability of transition, mean dwell time (DT),
and fraction of total time (FT) spent in a given state
(a.k.a., occupancy rate). In these cases, it is the brain’s
ability to remain in, or switch between, dynamic FC states

that is dysfunctional, rather than the static or dynamic
FC between any two networks or regions. In resting-state
studies that used dFNC to extract dS measures, abnormal
state engagement was found in ASD (Rashid et al. 2018),
in SZ (Du, Pearlson, et al. 2016b), as well as in a study
including both groups (Rabany et al. 2019). These studies
all found that patient groups spent significantly more
time (higher mean dwell time, fractional time, or both)
than TD participants in the most weakly connected state,
that is, the state with the smallest mean absolute (both
positive and negative) magnitude in correlation between
all ICN pairs.

In this study, our goal was to analyze task-based
fMRI data in ASD, SZ, and TD participants using dFNC
and a task that includes videos requiring processing
SE information. Participants passively viewed videos
of actors describing happy, sad, or neutral situations
designed to simulate SE interactions. We aimed to 1)
determine whole-brain dFNC states unique to happy
and sad SE interactions in TD; 2) assess similarities
and differences between ASD and SZ in dS measures
and compare both groups to TD; and 3) explore the
relationship between dS measures and scores on social
cognition (all groups) and clinical symptom (ASD and SZ
only) standardized tests.

We hypothesized that happy and sad SE stimuli will
be associated with different whole-brain dynamic func-
tional connectivity states. This is consistent with the
hypothesis that different emotions are associated with
different overall organization of brain functional systems
(Wexler 1986). Because this is to our knowledge the first
study to evaluate dFNC during an SE paradigm, we do not
attempt to predict exact emotion effect and the between-
group differences in dS measures. Based on previous
dFNC studies during rest, however, our hypothesis was
that both SZ and ASD will spend more time (i.e., have a
higher mean dwell time and/or fractional time) than TD
in the most weakly connected state during the viewing of
videos of any emotion type (happy, neutral, or sad). Due to
known SE processing deficits in ASD and SZ, however, we
posited that ASD and SZ differences with TD in whole-
brain dynamic FNC would be greater during viewing of
videos with emotional content (happy or sad) than with
neutral content.

Materials and Methods
Participants
Table 1 provides participant characterization and demo-
graphics. Individuals were recruited from Olin Neuropsy-
chiatry Research Center (ONRC) and Yale University
School of Medicine. Participants included in the study
were classified as ASD (n = 42), SZ (n = 41), and TD
(n = 55), ages 22–38, using the diagnostic interviews
noted below. Exclusion criteria were intellectual dis-
ability (estimated full-scale IQ < 80), current substance
use/abuse (assessed by clinical interview and urine
screen prior to MRI), MRI contraindications (e.g., in-body
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Table 1. Participant characterization and demographics

ASD SZ TD Group comparison

(N = 42) (N = 41) (N = 55)
Mean (SD) Mean (SD) Mean (SD) Statistic P-value Post hoc

Age 26.8 (3.6) 30.9 (3.8) 29.1 (3.6) F(2,135) = 13.3 P < 0.001 TD > ASD∗

SZ > ASD∗∗

IQ (Estimated) 111 (15.9) 98 (13.9) 113 (14.6) F(2,135) = 12.6 P < 0.001 TD > SZ∗∗

ASD > SZ∗∗

Gender (M/F)a 34/8 29/12 28/27 χ2(2) = 10.2 P = 0.006 HC/F+, ASD/M+
Mean FDRMS (mm) Happy
videos

0.104 (0.033) 0.105 (0.057) 0.079 (0.022) F(2,135) = 7.34 P = 0.001 ASD > TD∗

SZ > TD∗

Mean FDRMS (mm) Neutral
videos

0.101 (0.027) 0.102 (0.051) 0.080 (0.029) F(2,135) = 5.47 P = 0.005 ASD > TD∗

SZ > TD∗

Mean FDRMS (mm) Sad videos 0.103 (0.034) 0.108 (0.058) 0.081 (0.031) F(2,135) = 5.99 P = 0.003 ASD > TD∗

SZ > TD∗

ADOS Communication 3.52 (1.29) 2.61 (1.86) 1.28 (1.03) F(2,134) = 31.2 P < 0.001 ASD > TD∗∗

SZ > TD∗∗

ASD > SZ∗

ADOS Social Interaction 6.86 (2.14) 5.39 (3.51) 0.83 (1.44) F(2,134) = 81.7 P < 0.001 ASD > TD∗∗

SZ > TD∗∗

BVAQ Verbalizing 21.9 (4.6) 21.7 (5.5) 19.2 (5.5) F(2,133) = 4.16 P = 0.018 ASD > TD∗

BVAQ Fantasizing 18.0 (6.1) 21.6 (5.3) 20.0 (5.3) F(2,133) = 4.54 P = 0.012 SZ > ASD∗

BVAQ Identifying 19.2 (6.1) 19.2 (6.1) 15.9 (4.7) F(2,133) = 7.77 P = 0.001 ASD > TD∗

SZ > TD∗

BVAQ Emotionalizing 21.9 (3.3) 22.2 (3.9) 22.3 (4.0) F(2,132) = 0.17 P = 0.844 _
BVAQ Analyzing 18.8 (4.3) 19.9 (4.6) 18.0 (4.4) F(2,133) = 2.11 P = 0.125 _
RMET 24.5 (4.2) 23.3 (4.4) 27.3 (3.3) F(2,133) = 13.4 P < 0.001 TD > ASD∗

TD > SZ∗∗

BLERT 17.0 (3.1) 16.0 (3.8) 17.7 (2.6) F(2,134) = 3.47 P = 0.034 TD > SZ∗

PANSS Positive 11.9 (3.2) 15.9 (4.6) _ t(71.6#) =−4.44 P < 0.001 SZ > ASD
PANSS Negative 16.1 (5.4) 19.1 (6.1) _ t(79) =−2.41 P = 0.018 SZ > ASD
PANSS General 26.5 (5.8) 31.5 (6.3) _ t(79) =−3.74 P < 0.001 SZ > ASD
Valence (Happy) 6.80 (1.52) 6.24 (1.58) 6.67 (1.49) F(2,134) = 1.54 P = 0.218 _
Valence (Neutral) 5.39 (1.41) 5.28 (1.63) 4.72 (1.28) F(2,132) = 3.02 P = 0.052 _
Valence (Sad) 3.54 (1.38) 3.68 (1.56) 3.73 (1.42) F(2,134) = 0.212 P = 0.809 _

Notes: ASD: Autism spectrum disorder, SZ: Schizophrenia, TD: Typically developed, SD: standard deviation, FDRMS: framewise displacement (root mean square),
ADOS: Autism Diagnosis Observation Schedule, BVAQ: Bermond-Vorst Alexithymia Questionnaire, RMET: Reading the Mind in the Eyes Task, BLERT: Bell Lysaker
Emotion Recognition Task, PANSS: Positive and Negative Syndrome Scale. achi-squared test.

∗
P ≤ 0.0.05.

∗∗
P ≤ 0.0.001. IQ: Intelligence quotient, M: Male, F: Female.

metal), or clinical instability. Inclusion criteria for TD
were no current DSM-IV Axis I diagnosis, as confirmed
with Structured Clinical Interview for DSM-5 (SCID),
Autism Diagnostic Observation Schedule (ADOS) and a
detailed health questionnaire, no history of psychiatric
hospitalization or pharmacological treatment, and no
reported first-degree relative diagnosed with ASD, SZ,
psychosis, or bipolar disorder.

Participants provided written informed consent after
the study had been explained to them and were paid for
their time. The authors assert that all procedures con-
tributing to this work comply with the ethical standards
of the relevant national and institutional committees on
human experimentation and with the Helsinki Decla-
ration of 1975, as revised in 2008. All procedures were
approved by the Institutional Review Boards of Hartford
Hospital and Yale University.

Psychiatric and Behavioral Assessments
A psychiatric assessment included the structured
clinical interview for DSM-IV axis I disorders (SCID)
(First et al. 2002) and the autism diagnosis observation

schedule (ADOS)–Module 4 (Lord et al. 2000). We adminis-
tered the Positive and Negative Syndrome Scale (PANSS)
(Kay et al. 1987) to patients only (ASD and SZ), and ADOS
to all three groups, to quantify the severity of psychotic
and social communication deficits; TD individuals were,
however, excluded from clinical symptom analyses.

To assess social cognition, we administered the
following tests: 1) Reading the Mind in the Eyes Task
(RMET; Baron-Cohen et al. 2001), 2) Bell Lysaker Emotion
Recognition Task (BLERT; Bryson et al. 1997), and 3)
Bermond-Vorst Alexithymia Questionnaire (BVAQ; Vorst
and Bermond 2001) (See Supplement 1 for details).
We estimated full-scale IQ using the Wechsler Adult
Intelligence Scale (WAIS-III; Wechsler 1997), vocabulary
and block design subscales.

Functional MRI Simulated Social–Emotional Task
The fMRI task consisted of naturalistic videos of actors
telling stories about happy (positive), sad (negative), or
neutral personal experiences, looking at and address-
ing the subjects directly and displaying emotion-related
nonverbal behaviors, but without any specific task events
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(Prohovnik et al. 2004). The actors were seated facing
and talking directly to the camera (i.e., the viewer). Eight
actors made three videos each, one for each type of con-
tent, happy, sad, and neutral, for a total of 24 videos. The
actors were from two ethnic groups (White and Black, 4
actors each) with two males and two females for each
ethnicity.

In happy videos, actors smiled frequently and spoke in
a cheerful tone of voice about a personal happy memory.
In sad videos, actors spoke sadly, often while crying,
about a personal memory usually involving a death in
the family. Each video was preceded by 45 s (95 fMRI
images) of a fixation screen, consisting of a blank black
background, followed by the video itself and then by a
second blank fixation screen, bringing the total fMRI run
duration to 5 min and 13 s (313 s). Videos ranged in length
from 3 min 3 s to 3 min 34 s. Participants viewed three
videos in randomized order, one video each of happy, sad,
and neutral, with ethnicity and gender of the videos also
randomized and each ethnicity and gender appearing
in at least one of the three videos. Participants were
instructed to pay attention to when they felt an emotion
and when the emotion intensity changed.

After viewing each video, we gave participants a
postscan debriefing with two content questions to
determine if they had been attentive to the video and
we asked them to quantify their emotional valence
(scale 1–9, where 5 is neutral) during the video (see
Supplementary Material, Supplement 3, for postscan
questionnaire example).

Functional MRI Data Acquisition
We collected BOLD fMRI data with a T2∗-weighted echo
planar imaging (EPI) sequence (TR/TE = 475/30 ms, flip
angle = 60◦, FOV = 24 cm, acquisition matrix 80 × 80),
using a Siemens Skyra 3 Tesla scanner (Siemens,
Malvern, Pennsylvania) at the Olin Neuropsychiatry
Research Center (ONRC; Hartford, CT). We acquired 48
contiguous axial functional slices of 3.0 mm thickness
(interleaved slice order) resulting in 3.0 mm3 voxels.
Participants completed the three emotion fMRI task runs
on the same day. Each run consisted of 658 images (5 min,
13 s run duration).

Image Preprocessing and Motion-Artifact
Correction
We processed functional MRI datasets using SPM8
(http://www.fil.ion.ucl.ac.uk/spm) running under MAT-
LAB 2018b (Natick, MA). We realigned each subject’s
dataset to the first “nondummy” T2∗ image using the
INRIAlign toolbox (http://www-sop.inria.fr/epidaure/
software/INRIAlign, A. Roche, EPIDAURE Group) to com-
pensate for any subject head movement. We screened
each subject for excess head movement (>6 mm) and
accordingly excluded from the study three ASD, six
TD, and three SZ participants, resulting in the final
participant count.

After realignment, we spatially normalized the images
to the Montreal Neurological Institute (MNI) standard
template (Friston et al. 1995). Finally, we spatially
smoothed images with a 9 mm isotropic (FWHM) Gaus-
sian kernel and then applied a high-pass filter with a cut-
off of 128 s to correct for EPI signal low-frequency drift.
Due to a very short TR (475 ms) multiband sequence, as
recommended by Human Connectome Project guidelines
(Glasser et al. 2013), we did not perform slice timing cor-
rection. As a final step to mitigate head motion artifact,
we scrubbed the fMRI data using the ArtRepair toolbox
(https://cibsr.stanford.edu/tools/human-brain-project/
artrepair-software.html, RRID:SCR_005990; Mazaika
et al. 2009). The ArtRepair toolbox replaces fMRI time
points (volumes) that exceed a predetermined threshold
for movement with linearly interpolated values from
neighboring “good” time points. No time points are actu-
ally removed. Since patients are often characterized by
high head movement, we set the ArtRepair threshold to
a liberal maximum acceptable movement at 1.0 mm/TR
(assuming a 65 mm head radius), and the intensity
variation at a maximum percent threshold of 1.3% of
the mean global average signal.

From retained participants, we determined that the
number with greater than 5% (33 images) repaired in any
one run (658 total images per run) were 6/42 (ASD), 5/41
(SZ), and 4/55 (TD). The maximum number of images
repaired in any one run (total of 658 run images) was 183
(27.8%, ASD), 55 (8.4%, SZ), and 69 (10.5%, TD); therefore,
no run for any participant had more than 30% repaired
scans. Mean and standard deviation values for the num-
ber of images repaired over all 417 runs were 10.4 ± 21.3
(ASD), 5.8 ± 10.1 (SZ), and 4.6 ± 7.4 (TD). A Kruskal-Wallis
test indicated a significant difference between groups
(χ2 = 13.71, P = 0.001) on the number of repaired scans,
where the mean rank of each group was 236.8, 191.8, and
198.6 for ASD, TD, and SZ, respectively. This indicates that
ASD had significantly more scans repaired than TD or
SZ, but the overall mean number of scans repaired was
small, even for ASD (10.4).

We further reduced the effect of head motion on our
results by including the mean of the root mean square
(RMS) of the framewise displacement (mean FDRMS) for
each participant as a second (group) level covariate in
all statistical analyses. To calculate mean FDRMS for
each participant, we computed a single mean value of
the root-mean-square framewise head displacement
for each run, determined using the six realignment
parameters during that run, with one set each from the
three social emotion video runs. For FDRMS, we assumed
a head radius of 65 mm for all participants. We further
note that the group information guided ICA (GIG-ICA)
procedure we used (described in more detail below) has
been shown in a previous study to be a highly effective
method in reducing head motion effects on the data, with
GIG-ICA being superior to ICA-FIX (Du, Allen, et al. 2016a).
In a separate study, ICA methods (e.g., ICA-AROMA,

http://www.fil.ion.ucl.ac.uk/spm
http://www-sop.inria.fr/epidaure/software/INRIAlign
http://www-sop.inria.fr/epidaure/software/INRIAlign
https://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
https://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
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ICA-FIX) were found to be among the most effective
methods for reducing motion artifacts in rs-fMRI data
(Parkes et al. 2018).

Group Independent Component Analysis
We performed group spatial ICA (sICA) using the Group
ICA of fMRI Toolbox (GIFT, https://trendscenter.org/
software/gift/, RRID:SCR_001953). Group sICA identi-
fies independent component networks (ICNs), that is,
temporally coherent networks, through estimation of
maximally independent spatial sources from the linearly
mixed fMRI signals. Each independent component has an
associated time course (TC) and a spatial map (SM).

We chose an ICA model order of 100 components
(Rashid et al. 2018). Using GIFT, we first performed a
subject-specific data reduction step using principal com-
ponent analysis (PCA) to reduce the fMRI data (658 time
points) into 150 directions capturing maximal variability.
The subject-reduced data were then concatenated across
time and a second group data PCA step was performed
to further reduce this matrix into 100 components along
directions of maximal group variability. After obtain-
ing an initial set of 100 independent components from
the group PCA reduced matrix using the Infomax ICA
algorithm (Bell and Sejnowski 1995), we then repeated
the algorithm 15 times in ICASSO (http://www.cis.hut.fi/
projects/ica/icasso) and selected the most representative
run (Du et al. 2014) to generate a stable final set of 100
group-level components.

Next, using group-level component maps as refer-
ences, we applied GIG-ICA to back-reconstruct indi-
vidual subject components using spatially constrained
ICA (Du and Fan 2013; Du, Fryer, et al. 2018a). The
subject (n = 139)- and run (n = 3)-specific SMs and TCs
yielded 139 subjects × 3 runs × 100 components = 41 700
component SMs. Subject and run SMs and TCs were
converted to z-scores. The benefits of GIG-ICA as the
back-reconstruction method are that single-subject ICA
statistical independence is optimized (Du, Fu, et al.
2018b) and artifact suppression is improved (Du, Allen,
et al. 2016a) when compared with traditional single-
subject ICA back-reconstruction methods.

We determined that 51 of 100 extracted components
were BOLD-related networks (i.e., not physiological
artifacts). We established which ICNs were BOLD-related
networks through use of fractional amplitude of low-
frequency fluctuation (fALFF) data (Zou et al. 2008)
because noise (nonsignal) components typically exhibit
low fALFF values (Allen et al. 2011). Final determination
of which components to include/exclude was based
on visual observation of mean component SMs. Those
component SMs that matched known resting-state net-
works (e.g., default-mode network, visual network, etc.)
were included, and those that mostly overlapped white
matter or cerebrospinal fluid were excluded. We provide
a list of ICNs and their locations, peak MNI coordinates,
and functional domain in Supplementary Table 1. We
determined functional domains based on ICN spatial

overlap with seven established resting-state networks
including default mode (DMN), salience (SAL, subnet-
work of cognitive-control network), central executive
(CEN, subnetwork of cognitive-control network), visual
(VIS), sensorimotor (SM), auditory (AUD), and subcortical
(SBC) networks (Du et al. 2020). We added amygdala
(AMYG) as an eighth functional domain, although
typically belongs to the SBC domain.

Dynamic Functional Network Connectivity
(dFNC)
Dynamic FNC measures time-varying patterns of FNC
over the course of an fMRI run. In the dFNC method,
ICN time courses are partitioned into overlapping time
domain sequences using a tapered sliding window
approach (Allen et al. 2014). Before dFNC analysis,
however, we isolated ICN time courses for only the
video content from each fMRI run. For all 21 267 (=417
runs × 51 ICNs) subject-level time courses, we retained
only time points from 45 to 228 s (386 TRs or 183 s
duration, corresponding to the shortest video) from the
entire run for inclusion in dFNC analysis. We analyzed
only the video part of the run because, for this study,
we were interested only in dynamic FNC responses to
emotion processing. The portions of the fMRI run, both
before and after the video, were resting-state periods
(baseline fixation), which, in a separate study, will be
used to examine the differences in dFNC between the
resting state and emotion-processing periods of the
task. Therefore, the portions of run time courses not
examined using dFNC were during the baseline fixation
screen both preceding (45 s duration) and succeeding (54–
85 s duration) a video, and the portion of a video after
the first 183 s (range of 0–28 s video remaining). After
cropping, we further prepared subject-specific ICN time
courses using the dFNC toolbox by detrending, despiking,
and low-pass filtering (0.15 Hz cutoff). The despiking
procedure used AFNI’s 3dDespike algorithm to replace
“spikes” with values obtained from the third-order spline
fit to neighboring clean portions of the data.

After ICN time course preparation, we set the sliding
window size at 70 TRs (33.25 s) with a step size of 1
TR, and a Gaussian taper of sigma 10 TRs. This yielded
316 (=386–70 TRs) time-windowed domains for each sub-
ject/run. In each time-windowed domain, we computed
FNC as the pairwise correlation between windowed ICN
time courses. From this, we obtained a total of 1275
[=51 ICNs ∗ (51 ICNs − 1)/2] unique FNC pairs of time-
windowed connectivity, each of which can be rearranged
into a symmetric FNC matrix. This resulted in 131 772
(=417 subjects/runs × 316 windows) total windowed FNC
matrices. Because of the relatively short-duration time
courses, the dFNC algorithm used a graphical LASSO
algorithm (Friedman et al. 2008) to estimate covariance
matrices and also implemented a penalty on the L1 norm
of the precision matrix to enforce sparsity. We Fisher-
transformed all dFNC matrices to z-scores to stabilize
variance before performing statistical analysis.

https://trendscenter.org/software/gift/
https://trendscenter.org/software/gift/
http://www.cis.hut.fi/projects/ica/icasso
http://www.cis.hut.fi/projects/ica/icasso
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Next, we applied clustering analysis, via k-means algo-
rithm with L1 (Manhattan) distance, to the individual
arrays of FNC covariance matrices to identify unique
states of FNC during each fMRI run (Lloyd 1982). Using
this algorithm applied to all participant dFNC data, and
the elbow criterion applied to the cluster validity index
(the ratio of within-cluster to between-cluster distances),
we estimated the number of states to be k = 4. The four
resulting dFNC states defined four unique connectivity
patterns into which participants can potentially enter
during a run.

Several dS measures characterize the k = 4 dFNC states
for a given fMRI run including 1) mean dwell time (DT),
which is the average time that a participant spends in a
given state (the elapsed time from entering to exiting that
state); 2) fractional time (FT), which is the fraction (0.0–
1.0) of the total time that a subject spends in a given state
(equal to DT times the number of times a state is entered
during a run, divided by the run duration); 3) number
of transitions (NT), which is the number of transitions
between states; and 4) number of states (NS), which is
the total number of states entered (1–4).

Statistical Analyses
We performed statistical analyses using either IBM SPSS
v.21 (Corp. 2020) or the R programming language (v.4.0.2)
(Team 2020). We included age, estimated full-scale IQ,
gender, and mean framewise head displacement (root
mean square; FDRMS) as four covariates of no interest to
control for group differences in these variables.

We first examined only the TD group to establish,
using DT or FT as an “engagement” metric (i.e., with
time spent in a state indicating engagement), which of
four dynamic connectivity states was associated with
which emotion level (happy, sad, or neutral). For this
analysis, we used univariate GLM modeling with the
dependent variable being the dS measure DT or FT (on
the dS measure for each of the four states), and with the
independent variable being “emotion” (three levels), plus
the four covariates of no interest. In the TD group, we also
examined dS measures NT and NS (state independent
measures) for significant association with the variable
emotion.

For between-group statistics at a given “emotion” level
(happy or sad), with mean dwell time (DT) or fractional
time (FT) as the dependent variable, we performed a
mixed model as follows (Eq. (1)):

DT (or FT) = group + state + group × state + age

+ iq + gender + FDRMS (1)

with “group” as a between-subject variable (three levels:
ASD, SZ, TD) and “state” as a within-subject variable
(maximum of two levels, e.g., 3 and 4). Note that, for
state, we include only two levels because in any single
run, the measure FT always sums to unity over the vari-
able state, leading to statistical instability and inaccurate

results. For between-group statistics where we examined
statistics at only one emotion and one state level, we per-
formed an ANCOVA with group as the only independent
variable, plus the four covariates of no interest.

Effect sizes are estimated using Cohen’s d (post hoc
tests only). Because there is no universally accepted
method for calculating effect sizes for mixed model
analyses, for both the standard ANCOVA and the mixed
models, we present Cohen’s d calculated both from the
raw data and from the estimated marginal means tables.

Relationship of dS Measures with Symptoms
We examined all three groups for the relationship of
dS measures with BLERT, RMET, and BVAQ symptom
severity scores, but only ASD and SZ for the relationship
of dS measures with ADOS and PANSS symptom severity
scores. We used a mixed model with dS measures as the
dependent variable, emotion (three levels) and symptom
severity score (continuous) as independent variables, the
emotion-by-score interaction, plus the four covariates of
no interest. All post hoc results (for significant main or
interaction effects) were compared using least signifi-
cant difference (LSD) correction.

Network Modularity Analysis
Although we assigned ICNs to eight functional domains
according to well-established resting-state network
configurations (Shirer et al. 2012), dFNC analysis con-
sistently demonstrates that whole-brain FNC undergoes
significant reconfiguration during an fMRI run, as
measured by the different states determined by k-
means clustering. To assess the modularity of such
whole-brain FNC reconfiguration in each dFNC state,
we applied the Louvain algorithm (Blondel et al. 2008)
to the mean dFNC state matrices (averaged over all 417
runs) to form “modules” (ICNs with similar whole-brain
dynamic FC configurations) that are rearrangements of
the data (dFNC matrices) originally sorted according to
functional domain (as shown in Fig. 2). We implemented
the Louvain algorithm (community_louvain.m; http://
www.brain-connectivity-toolbox.net) in MATLAB 2018b,
using default gamma (=1) and asymmetric treatment of
negative weights (“negative_asym”; Rubinov and Sporns
2011). This algorithm is a data-driven approach that
finds the optimal community structure such that a
dFNC matrix is subdivided into nonoverlapping groups
of nodes in which the number of within-group edges is
maximized and the number of between-group edges is
minimized. Because this Louvain community detection
algorithm output depends on the initial conditions
(e.g., the first derived modularity is used as an initial
condition) and involves looping over all nodes in random
order, we ran the algorithm 10 000 times on each of the
four state dFNC matrices to find the most common
(i.e., stable) modularity arrangement for each state
dFNC matrix. Supplementary Material, Supplement 1,
Supplementary Figure 2 depicts the dFNC state matrices
of Figure 2 rearranged (all data, however, are the same)

http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
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to reflect the most stable dFNC state modularity
configurations as detected by the Louvain algorithm
and also provides color coding to show to which original
functional domain each ICN belongs. While the modu-
larity arrangements shown in Supplementary Figure 2
are the most stable modularity arrangements, we also
found that modularity stability did differ for the dFNC
states. The final stable modularity arrangements shown
in Supplementary Figure 2 occurred 67.8%, 100%, 95.1%,
and 30.8% of the time (after 10 000 iterations) for dFNC
matrices of State-1, -2, -3, and -4, respectively. This
indicates that State-2 and State-3 had very stable
modularity arrangements, while State-4 (the most
weakly connected state) had the least stable modularity
arrangement. However, the alternate arrangements were
not qualitatively very different from the most stable
arrangements.

Results
Intrinsic Connectivity Networks
The 51 ICNs derived from group ICA from each functional
domain overlaid on an MNI template brain, and arranged
by functional domain (see Materials and Methods), are
depicted in Figure 1. A list of these 51 ICNs and peak MNI
coordinates is provided in Supplementary Table 1.

Participant Characteristics
Groups differed on age, estimated IQ, gender, and mean
framewise displacement (Table 1). All analyses included
these measures as covariates.

The three diagnostic groups differed on the assess-
ment and symptom severity scores for ADOS, RMET,
BLERT, and BVAQ (Verbalizing, Fantasizing, and Iden-
tifying subscores only). Table 1 provides a statistical
summary. Brief descriptions of all diagnostic and social
cognition tests are provided in Supplementary Material,
Supplement 2. Post hoc analyses for all but the ADOS
and BVAQ Fantasizing demonstrated differences between
TD and either patient groups but not between ASD
and SZ. For the ADOS, all three groups differ from
each other (ASD > SZ > TD) and for BVAQ Fantasizing
the only significant difference was found between SZ
and ASD. Lastly, for all three PANSS subscores (ASD
and SZ only), SZ showed significantly higher scores
than ASD. Importantly, we found no group differences
in self-reported emotional valence scores in the three
emotional runs, indicating that all three groups were
fully engaged in the task and processed its emotional
content.

Dynamic Functional Network Connectivity
The correlation matrices for the four dFNC states derived
from k-means clustering are shown in Figure 2, with
larger magnitude z-scores indicating greater correlation
(both positive in warm colors and negative in cold
colors) between ICN pairs. State-1 and State-4 are
characterized by the largest and smallest mean absolute

value z-scores (0.1887 ± 0.1374 and 0.1000 ± 0.0986),
respectively, whereas State-2 and State-3 show z-scores
of intermediate mean absolute value (0.1729 ± 0.1273
and 0.1564 ± 0.1264, respectively). All four values are
significantly different from one another (State-1 vs. -
2, -3, and -4, P = 0.007, <0.001 and <0.001; State-2 vs. -3
and -4, P = 0.004 and <0.001 and State-3 vs. -4, P < 0.001).

Across groups and emotion runs, participants spent
most time (44%) in State-4 (the least connected state).
Participants spent 15% of total time in State-1, 21% in
State 2, and 20% in State 3. An analysis of state engage-
ment (SE) over all three emotion videos showed that
State-1 was entered by 41 ASD, 49 TD, and 38 SZ; State-
2 was entered by 42 ASD, 51 TD, and 41 SZ; State-3
was entered by 39 ASD, 52 TD, and 41 SZ; and State-
4 was entered by 42 ASD, 55 TD, and 41 SZ (out of a
total of ASD n = 42, TD n = 55, and SZ n = 41 participants
in each group). Chi-squared analysis of SE (by group
and emotion) indicated that both ASD and SZ entered
into State-2 during Sad videos in significantly greater
proportions than TD (P < 0.05, 82.5% and 89.5%, respec-
tively, vs. 63.6%). There were no other significant group
differences in state engagement. Refer to Supplemen-
tary Material, Supplement 1, for further characterization
of each dynamic state according to correlation differ-
ence (�z) maps (for State-1, -2, and -3 minus State-4,
see Supplementary Fig. 1), and Louvain modularity (see
Supplementary Fig. 2).

Dynamic State Measure Statistics for Each Group
Independently
To establish a baseline to which patient groups can be
compared, and to confirm that different emotion condi-
tions increase the likelihood of different dFNC patterns,
we first present statistics on the dS measures for TD only,
focusing on the main effect of emotion as the within-
subject factor in one-way repeated measures ANOVAs for
each state/DV (three levels, Happy, Neutral, and Sad).

The dS measure results for TD only are shown in
Table 2, where mean dwell time (DT) and fractional time
(FT) (see Materials and Methods) from different states
are listed suffixed with the associated state (e.g., DT2
indicates DT for State-2). To summarize, for TD in State-
2, the main effect of emotion was significant for FT2 (see
Table 2), with post hoc tests indicating both Happy > Sad
and Neutral > Sad. In State-3, the main effect of emotion
was significant for both DT3 and FT3 (Table 2), with
post hoc tests for both indicating Happy > Neutral and
Happy > Sad. Finally, in State-4, the main effect of emo-
tion was significant for both DT4 and FT4 (Table 2), with
post hoc tests for both indicating Sad > Happy and Neu-
tral > Happy.

Next, we repeated the above analyses for ASD and
SZ groups separately. For ASD, there was no significant
main effect of emotion for any dS measure. For SZ,
the main effect of emotion was significant only for
FT3 (F(2,39) = 3.860; P = 0.030). Post hoc analyses for
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Fig. 1. Depiction of the 51 ICNs, arranged by functional domain. Functional domains are DMN, default mode network; SAL, salience network; CEN, central
executive network; VIS, visual network; AUD, auditory network; SM, sensorimotor network; AMYG, amygdala; SBC, subcortical network. The domains
DMN, SAL, and VIS domains are split into two parts for clarity (suffixed with the numbers 1 and 2). Colors, ordered according to ascending ICN numbers
shown in each panel, are red, green, blue, orange, cyan, yellow, and violet (t-value threshold is +50.0 for all panels). MNI coordinates of sagittal (X),
coronal (Y), and axial (Z) slices are provided.

SZ showed that for FT3, Sad > Neutral (t(40) = 2.776,
P = 0.008).

In summary, the analysis of TD shows that for FT
measures, State-2 is less associated with the emotion
“Sad” (i.e., State-2 is a “Not-Sad” state), and for DT mea-
sures, State-3 and State-4 were both associated with the
emotion “Happy.” Conversely, ASD had no findings for the

main effect of emotion, and in SZ, the only finding was
that State-3 was associated with the emotion “Sad.”

Group and State Differences: Emotion
Happy or Sad
Based on the results from the TD only analysis, we here
examine more closely the differences between groups
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Fig. 2. Correlation matrices of the four dynamic FNC state clusters showing ICN pairwise correlation values (z-scores). The value at the top of each panel
is the percentage of the total number of windowed FNC matrices assigned to that state over all participants and runs. Functional domains corresponding
to each ICN are indicated by the color bar immediately to the left of ICN numbers in the upper left panel (the color coding is the same for all panels,
and it is the same color coding used in Supplementary Fig. 2). Abbreviations: DMN, default mode network; SAL, salience network; CEN, central executive
network; VIS, visual network; AUD, auditory network; SM, sensorimotor network; AMYG, amygdala; SBC, subcortical network.

and states associated with the same emotion. Because
the emotion “Sad” was associated with State-2, and
“Happy” was associated with both State-3 and State-4,
we now examine between-group differences for each of
these scenarios by including “state” as a within-subjects
factor but include only one (State-2 for Sad videos) or
two (State-3 and State-4 for Happy videos), instead of all
four states as described in Materials and Methods.

One-way ANOVAs for DT and FT for the emotion
Sad in State-2 with group as between-subject effect
showed a significant main effect of group for FT only
(F(2,126) = 3.290, P = 0.040) (see Fig. 3A, and Table 3). Post
hoc analyses showed higher FT for ASD compared

with TD (see Fig. 3A). SZ also showed higher FT than
TD, but this difference did not reach significance
(P = 0.131). Neither patient group responded to viewing
sad videos by a reduction in the amount of time spent in
State-2.

For the emotion Happy and State-3 and State-4, we
conducted 3 × 2 mixed model ANOVAs with group as the
between-subject factor and state as the within-subject
factor for DT and FT. The group-by-state interaction was
significant for both DT (F(2,101) = 7.409, P = 0.001) and
FT (F(2,131) = 3.093, P = 0.049) (see Fig. 3B and C). For the
significant DT finding, post hoc analysis showed that
during Happy videos, TD was greater than both ASD and
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Table 2. Clustering measure statistics for the TD group (n = 55) only

Video emotion Estimated mean (SE) 95% CI Main effect of
emotion

Post hoca

[Cohen’s d: raw/emm]

DT1 Happy 61.0 (13.3) 33.5–88.5 F(2,26) = 1.405 NA
Neutral 45.1 (7.8) 29.2–61.0 P = 0.263
Sad 39.6 (3.7) 32.0–47.1

DT2 Happy 55.6 (8.5) 38.6–72.7 F(2,40) = 3.075 NA
Neutral 54.2 (4.4) 45.3–63.1 P = 0.057
Sad 43.3 (3.3) 36.5–50.0

DT3 Happy 84.5 (11.6) 61.1–108.0 F(2,49) = 6.345 Happy > Neutral (t(42) = 3.453; P = 0.001)
Neutral 45.6 (4.9) 35.7–55.4 P = 0.004 [0.666/0.675]
Sad 57.8 (6.2) 45.3–70.3 Happy > Sad (t(46) = 2.211; P = 0.032)

[0.428/0.441]
DT4 Happy 55.4 (4.1) 47.1–63.7 F(2,53) = 6.701 Sad > Happy (t(54) = 2.529; P = 0.014)

Neutral 78.2 (9.3) 59.6–96.9 P = 0.003 [0.457/0.446]
Sad 77.7 (8.7) 60.1–95.2 Neutral > Happy (t(51) = 2.428; P = 0.019)

[0.441/0.444]
FT1 Happy 0.122 (0.032) 0.059–0.185 F(2,54) = 0.878 NA

Neutral 0.157 (0.032) 0.093–0.220 P = 0.422
Sad 0.143 (0.024) 0.094–0.191

FT2 Happy 0.210 (0.030) 0.151–0.270 F(2,54) = 5.898 Happy > Sad (t(54) = 2.617; P = 0.011)
Neutral 0.225 (0.027) 0.170–0.280 P = 0.005 [0.410/0.401]
Sad 0.134 (0.021) 0.092–0.175 Neutral > Sad (t(53) = 2.975; P = 0.004)

[0.512/0.518]
FT3 Happy 0.291 (0.035) 0.220–0.362 F(2,54) = 5.331 Happy > Neutral (t(54) = 3.317; P = 0.002)

Neutral 0.164 (0.023) 0.118–0.211 P = 0.008 [0.583/0.598]
Sad 0.213 (0.028) 0.156–0.270 Happy > Sad (t(54) = 2.146; P = 0.036)

[0.330/0.328]
FT4 Happy 0.377 (0.033) 0.310–0.443 F(2,53) = 7.583 Sad > Happy (t(54) = 3.883; P < 0.001)

Neutral 0.454 (0.035) 0.383–0.524 P = 0.001 [0.535/0.518]
Sad 0.511 (0.037) 0.437–0.585 Neutral > Happy (t(53) = 2.069; P = 0.043)

[0.370/0.345]
NS Happy 3.0 (0.1) 2.7–3.2 F(2,53) = 0.846 NA

Neutral 3.1 (0.1) 2.9–3.3 P = 0.435
Sad 3.0 (0.1) 2.8–3.2

NT Happy 4.4 (0.3) 3.8–5.0 F(2,54) = 0.334 NA
Neutral 4.7 (0.3) 4.1–5.3 P = 0.717
Sad 4.7 (0.3) 4.1–5.2

Notes: emm: effect size from estimated marginal means. aPost hoc correction used is least significant difference (LSD).

SZ in State-3, and both ASD and SZ were greater than
TD in State-4 (see Fig. 3B and Table 3). Additional custom
post hoc testing revealed that, for the contrast State-3
versus State-4 in Happy videos, DT for TD was greater
than both ASD and SZ. For the significant FT finding,
post hoc analysis showed that during Happy videos, TD
was greater than ASD in State-3 and SZ was greater than
TD in State-4 (see Fig. 3C and Table 3). Additional custom
post hoc testing revealed that for the contrast State-3
versus State-4, TD was greater than ASD. Viewing Happy
videos failed to lead to the increase of time spent in State-
3 as seen in TD participants, and viewing Sad videos led
to greater time in State-4 in patient groups compared
with TD.

Relationship of dS Measures with Symptom
Severity and Social Cognition Scores
Again, based on the TD only results described above, we
focus on the emotions Happy and Sad and the cluster
states associated with each of those two emotions, which
are State-2 for Sad, and State-3 and State-4 for Happy.

The relationship of dS measures with BLERT symp-
tom severity scores showed statistically significant two-
way interactions of Group-by-BLERT for DT4 in Happy
videos only (F(2,118) = 3.836, P = 0.024). A post hoc anal-
ysis for the significant two-way interaction showed that
the slope of DT4 versus BLERT was 1) greater for ASD
than TD in “Happy” videos (F(1,118) = 7.611; P = 0.007) and
2) significant overall for the ASD group in Happy videos
(F(1,118) = 7.705; P = 0.006).

The relationship of dS measures with BVAQ symptom
severity scores revealed a statistically significant two-
way interaction of Group-by-BVAQ-Identifying for DT2
(but not FT2) in Sad videos (F(2,91) = 4.244, P = 0.017).
A post hoc analysis for the significant two-way inter-
action showed that the slope of DT2 versus BVAQ-
Identifying was 1) greater for ASD than SZ in Sad videos
(F(1,91) = 8.385; P = 0.005) and 2) significant overall for
ASD in Sad videos (F(1,91) = 9.119; P = 0.003).

There were no other significant three-way interactions
for dS measures (including RMET, ADOS, and PANSS)
with other social cognition and symptom severity
scores.
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Fig. 3. Bar plots showing dS measures for groups ASD (orange), TD (green),
and SZ (blue) for (A) FT for the emotion Sad and State-2 and (B) both
DT and FT for the emotion Happy and State-3 and State-4. Error bars
denote standard error and an asterisk denotes a significant post hoc test
(P < 0.05 LSD).

Sensitivity Analysis: Medication Intake and
Comorbid Diagnoses
Lastly, we performed a sensitivity analysis to assess the
effect of medication intake and comorbid diagnoses of
depression and anxiety on our findings from all three
group comparisons (per Table 3). Overall, we found

no statistically significant effects of either medication
intake or comorbid diagnoses on our results. We also
examined the differences between ASD and SZ with
comorbid diagnoses and found no significant effects.
See Supplementary Material, Supplement 4, for details.

Discussion
We investigated time-varying functional network con-
nectivity (FNC) in ASD, SZ, and TD participants while
they were watching videos of individuals talking to them
directly describing happy or sad experiences with asso-
ciated displays of emotion, with neutral content as a
control condition. Applying k-means clustering to win-
dowed FNC matrices, we identified four unique states of
connectivity between ICA-derived intrinsic connectivity
networks (ICNs) during video viewing. We showed that
time spent three out of these four states (mean dwell
time and/or fractional time) varied as a function of task
emotional content and differed significantly between
diagnostic groups.

Dynamic analysis of functional connectivity (dFC)
analysis or its network analog (dFNC) is an emerging
approach to delineate neural network architecture that
fluctuates with time (Chang and Glover 2010; Sakoglu
et al. 2010; Calhoun et al. 2014). Notably, we found
group differences in specific dynamic connectivity
state measures, thus demonstrating the value of dFNC
analysis in studying complex changes in FC that cannot
be explored with traditional static FNC analysis methods.
While most studies to date have identified dynamic
connectivity states during single-run rs-fMRI (Allen
et al. 2014; Damaraju et al. 2014), our study examined
dFNC states during an emotional task presented over
three consecutive fMRI runs. In addition, we compared
the control group with two clinical populations that
differ clinically yet are characterized by similar social
cognitive deficits and examined the relationship of dS
measures with social cognition (symptom) scores in
both groups. To determine normative neural responses
to the emotion task, we first focused on the TD group
and found that the emotion videos Happy and Sad
were each uniquely engaged in three of the four dFNC
states, consistent with a hypothesis offered by Wexler
in 1986 that different emotions were associated with
different overall organization of brain functional systems
(Wexler 1986). Only State-1, the state with the greatest
overall mean magnitude in network pair correlations,
was not modulated by video emotional content in TD. The
specific findings in State-2 through State-4 for the TD-
only analysis, described in detail below, demonstrate that
our emotion task successfully elicited emotion-specific
neural connectivity patterns. While for the ASD-only
analysis, we found no unique effect of emotion in any
state dS measure, and for SZ-only, we found only that
time spent in State-3 was associated with negative (sad)
emotions; models directly comparing the three groups
demonstrated abnormal dS measures in both ASD and SZ
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compared with TD, with no differences between the clin-
ical groups. However, significant association between dS
measures and social–emotional cognitive measures were
found in the ASD group only. Below we discuss the results
as they pertain to the specific emotional condition. We
then emphasize the broader implications of our work to
studying whole-brain dynamic connectivity using a task
probing social and/or cognitive processes to delineate
temporal and structural changes in functional circuit
architecture in TD individuals as well as in psychiatric
disorders.

Happy Videos: States 3 and 4
Our findings for the TD-only analysis suggest that during
Happy videos TD exhibits a shift in time spent from State-
4, the most weakly connected state, to State-3, char-
acterized by intermediate connectivity. Notably, State-3
had a unique matrix structure where 16 independent
networks, located mostly within the so-called triple net-
work of central executive, salience, and default mode
functional domains (Menon 2011), had positive func-
tional network connectivity with each other, but neg-
ative connectivity between most other network pairs
(see Supplementary Fig. 2, State-3 dFNC matrix, module
MOD1). In this group, we found greater engagement in
State-3 (for both DT and FT) in Happy compared with
Neutral videos, with less engagement in State-4 (both
DT and FT) in Happy compared with Sad videos (the
difference between Happy and Neutral was in the same
direction but did not reach significance).

In direct contrast with TD, both patient groups under-
went a significant shift in time spent from State-3 to
State-4 when watching Happy videos. More specifically,
ASD and SZ were both characterized by a failure to
engage State-3 (when compared with TD) during process-
ing of happy emotions. Instead, both patient groups spent
more time in State-4, the most weakly connected state.

These findings in State-3 and State-4 during Happy
videos agree with most prior work using dynamic FNC to
track whole-brain connectivity. Most dFNC-based studies
conducted so far used resting-state fMRI (rs-fMRI), and
in such studies, patient groups were found to spend
significantly more time in the most weakly connected
state and less time in more strongly connected states
than the control group. In particular, this was found in
both ASD (de Lacy et al. 2017; Rashid et al. 2018) and
SZ (Damaraju et al. 2014; Du, Pearlson, et al. 2016b)
when compared with TD controls. We previously showed
similar effect in a sample significantly overlapping with
the current report during rest (Rabany et al. 2019; see
below for a more elaborated discussion). Thus, the cur-
rent study extends these findings to suggest that both
patient groups are less likely to achieve this dynamic con-
figuration while engaged in positive emotional processes
specifically.

The relationship of dS measures with social cognitive
ability scores showed only two significant
relationships, both in the ASD group. In Happy videos

in State-4, ASD showed a significant positive slope
between time spent (DT) and BLERT scores. This finding
is somewhat counter-intuitive, as we expected that
increased time spent in State-4, the most weakly
connected state, would decrease as participant BLERT
scores increased indicating better emotion recognition
(i.e., closer to TD scores).

Sad Videos: State-2
When viewing Sad videos, we found that TD spend
less time in State-2, which is a state characterized
by increased functional connectivity between the SAL
domain and Auditory and SM domains and reduced
functional connectivity between the DMN domain and
Visual domain. We concluded State-2 was associated
with the emotion Sad, being a “Not-Sad” state, in that TD
tends to “disengage from” (i.e., spend significantly less
time in) State-2 during Sad videos. This might be related
to implicit emotion regulation processes; however, our
study is not designed to confirm this hypothesis. We also
cannot confirm with any degree of accuracy to which of
the other three dFNC states (1, 3, and/or 4) time spent had
increased because no other state showed a statistically
significant increase in time spent (DT or FT) during Sad
videos.

A comparison of the two patient groups with TD in
State-2 during Sad videos showed that while both ASD
and SZ had higher proportion of participants entering
into State-2, only ASD spent more time (FT only) than TD,
while SZ had no statistically significant differences with
either TD or ASD. These results suggest that ASD and SZ
had some degree of abnormal dynamic state engagement
during negative stimuli. However, individuals diagnosed
with ASD also showed a failure to disengage from State-
2 during the viewing of Sad videos. Although speculative,
this is supported in part by a prior study of youth with
autism in which the DMN failed to deactivate during
a cognitive task (Spencer et al. 2012). In the context
of negative emotion stimuli, this disengagement might
hypothetically be related to deficits in implicit emotion
regulation processes that are known to be impaired in
ASD (Mazefsky et al. 2013; Samson et al. 2014). Again, our
current study was not designed to assess emotion regu-
lation and future studies will be needed to explore dFNC
patterns in relation to emotion regulation measures.

We also found that in Sad videos in State-2, ASD had
a significant positive slope between time spent (FT) in
State-2 and BVAQ Identifying scores. Low BVAQ Iden-
tifying scores indicate better recognition of one’s own
emotions, so the significantly larger FT, that is, the failure
to disengage, in ASD (vs. TD) in State-2 during Sad videos
is associated with a more pronounced alexithymia in
ASD participants. The ability to identify self-emotion has
been shown to be a precursor to identifying emotions
in others (Goerlich 2018) and thus crucial to emotion
regulation (Cai et al. 2018). Therefore, alexithymia in ASD
might explain the abnormal engagement in State-2, a
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dynamic state in which TD individuals tend to disengage
during negative stimuli.

Lastly, we did not find any association of emotion in
State-1 for the TD-only analysis. We can only speculate
why this is the case, but one possible explanation is
that State-1 represents a dynamic connectivity config-
uration associated with the general passive processing
of the video and audio material presented during the
task. Future studies will be required to explore what brain
processes this particular dFNC state represents.

Whole-Brain Dynamic Functional Architecture
during SE Processes
Our study, as well as other studies examining dynamic
functional connectivity changes, highlights the impor-
tance of examining temporal reconfiguration of func-
tional network connectivity at the whole-brain level
instead of between a small number of brain regions.

Findings from such studies lend support to the theory
that during task processing the brain switches between
distinct whole-brain states of functional connectivity.
Underlying mechanisms for whole-brain state functional
connectivity switching have been described by flexible
hub theory (Cole et al. 2013; Cocuzza et al. 2020) and by
Bayesian switching dynamical systems (BSDS) modeling
(Taghia et al. 2018). In our study, dynamic state engage-
ment differences between emotional states (in TD) and
between patients and controls were also evident at the
whole-brain level rather than between a few discrete
brain regions and appeared as differences in time spent
(mean dwell time, fractional time) in three of four whole-
brain dynamic connectivity states. These dynamic states,
especially State-2 and State-3, are potentially unique
to our task and might reflect reconfigurations allow-
ing for the recognition and processing of positive ver-
sus negative emotions. Underlying neural impairments
in patient groups might result in either an inability to
remain engaged in a particular dynamic state or, con-
versely, an inability to disengage from that dynamic state,
according to specific task demands.

An important goal of our current study was to examine
similarities and differences in ASD and SZ in emotion
processing in a social context. For Happy videos, both
patient groups showed significant differences from TD,
especially in regard to DT for State-3 and State-4, with no
differences between the patient groups, suggesting sim-
ilar impairments in dynamic FNC state reconfiguration.
Although only ASD had significant differences with TD
in dS measures (DT/FT) in State-2 during Sad videos, the
lack of such significant differences between ASD and SZ,
and SZ and TD (with SZ being intermediate between ASD
and TD similar to the pattern seen for the Happy videos),
precludes a definite conclusion in relation to negative
(sad) emotions. Importantly, only ASD had a significant
association of clinical symptom scores with dS measures
(DT/FT), which might indicate unique underlying neural
mechanism of emotion processing deficits, both positive
(happy) and negative (sad), in these two patient groups.

We cannot rule out that our task stimuli are sensitive to
socio-emotional deficits that are more unique to autism,
which might drive this pattern of results. However, the
fact that valence rating is similar in the groups and that
at least some of the differential results were found in
relation to the BLERT, which was validated in SZ popula-
tions and has been shown to capture this group’s social–
emotional deficits (Bryson et al. 1997; Pinkham et al.
2018), suggest this is unlikely.

We further emphasize the importance of studying
dynamic FC during task and not only during rs-fMRI,
which is far more common in the field. We previously
directly compared dFNC patterns of rs-fMRI in ASD, SZ,
and TD controls in a sample that largely overlaps the
current study’s sample (Rabany et al. 2019). Although a
direct comparison of rest and task data is beyond the
scope of this study, we briefly highlight some specific
differences in the results: 1) In the rs-fMRI study, TD
entered into a greater number of states (NS) than both
ASD and SZ, and both TD and ASD had a greater number
of transitions (NT) than SZ, while in our current study,
there were no group differences for NS or NT in any
emotion video; 2) in the rs-fMRI study, patient groups
spent more time (FT) in the most weakly connected
state than TD, while in our current study, only during
Happy videos did patients spend more time in the most
weakly connected state, and only SZ had a greater FT
than TD in the most weakly connected state (during
Happy videos only); 3) only in the current study did
a patient group (ASD) spend significantly more time
than TD in a moderately or strongly connected state
(our State-2), specifically during Sad videos; 4) in the
rs-fMRI study, SZ had spent more time than ASD in
the most weakly connected state, and a shorter time
(FT) than ASD in a state of intermediate connectivity,
while in our current study, there were no differences
between ASD and SZ in either DT or FT; 5) the rs-
fMRI study found significant associations in the SZ
group for ADOS (Total) scores with DT in State-3 (with
intermediate connectivity) and for PANSS (Total) scores
with NT. These findings were not duplicated in our
current study. These differences emphasize the need
to study dynamic connectivity patterns during tasks
probing specific cognitive processes rather than in
resting state only to delineate overlaps and differences
of brain mechanisms of specific phenotypic phenomena
(e.g., cognitive processes and psychiatric symptoms) in
different clinical disorders.

Study Limitations
Study limitations include a relatively small sample size.
Additionally, groups were not matched on age, estimated
full-scale IQ, gender, or mean framewise displacement,
although all four of these measures were included as
covariates in all analyses. Furthermore, study partici-
pants watched different sets of three emotion videos, but
these emotion video sets were randomized and balanced
for order, as well as the actor’s gender and ethnicity.
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We also should note that the four dFNC states were
determined using a TD cohort that was larger than that
of either ASD or SZ (n = 55, vs. 42 and 41, respectively),
and with a higher ratio of females. For the former (i.e.,
unequal group sizes), it is likely that having more TD
than ASD or SZ caused k-means clustering to result in
a set of dFNC states skewed more toward that of the
TD group. This was a desired result; however, in that, it
was important to have a normative standard with which
to compare with the two clinical groups. For the latter
(i.e., gender differences), we acknowledge that, although
gender was included as a covariate in all analyses, the
effects on our results of the greater number of females
in the TD group cannot be ruled out.

In addition, the patient groups were treated with med-
ications that could potentially affect our results, as well
as any comorbid diagnoses. Notably, sensitivity analy-
ses showed no significant medication (antipsychotics or
antidepressants) or comorbid diagnoses (depression or
anxiety) effects on our results, decreasing the likelihood
of such effects. Lastly, we also note that we presented
videos portraying only the emotions happy (positive) and
sad (negative), but other negative emotions could have
been presented and might be expected to give different
results.

Response to emotion-evoking stimuli is a complex,
dynamic multicomponent process, and it is likely that
different psychiatric patients will have abnormalities
in different aspects of emotion response. This study
is one of the first to secure some relevant infor-
mation on this important topic, but our study, like
most fMRI studies, assessed brain activity during a
limited range of conditions (i.e., only during happy
and sad video viewing). Future studies should compare
patient groups on a variety of tasks related to emotion
response.

Conclusion
In conclusion, our study showed that dynamic changes in
network connectivity state are responsive to emotional
stimuli in TD controls and that dynamic connectivity
measures were abnormal in both patient groups. Further-
more, we found a relationship of dynamic state measures
(state mean dwell time and fractional time) with social
cognitive measures in ASD only, potentially pointing to a
specific underlying neural mechanism. Finally, our study
shows the importance of examining dynamic connec-
tivity states analyses during specific tasks rather than
resting state only due to the unique dynamic connectiv-
ity states elicited only during tasks that probe specific
cognitive processes.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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