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ABSTRACT
Manganese-56 (56Mn) was one of the dominant neutron-activated radionuclides during the first hours following
the atomic-bombing of Hiroshima and Nagasaki. The radiation spectrum of 56Mn and the radiation emission from
excited levels of 56Fe following 56Mn beta-decay include gamma-quanta, beta-particles, Auger electrons and X-rays.
The dispersion of neutron activated 56Mn in the air can lead to entering of radioactive microparticles into the lungs.
The investigation of spatial microdistribution of an internal dose in biological tissue exposed to 56Mn is an important
matter with regards to the possible elevated irradiation of the lung alveoli and alveolar ducts. The Monte Carlo code
(MCNP-4C) was used for the calculation of absorbed doses in biological tissue around 56Mn dioxide microparticles.
The estimated absorbed dose has a very essential gradient in the epithelium cells of lung alveoli and alveolar duct: from
61 mGy/decay on the surface of simple squamous cells of epithelium to 0.15 mGy/decay at distance of 0.3 μm, which
is maximal cell thickness. It has been concluded that epithelial cells of these pulmonary microstructures are selectively
irradiated by low-energy electrons: short-range component of beta-particles spectrum and Auger electrons. The data
obtained are important for the interpretation of biological experiments implementing dispersed neutron-activated
56Mn dioxide powder.

Keywords: A-bombing; internal irradiation; 56Mn radioactive microparticles; lungs; alveoli; radiation dose microdis-
tribution

• 21

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/jrr/rrac023


22 • V. Stepanenko et al.

INTRODUCTION
The radionuclide 56Mn (T1/2 = 2.58 h) was one of the dominant neu-
tron activated emitters during the first hours following the neutron
irradiation as a result of A-bombing of Hiroshima and Nagasaki [1–6].
The radiation spectrum of 56Mn and radiation from excited levels of
56Fe following 56Mn beta-decay, include gamma-quanta, beta-particles,
Auger electrons and x-rays [7]. Dispersion of 56Mn dioxide in the air
in a form of dust can lead to entering of radioactive microparticles
into the lung’s alveolar duct and alveoli, when the dispersed powder
of this material is inhaled. Taking into account the existence of short-
range component of beta-spectrum and electrons as a result of 56Mn
decays and radiation from excited levels of 56Fe, the investigation of
spatial micro distribution of internal dose in biological tissue exposed
by neutron activated 56Mn dioxide microparticles is important matter
with regards to possible elevated exposure of lung’s microstructures—
in comparison with organ-average internal doses. The data obtained are
important for the interpretation of the results from biological experi-
ments using dispersed neutron activated 56Mn powder in experimental
animals—rats and mice [6, 8–12].

MATERIAL AND METHODS
The absorbed dose was calculated in spherical layers of biological tissue
around the 56Mn microparticle as a function of the radial distance from
the surface of the microparticle. The 56Mn microparticle is located
in the center of the surrounding spherical layers and assumed to
be as an isotropic radioactive spherical source. Average diameter of
Mn dioxide microparticles is equal to 3 μm [8, 9, 11, 12]. In such
kind of geometry only one parameter is important for calculation of
absorbed dose distribution around 56Mn microparticle—it is the radial
distance from the surface of radioactive particle. The spatial absorbed
dose distribution around 56Mn microparticle was calculated for radial
distances from the surface of 56Mn microparticle ranged from 10−2 μm
to 104 μm (see section Results).

For the calculation of the absorbed dose around 56Mn dioxide
microparticles the method of stochastic modeling of the interaction
of ionizing radiation with matter (Monte-Carlo code MCNP-4C) [13]
was used. It should be specially noted that for electron energies less
than 10 keV the dose calculation was performed using information
about dose point kernels for low-energy electrons presented in the
[14].

Radial distribution of absorbed dose versus the distance to the sur-
face of 56Mn dioxide microparticle, surrounded by biological tissue, was
estimated with accounting for all components of radioactive emission
of 56Mn. Tables 1–5 show all the components of radioactive emission
of 56Mn and from excited levels of 56Fe following 56Mn beta-decay
(gamma-rays, beta-particles, Auger electrons and X-rays). The contri-
bution to the absorbed dose from 56Mn beta-particles was calculated for
each of 20 energy intervals, which were used as discrete approximation
of continuous spectrum of all 56Mn beta-particles (Table 3).

Table 6 shows the typical dimension of lung microstructures [16,
17], which were considered as final sites of 56Mn dioxide microparticle
penetration into the lungs, when the neutron-activated Mn dioxide
powder is inhaled. It was assumed that as a result 56Mn dioxide
microparticles are attached to the epithelium. The density of biological
tissue

Table 1. Gamma emission from excited levels of 56Fe following
56Mn beta-decay [15]

Energyof gamma-quanta (MeV) Intensity (gammas per decay)

0.8468 0.9890
1.0380 0.0004
1.2380 0.0010
1.8110 0.2720
2.1130 0.1430
2.5230 0.0099
2.5980 0.0002
2.6570 0.0065
2.9600 0.0031
3.3700 0.0017

Table 2. Beta-particle emission as a result of 56Mn decays to
excited levels of 56Fe [7, 15]

Mean/max energy (MeV) Intensity (beta-particles per decay)

0.0736 / 0.2502 0.0002
0.0992 / 0.3257 0.0116
0.1905 / 0.5726 0.0004
0.2553 / 0.7356 0.1460
0.3820 / 1.0379 0.2790
0.6364 / 1.6104 0.0006
1.2170 / 2.8487 0.5630

Table 3. Digital version of 56Mn spectrum of all beta-particles
approximated by 20 energy intervals of electrons [15]

Intervalsof energy (MeV) Intensity (particlesper decay)

0.0000–0.1424 1.11E-01
0.1424–0.2848 1.26E-01
0.2848–0.4272 1.21E-01
0.4272–0.5695 1.03E-01
0.5695–0.7119 7.91E-02
0.7119–0.8543 6.12E-02
0.8543–0.9967 4.97E-02
0.9967–1.1391 4.65E-02
1.1391–1.2815 4.66E-02
1.2815–1.4239 4.56E-02
1.4239–1.5663 4.32E-02
1.5663–1.7086 3.96E-02
1.7086–1.8510 3.50E-02
1.8510–1.9934 2.96E-02
1.9934–2.1358 2.37E-02
2.1358–2.2782 1.77E-02
2.2782–2.4206 1.18E-02
2.4206–2.5630 6.63E-03
2.5630–2.7054 2.72E-03
2.7054–2.8477 4.17E-04
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Table 4. Auger electron emission from excited levels of 56Fe following 56Mn beta-decay [7]

Electrons Energy (keV) Intensity (electrons per 100 decays) Relative probability

K Auger electrons
KLL 5.370-5.645 0.0139 1
KLX 6.158-6.400 0.00382 0.274
KXY 6.926-7.105 0.000261 0.0187

L Auger electrons 0.510-0.594 0.0428 3.07

Table 5. X-ray emission from excited levels of 56Fe following
56Mn beta-decay [7]

Energy (keV) Intensity (photons
per 100 decays)

Relative probability

6.39091 0.00295 0.51
6.40391 0.00578 1
7.05804 0.00119 0.206

Table 6. Typical dimension of lung’s microstructures [16, 17],
which were considered as final sites of 56Mn dioxide
microparticles penetration into the lungs

Component Thickness of epithelium

Alveolar duct Mostly simple squamous epithelium cells
(thickness from 0.05 μm to 0.3 μm)

Alveoli Each alveoli is lined with simple squamous
epithelium cells (from 0.05 μm to 0.3 μm
thick) and covered over cells by surfactant
(about 0.01 μm thick)

was assumed to be equal to 1 g/cm3. Composition of soft tissue was
taken from ICRP Publication 89 [18].

RESULTS
Manganese dioxide particles were considered as spherical isotropic
sources of ionizing irradiation from the 56Mn with activity uniformly
distributed across their volume. The absorbed doses around the spher-
ical isotropic sources of 56Mn in biological tissue were calculated inside
concentric layers, surrounding the microparticles. As a result, radial dis-
tribution of absorbed dose was calculated as a function of the distance
from the surface of radioactive microparticles (Figs 1 and 2).

Figure 1 shows that exposure to beta-particles as a result of 56Mn
decay and electrons emitted from excited levels of 56Fe following 56Mn
beta-decay has a significant distance-dependent gradient effect in the
epithelium of lung’s alveolar ducts, and in the epithelium of alveoli.
Absorbed dose per one unit decay is equal to: 61 mGy/decay on the
surface of simple squamous cells of epithelium (at distance 0.01 μm
from the surface of 56Mn microparticle, which is located near epithe-
lium); 3.4 mGy/decay at 0.05 μm distance—on a layer of epithelial
cells at the minimal thickness of cells; 0.15 mGy/decay at distance

Fig. 1. Radial distribution of absorbed dose versus the distance
to the surface of single radioactive 56Mn dioxide microparticle,
surrounded by biological tissue: irradiation by beta-particles
and electrons.

Fig. 2. Radial distribution of absorbed dose versus the distance
to the surface of single radioactive 56Mn dioxide microparticle,
surrounded by biological tissue: irradiation by photons
(gamma-rays and X-rays).

0.3 μm—on a layer of epithelium cells at the maximal thickness of
simple squamous cells (see Table 6 with information about thickness
of epithelium).
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Figure 2 shows that dose from penetrating photon irradiation from
the single radioactive 56Mn dioxide microparticle, embedded within
the tissue, gives a lower level of irradiation in comparison with irra-
diation by beta-particles and electrons. At a distance of 100 μm (the
diameter of alveolar duct) from the surface of 56Mn dioxide particle, the
dose from gammas is equal to 6.4 × 10−7 mGy/decay in comparison
with dose 2.1 × 10−4 mGy/decay observed by beta-particle radiation
at the same distance. Importantly, that the data shown in Fig. 2 shows
the absorbed dose from single radioactive 56Mn dioxide microparticle.
The real mean organ dose could be higher—due to penetration of
gammas from other 56Mn dioxide microparticles within the lungs.

Nevertheless, the excess dose from beta-particles is estimated about
two orders of magnitude higher compared to that from gamma quanta
even at a distance of 1000 μm (twice more than diameter of alveoli)
from the 56Mn microparticle: 2.5 × 10−6 mGy/decay for beta-particles
versus 3.2 × 10−8 mGy/decay for gamma radiation.

DISCUSSION
These data demonstrate that: (i) exposure to beta-particles as a result of
56Mn decay and electrons emission from excited levels of 56Fe following
56Mn beta-decay has a significant distance-dependent gradient in the
simple squamous cells of alveoli and alveolar duct epithelium (Fig. 1);
and (ii) absorbed dose from penetrating photon irradiation from a
radioactive 56Mn dioxide microparticle, embedded in biological tissue,
is much less (by 2–3 orders of magnitude) in biological microstruc-
tures compared with irradiation by beta-particles and electrons (Figs 1
and 2).

The main contribution to the dose increase at the level of the
biological tissue microstructure is due to the low-energy component
of the 56Mn beta-particles spectrum, which is the most intense part
of this spectrum (top row in Table 3). Some additional contributions
to absorbed dose in tissues at very small distances from 56Mn dioxide
particles may be due to emitted Auger electrons (Table 4).

From these data it has been concluded that epithelial cells of key
pulmonary microstructures are selectively irradiated with short-range
beta-spectrum component of 56Mn and with electrons emission from
excited levels of 56Fe following 56Mn beta-decay.

These data are important for the interpretation of the results of
biological experiments using dispersed neutron-activated 56Mn dioxide
powder, which was inhaled by experimental animals—rats and mice
[6]. It was demonstrated in these experiments [6] that biological effects
caused by internal irradiation from inhaled 56Mn dioxide particles are
more significant in comparison to external irradiation by 60Co, despite
small values of organ averaged internal radiation doses [10, 11]. The
values of organ mean doses in experimental mice and rats are presented
in [8, 9, 12].
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