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Abstract

Wakefulness levels modulate estimates of functional connectivity (FC), and, if unaccounted for, 

can become a substantial confound in resting-state fMRI. Unfortunately, wakefulness is rarely 

monitored due to the need for additional concurrent recordings (e.g., eye tracking, EEG). Recent 

work has shown that strong fluctuations around 0.05Hz, hypothesized to be CSF inflow, appear 

in the fourth ventricle (FV) when subjects fall asleep, and that they correlate significantly with 

the global signal. The analysis of these fluctuations could provide an easy way to evaluate 

wakefulness in fMRI-only data and improve our understanding of FC during sleep. Here we 

evaluate this possibility using the 7T resting-state sample from the Human Connectome Project 

(HCP). Our results replicate the observation that fourth ventricle ultra-slow fluctuations (~0.05Hz) 

with inflow-like characteristics (decreasing in intensity for successive slices) are present in scans 

during which subjects did not comply with instructions to keep their eyes open (i.e., drowsy 

scans). This is true despite the HCP data not being optimized for the detection of inflow-like 

effects. In addition, time-locked BOLD fluctuations of the same frequency could be detected in 

large portions of grey matter with a wide range of temporal delays and contribute in significant 

ways to our understanding of how FC changes during sleep. First, these ultra-slow fluctuations 

explain half of the increase in global signal that occurs during descent into sleep. Similarly, global 

shifts in FC between awake and sleep states are driven by changes in this slow frequency band. 

Second, they can influence estimates of inter-regional FC. For example, disconnection between 

frontal and posterior components of the Defulat Mode Network (DMN) typically reported during 

sleep were only detectable after regression of these ultra-slow fluctuations. Finally, we report 

that the temporal evolution of the power spectrum of these ultra-slow FV fluctuations can help 
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us reproduce sample-level sleep patterns (e.g., a substantial number of subjects descending into 

sleep 3 minutes following scanning onset), partially rank scans according to overall drowsiness 

levels, and predict individual segments of elevated drowsiness (at 60 seconds resolution) with 71% 

accuracy.
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Introduction

Wakefulness modulates estimates of functional connectivity, and, if unaccounted for, can 

become a substantial confound (Haimovici et al., 2017; Laumann et al., 2016; Tagliazucchi 

and Laufs, 2014). This is particularly important for clinical studies where one can expect 

differences in wakefulness across populations. Similarly, whether subjects keep their eyes 

open or closed during a given scan can also influence functional connectivity (FC) estimates 

(Agcaoglu et al., 2019; Dijk et al., 2010; Patriat et al., 2013). Despite such evidence, 

instructions regarding eye closure are not consistent across resting-state studies (Waheed et 

al., 2016). Moreover, eye closures (and wakefulness levels) are rarely monitored, because 

doing so would require some form of concurrent recordings such as eye tracking (ET; 

(Chang et al., 2016; Falahpour et al., 2018; Poudel et al., 2014)) or electro-encephalography 

(EEG; (Larson-Prior et al., 2011, 2009)).

Such concurrent acquisitions are not common practice in resting-state research, and the 

effects of fluctuations in wakefulness (or subject’s lack of compliance with keeping eyes 

open) are often ignored. Prior research has demonstrated that subjects have a propensity 

to fall asleep during resting-state scans (Allen et al., 2014; Tagliazucchi and Laufs, 2014). 

It is therefore important to find ways to determine the occurrence of these events when 

no concurrent measures are available. This capability would not only help in future study 

design but may be used to assess the degree to which wakefulness fluctuations have 

confounded previously acquired fMRI-only datasets.

Previous work has shown that it is possible to predict sleep stages (Altmann et al., 2016; 

Enzo Tagliazucchi et al., 2012), and vigilance levels (Falahpour et al., 2018) relying solely 

on fMRI data. For example, Tagliazucchi and colleagues (2012) showed how it is possible to 

predict sleep stages with up to 80% prediction accuracy using dynamic traces of functional 

connectivity among 22 brain regions (20 cortical + 2 subthalamic nuclei) as inputs to a 

hierarchical tree of support linear vector machines. Similarly, significant correlation has 

been previously reported between fluctuations in vigilance based on EEG measures and 

both the global fMRI signal (Wong et al., 2013) and the average signal within a data-driven 

spatial template of pertinent regions (Falahpour et al., 2018). Yet, these methods have not 

been widely adopted by the community, either because pre-trained classifier approaches are 

complex (Altmann et al., 2016; E Tagliazucchi et al., 2012), or because their efficacy has 

only been demonstrated in small samples (e.g., 10 participants for (Falahpour et al., 2018)). 

It is unknown how well they may generalize beyond these small samples. Motivated by the 
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technical need for simpler, more easily generalizable methods, and by recent work (Fultz et 

al., 2019) reporting that subject’s descent into sleep is accompanied by the appearance of 

ultra-slow (i.e., around 0.05Hz), inflow fluctuations in the fourth ventricle (FV), we aimed 

to study the ability of those fluctuations to predict wakefulness fluctuations in fMRI-only 

datasets, and their influence on functional connectivity. Although, as part of this evaluation, 

we study the spatiotemporal profile of time-locked fluctuations of equivalent frequency 

everywhere else in the brain, this work does not seek to settle the current debate about their 

etiology (i.e., neuronal or physiological). This should be the target of future enquiry, as our 

current results demonstrate that how one deals with these fluctuations can significantly affect 

inferences about how FC changes during sleep.

Our enquiry proceeded as follows. First, we study if the above-mentioned ventricular, 

sleep-related inflow fluctuations can be observed in an fMRI dataset (HCP dataset) not 

necessarily optimized to capture inflow effects. This is a key first step because the original 

observation of this phenomenon by Fultz and colleagues relied on data acquired at a very 

short TR (367ms) and with the lower boundary of the imaging field of view (FOV) sitting 

over the FV; both set this way to maximize sensitivity to inflow effects in inferior ventricular 

regions. This was a logical decision for their work based on the hypothesized origin of this 

signal—namely inflow effects due to reversal of CSF flow during sleep (Fultz et al., 2019; 

Grubb and Lauritzen, 2019). Yet, most fMRI data, including the HCP 7T data used here, are 

not acquired with such a short TR, as maximizing inflow effects is not commonly desired 

(Gao and Liu, 2012).

Once we confirmed the presence of these signals in the 7T HCP dataset, we evaluated if 

previously described relationships between those, the global signal (GS) and its derivative 

could be reproduced in this larger sample. We also searched for potential relationships 

with head motion and cardiac function; and studied the contribution of these ultra-slow 

fluctuations to the well-documented phenomena of increased global signal amplitude 

(GSamplitude) during sleep. Similarly, we also explored how and why modeling ultra-slow 

ventricular fluctuations as nuisance regressors might alter inferences regarding how FC 

changes as subject fall asleep. To finalize, we report to what degree the power density of 

these fluctuations can help us predict periods of drowsiness in existing resting-state samples 

at the sample, scan and segment levels.

Fourth ventricle ultra-slow fluctuations (~0.05Hz) with inflow characteristics were observed 

during long periods of eye closure in this larger sample. The temporal evolution of these 

fluctuations can uncover previously reported sample-level patterns of sleep (i.e., propensity 

of subjects to fall asleep after 3 minutes of scanning (Tagliazucchi and Laufs, 2014), and 

can achieve 71% accuracy when predicting individual periods of drowsiness. Time-locked 

BOLD fluctuations of similar frequency were detected throughout the brain with delays 

in the range (min/max=−11.04/9.28 s; 5th/95th quantile=−9.15/−2.33 s). These wide-spread 

BOLD fluctuations account for 50% of the increase in GSamplitude that accompanies sleep. 

Modeling those as nuisance regressors was needed to reproduce previously reported patterns 

of how FC changes during eye closure and sleep (e.g., disconnection between frontal and 

posterior components of the DMN). In summary, this work describes how linked ultra-slow 

fluctuations in FV (inflow) and GM (BOLD) contribute to our understanding of sleep 
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patterns in resting-state; and demonstrate their contribution in a large, commonly used fMRI 

sample.

Methods

Data

This study was conducted using a subset of the Human Connectome Project (HCP) dataset 

(Essen et al., 2013). We used the resting-state scans acquired on the 7T system and made 

publicly available as part of the 1200 Data Release (March 2018). This data subset consists 

of 723 different resting-state scans (15 mins each) acquired on a group of 184 subjects. 

This data was selected because concurrent eye pupil traces are available as part of the 

data release, and because the relatively short TR (1s), multi-band protocol, and high field 

(7T) allows for potential residual inflow effects in the FV. Basic scanning parameters for 

this data are TR=1s, TE=22.2ms, FA=45°, Voxel Resolution=1.6×1.6×1.6mm3, Multiband 

Factor=5, GRAPPA=2. Additional details can be found on the Reference Manual for 

the 1200 HCP Release available online at https://www.humanconnectome.org/storage/app/

media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf.

For this work, we downloaded the HCP resting-state data in two different formats:

a. The raw un-preprocessed data in original scanner space.

b. The minimally pre-processed data (Glasser et al., 2013), which includes 

distortion correction, motion correction and spatial normalization to the MNI 

template space.

In addition, we also downloaded the T1 weighted images (for visualization purposes), 

Freesurfer (Fischl, 2012) anatomical parcellations (for ROI selection), and eye tracking 

recordings (to be used as a proxy for fluctuations in wakefulness).

Only 404 scans from the 723 initially available were considered in this study. Table 1 lists 

the criteria for scan exclusion and the number of scans removed due to each criterium.

Eye Tracking

Eye Tracking Data Pre-processing—First, we removed pupil size samples that fell 

outside the temporal span of each fMRI scan to achieve temporal synchronization between 

the fMRI and eye tracking data. Second, we removed blink artifacts. Any period of missing 

pupil size data shorter than 1 second was considered a blink, and data within that period 

was linearly interpolated between the onset and offset of the blink. Periods of missing pupil 

size data longer than one second are considered eye closures and were not interpolated. 

Third, we observed short bursts (< 1ms) of pupil size data scattered within periods of eye 

closure. Those bursts were removed to ensure the continuity and correct identification of 

long periods of eye closure. Fourth, pupil size traces acquired at 500Hz (which is the case 

for 68 scans) were linearly upsampled to 1KHz to match the rest of the sample. Fifth, pupil 

size traces were temporally smoothed using a 200ms Hanning window. Sixth, pupil size 

traces were downsampled to 1Hz in order to match the temporal resolution of the fMRI 

data. Once pupil size traces were at the same temporal resolution as the fMRI data, we 
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perform two additional operations: a) we removed the first 10 seconds of data (to match 

pre-processing of fMRI data outlined below) and b) we removed isolated single pupil size 

samples surrounded by missing data (suppl. figure 1.A), as well as interpolated isolated 

missing samples surrounded by data (supp. figure 1.B).

Scan Classification (Awake/Drowsy) based on Pupil Size Traces—We used fully 

pre-processed pupil size timeseries at 1Hz to classify scans in two groups:

a. “Awake” scans: defined as those for which pupil size traces indicate subjects had 

their eyes closed less than 5% of the scan duration.

b. “Drowsy” scans: defined as those for which pupil size traces indicate subjects 

had their eyes closed between 20% and 90% of the scan duration.

Scans with eye closure above 90% were discarded to avoid mistakenly labelling as “drowsy” 

scans that may correspond to defective eye tracking recordings (e.g., 22 scans had pupil size 

traces with all samples equal to zero) or to subjects that might have purposefully decided not 

to comply with the request to keep their eyes open from the onset of scanning.

Based on this criteria, 210 scans were labeled as “awake” and 194 were labeled as 

“drowsy”. The remaining scans were not used in any further analyses. Figure 1.A shows 

the distribution for percentage of missing eye tracking samples across the original 561 scans, 

and the ranges we just described for labeling of scans as “awake” and “drowsy”. Figures 

1.C & D show representative pupil size traces for each type of scan. Figure 1.B shows 

the distributions of mean framewise displacement for both types of scans. No significant 

difference in head motion was found across both scan types using the T-test (T=−1.09, 

p=0.27) or the Mann-Whitney rank test (H=20412.0, p=0.97).

Scan Segmentation based on Pupil Size Traces—For all remaining 404 scans 

labeled as either “awake” or “drowsy” we identified all periods of eye opening (EO; i.e., 

pupil size data available) and eye closure (EC; i.e., pupil size data missing); and recorded 

their onsets, offsets and durations. This information was used to find periods of continuous 

EC or EO lasting more than 60 seconds. Such scan segments were used in subsequent 

analyses as described below.

Preliminary analysis on fMRI data in scanner space

Un-preprocessed fMRI data in scanner space was used for three purposes: 1) check if ultra-

slow FV fluctuations decrease in intensity across successively collected slices; 2) evaluate 

confounding partial-volume effects derived from working with data transformed to MNI 

space later in the manuscript; and 3) estimation of cardiac traces using the “happy” software 

package (Aslan et al., 2019).

Across-slice signal intensity profile—Inflow fluctuations decrease in intensity across 

spatially contiguous slices acquired in temporal succession (Fultz et al., 2019; Gao and Liu, 

2012; Yang et al., 2022). To test if such an inflow-like profile exists for signals in the FV in 

the 7T HCP dataset, we conducted some preliminary analyses on a subset of 30 scans that 
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met the following requirements: 1) scans were labeled as drowsy based on ET traces and the 

procedures described above, 2) scans had an average framewise displacement below 0.1mm.

Exploration of inflow-like intensity profiles must occur in original space before any spatial 

transformation is applied to the data. Consequently, we cannot presume inter-scan spatial 

alignment beyond that derived from cautious definition of the imaging field-of-view during 

data acquisition. To check the level of spatial alignment among those 30 scans, we identified 

the location of key FV macro-anatomical structures in these scans. Figure 2.A shows the 

average of all 30 fMRI scans. Figure 2.B shows the distribution of slice numbers cutting 

through three key macro-anatomical structures that help define the inferior, medial and 

superior boundaries of the FV, namely the Obex (Ob), the posterior end of the dorsomedial 

recess (pDmR), and the inferior end of the aqueduct of Sylvius (ASyl). Except for one scan 

(black arrows in figure 2.B), there is good agreement for the location of the FV across the 

selected scans. On average, the FV sits between slice numbers 17 and 28 in the remaining 29 

scans.

A second key consideration here is the multi-band nature of the HCP fMRI acquisitions. 

These data consist of 85 interleaved slices acquired using a multi-band sequence (MB 

Factor=5). This means that spatially contiguous slices (i.e., successive slice numbers) were 

not acquired consecutively on time. Figure 2.C shows a schematic of the relationship 

between slice number (i.e., position in space) and slice timing (i.e., position in time) for 

these data. In this schematic, the X-axis represents space (in terms of slice number) and 

the Y-axis represents time (delay in ms relative to TR onset). Each slice is represented by a 

square colored to reflect the shot (out of 85/5 = 17 shots) associated with it. Looking at this 

schematic, we learn that slices 0, 17, 34, 51 and 68 were concurrently acquired during the 

first shot. Similarly, we learn about six different sets of slices (or trajectories marked with 

black bold arrows) that were acquired consecutively and correspond to spatially increasing 

(although not contiguous) slices. Slices 17 through 28 (those identified in Figure 2.B as 

covering the FV) are part of two of these trajectories, labeled here as “Trajectory A” and 

“Trajectory B”.

Based on these considerations, we next proceeded as follows. We first manually drew FV 
ROIs in original space for each of the 29 selected scans. Next, we extracted representative 

time-series for each slice in these FV ROIs separately using the un-preprocessed data. Third, 

we computed (slice-wise) the ratio of the 95th to the 5th percentile of the signal over time 

during each period of eye closure longer than 60 seconds in a manner equivalent to that in 

Fultz et al. (2019).

Figure 2.D shows the average of these ratios across all EC segments for slices 17 through 

28. Figure 2.E & F show the same averages but segregated into two different plots, one 

only including the slices in “Trajectory A” (2.E) and the second one those for “Trajectory 
B” (2.F). For slices in the bottom half of the FV (those below the pDmR) we observe an 

intensity profile compatible with inflow-like fluctuations—namely a decrease in intensity 

across temporally and spatially successive slices. That pattern reverses beyond that point. 

Given that our focus here is ultra-slow FV inflow fluctuations associated with sleep (i.e., 

those previously reported by Fultz et al. (2019)), in the rest of the manuscript we extract 
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representative time-series for the FV using only voxels below the pDmR. We will refer to 

those as inferior FV (iFV) fluctuations.

Evaluation of partial volume effects—Because automatically generated subject-

specific regions of interest for the FV are publicly available in MNI space, it is desirable to 

work with the data in that format. Yet, one must first ensure partial volume effects incurred 

during spatial normalization are not a confound.

We calculated the Pearson’s correlation between iFV timeseries obtained from data in MNI 
space and original space. We did this for the same set of scans used in the inflow-like 

profile evaluation described above. For data in original space, we manually drew iFV ROIs, 

and computed representative timeseries as the spatial average across ROI voxels following 

removal of the 10 initial acquisitions. For data in MNI space, we did the same using the 

group level iFV ROI used in the rest of the analyses (description of how this ROI was 

created provided below in “Inferior Fourth Ventricle Signal Extraction” section).

The average correlation value was 0.91 +/− 0.06. These suggest there is strong agreement 

between representative timeseries obtained both ways. All other results reported in this 

manuscript corresponds to analyses conducted in MNI space.

Data-driven estimation of cardiac traces—The sampling frequency (Fs) of the HCP 

7T dataset is 1 Hz. The normal range for resting cardiac frequency is between 50 and 

80 beats per minute (1 – 1.3 Hz). As such, there is potential for overlap of aliased 

cardiac fluctuations around 0.05 Hz (see supp. figure 2). As cardiac pulsations are known 

to contaminate fMRI signals recorded from ventricular compartments, it is important to 

evaluate their potential contribution to our observations.

The 7T HCP dataset does not include concurrent cardiac trances (e.g., ECG or pulse 

oximetry). We used the “happy” software (Aslan et al., 2019) to infer those from the 

raw fMRI data. Once cardiac traces were available for all 404 scans, we computed the 

fundamental frequency of the cardiac signal using python’s scipy implementation of the 

Welch’s method (window length=30s, window overlap=15s, NFFT=1024 samples). Next, 

we computed the aliased equivalent of those fundamental frequencies considering the fMRI 

sampling frequency of 1 Hz. Finally, we tested for significant differences in both original 

and aliased frequency profiles across scan types and segment types using both a T-test a 

non-parametric Mann-Whitney U-test.

Main analyses on fMRI Data in MNI space

Inferior Fourth Ventricle Signal Extraction—The HCP structural pre-processing 

pipeline generates, among other outcomes, subject-specific anatomically based parcellations 

in MNI space. These parcellations are not restricted to regions within the grey matter (GM) 

ribbon, but also include subdivisions for white matter (WM) and cerebrospinal fluid (CSF) 

compartments, one of them being the FV. A group-level iFV region of interest (ROI) was 

generated by selecting voxels that are part of the FV in at least 98% of the sample, and then 

further restricting the region to only include voxels inferior to the pDmR. Supplementary 
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figure 4 show this FV ROI overlaid on the mean EPI image across all 404 scans marked as 

either “drowsy” or “awake”.

To obtain scan-wise representative iFV timeseries, we first removed the initial 10 volumes 

from the minimally preprocessed data, and then scaled the data by dividing each voxel 

timeseries by its own mean and multiplying by 100. The representative iFV timeseries for 

each scan was computed as the average across all voxels in this ROI. The representative 

timeseries for this region was extracted prior to any additional pre-processing to minimize 

the removal of inflow effects and also minimize partial volume effects.

Frequency Analysis of the iFV Signal—First, we estimated the power spectral density 

(PSD) for each subject’s iFV timeseries using python’s scipy implementation of the Welch’s 
method (window length=60s, window overlap=45s, NFFT=128 samples). We did this both 

at the scan level (i.e., using complete scan timeseries) and the segment level (i.e., using 

only segments of continuous EO and EC, as described above). We then compared PSD 
across scan types (“awake” vs. “drowsy”) and segment types (EC vs. EO). Significant 

differences were identified using the Kruskal-Wallis H-test at each available frequency step 

and pBonf<0.05, corrected for the number of different frequencies being compared.

Next, to study the temporal evolution of the iFV signal fluctuations centered around 0.05Hz, 

we also computed spectrograms (i.e., PSD across time) using python’s scipy spectrogram 
function (window length=60s, window overlap=59s, NFFT=128). We did so for each scan 

separately, and then computed the average temporal traces of PSD within two different 

frequency bands:

a. “Sleep” band: 0.03 – 0.07 Hz.

b. “Control” band: 0.1 – 0.2 Hz.

The range of the sleep band was selected based on the original work of Fultz et al. (2019) 

so that it would include the target frequency of interest (0.05Hz). The control band was 

selected as to exclude respiratory signals as well as the 0.01 – 0.1 Hz band, which contains 

the majority of neuronally-induced fluctuations in resting-state data (Cordes et al., 2001). In 

later analyses we refer to the total area under the PSD trace for the sleep band as PSDsleep 

and for the control band as PSDcontrol.

Supplementary figure 5 depicts this process. Panel A shows the average BOLD signal in 

iFV for one resting-state scan from a representative subject. Panel B shows the associated 

spectrogram, as well as the sleep (green) and control (red) bands. Finally, panel C shows 

the average PSD within these two bands of interest (green and red curves). For this scan, 

a strong fluctuation around 0.05Hz appears during the second half of the scan (panel A). 

This fluctuation results in an increased PSD for a small range of frequencies around 0.05Hz 

(panel B). Such increase becomes clearly apparent when we look at the average PSD traces 

for the “sleep” and “control” bands in panel C. While the green trace (“sleep” band) shows 

large positive deflections during the second half of the scan, that is not the case for the red 

trace (“control” band).
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Additional fMRI pre-processing—The HCP minimal preprocessing pipeline (Glasser et 

al., 2013) includes steps to account for distortion correction, motion correction and spatial 

normalization to the MNI template space, yet it does not include other important common 

pre-processing steps (e.g., spatial smoothing, temporal filtering, nuisance regression). The 

following additional pre-processing pipelines were used in this work:

Smoothing Pipeline:  minimally pre-processed pipeline followed by 1) discarding of initial 

10 volumes, 2) spatial smoothing (FWHM=4mm), 3) intensity normalization dividing by the 

voxel-wise mean timeseries, 4) regression of slow signal drifts (Legendre polynomials up to 

the 5th order), and 5) band-pass filtering (0.01 – 0.1 Hz).

Basic Pipeline:  same as the Smoothing pipeline, but the regression step also includes 

motion parameters and their first derivative as additional regressors.

CompCor Pipeline:  same as the Basic pipeline, except that a set of additional 

regressors based on the CompCor technique (Behzadi et al., 2007) were included to 

model physiological noise. Those regressors are the first five principal components of the 

signal in the ventricles and WM (see supplementary figure 6). Subject specific masks for 

these regions were created by combining the respective subject-specific masks for these 

compartments generated by Freesurfer (Fischl, 2012), and then eroding those by one voxel.

For all three pipelines, we also worked with a modified version (i.e., the “+” version) 

that includes an additional voxel-wise regressor corresponding to a shifted version of the 

iFV signal with maximal correlation in each voxel. We refer to those pipelines as the 

Smoothing+, Basic+ and CompCor+ pipelines in the remaining of the text.

All pre-processing steps, beyond those part of the minimally pre-processing pipeline, were 

performed with the AFNI software (Cox, 1996). The regression step in all pipelines was 

always performed at the whole-scan level, not on a segment-by-segment basis.

Voxel-wise correlation analyses: zero-lag—Zero-lag correlation analyses were based 

of the Basic pipeline. Voxel-wise maps of correlation between the iFV signal (filtered to 

the same range as the rest of the data [0.1 to 0.01 Hz]) and all voxels in the full brain 

mask (available as part of the HCP data release) were computed separately for each period 

of EC and EO longer than 60 seconds. Next, we generated average correlation maps per 

eye condition by averaging the individual maps for all segments of a given type. For 

this, we applied a Fisher Z transform prior to averaging. Following averaging, Z-values 

were converted back to R-values prior to presentation. We also performed a T-test across 

the population (AFNI program 3dttest+) to identify regions with significant differences in 

correlation with the iFV signal across eye conditions. Finally, histograms of correlation 

values per eye condition were computed based on the average maps.

Voxel-wise correlation analyses: cross-correlation and lag maps—The 

RapidTide2 software (https://github.com/bbfrederick/rapidtide; v2.0.8+11.gb17c48f) was 

used to perform cross-correlation analyses. Given, the Rapidtide2 software applies bandpass 
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filtering (also set to 0.01 – 0.1 Hz), inputs to this software were the data from the Basic 
pipeline, excluding the filtering step.

In addition to voxel-wise cross-correlation traces, the Rapidtide2 software also produces 

a) voxel-wise lag maps, where each voxel is assigned the temporal lag leading to the 

strongest positive correlation between the source signal (i.e., that from the iFV) and the 

signal in that particular voxel; b) masks of statistical significance for cross correlation results 

based on non-parametric simulations with null distributions (n=10,000), c) and time-shifted 

voxel-wise versions of the source signal leading to maximal correlation.

Cross-correlation analyses were conducted at the scan level using only scans labeled 

as “drowsy”, as those are expected to contain more fluctuations of interest (i.e., those 

associated with light sleep). To generate group-level lag maps and voxel-wise cross-

correlation traces we computed the average across scans taking into account only results 

rendered significant at p<0.05 at the scan-level. We only show results for voxels where 

at least 40% of the scans produced significant cross-correlation results. This averaging 

approach was followed to avoid non-significant low correlations and noisy lag estimation 

contributing to the group level results.

Relationship to the Global Signal—In fMRI, GS refers to the spatial average of 

voxel-wise timeseries across the brain. GS is a combination of multiple signal sources, and 

its nature is not fully understood (see (Liu et al., 2017) for an excellent review on the topic). 

One often reported finding is that its amplitude (GSamplitude) significantly increases during 

sleep compared to awake states (Fultz et al., 2019; Horovitz et al., 2008; Larson-Prior et 

al., 2009). Similarly, an inverse relationship is expected between FV inflow effects and the 

derivative of the GS if we assume that CSF dynamics are driven by changes in cerebral 

blood volume (Fultz et al., 2019; Yang et al., 2022).

We investigated if we could observe these effects on our sample. First, we computed the GS 
as the average signal across all grey matter ribbon voxels (as in (Fultz et al., 2019)). Second, 

we computed the negative zero-thresholded time derivative of the GS as the derivative of the 

GS multiplied by −1 and with all negative values set to zero to restrict the analysis to inflow, 

not outflow. This is the same procedure used by Fultz et al. (2019). We refer to this signal 

as −dGS/dt in the rest of the manuscript. Third, we conducted cross-correlation analysis 

(lags in the range [−20, 20 s]) to see if we could reproduce previously reported temporal lag 

relationships between these three signals (i.e., GS, −dGS/dt and iFV).

Finally, to explore the contribution of GM ultra-slow fluctuations time-locked to those in 

iFV to GSamplitude and its increase during sleep, we estimated segment-level GSamplitude in 

terms of the temporal standard deviation. Significant increases in GSamplitude between EO 
and EC segments were evaluated via T-test.

Effects on inter-regional FC—To study how removal of FV fluctuations may affect 

inferences about changes in FC during sleep, we computed whole-brain FC matrices using 

the 200 ROI Schaefer Atlas (Schaefer et al., 2017) for three pre-processing pipelines: Basic, 

CompCor and CompCor+.
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For each ROI, a representative timeseries was generated as the average across all voxels 

part of that ROI. Statistical differences in connectivity between “drowsy” and “awake” 

scans were then evaluated using Network-based Statistics (Zalesky et al., 2010) using T=3.1 

as the threshold at the single connection level, and p<0.05 at the component level (5000 

permutations). Finally, results are presented in brain space using the BrainNet Viewer 
software (Xia et al., 2013).

Classification Analyses—To study how well the presence of fluctuations around 0.05Hz 

in the iFV can help us predict reduced wakefulness, we used a logistic regression classifier 

that takes as inputs windowed (window length = 60s, window step = 1s) estimates of 

PSDsleep. A duration of 60s was selected to match the frequency analyses described before. 

Classification labels were generated as follows. For each sliding window, we calculated 

the percentage of eye closing time for that window. If that percentage was above 60%, we 

assigned the label “eyes closed/drowsy”. If the percentage was lower than 40%, we assigned 

the label “eyes open/awake”. All other segments were discarded given their mix/uncertain 

nature. The input to the classifier was the average PSDsleep in the corresponding window.

This analysis was conducted using all 404 scans. This procedure resulted in an imbalanced 

dataset with 311184 samples, of which 233451 (~75%) correspond to “eyes open/awake” 

class, and the rest (77733; ~25%) to the “eyes closed/drowsy” class. To account for this 

imbalance, we used a stratified k-fold approach to estimate the generalizable accuracy of the 

classifier (k=10) and assigned class weights inversely proportional to the frequency of each 

label during the training. Those analyses were conducted in Python using the scikit-learn 

library (Abraham et al., 2014).

The same analysis was conducted also using as input the sliding window version of the 

GSamplitude, a randomized version of the PSDsleep (control case) and using as features 

both the windowed GSamplitude and the PSDsleep. Significant differences in accuracy across 

these scenarios was evaluated via T-test (with as many accuracy estimates per classification 

scenario as k-folds). Additionally, a representative confusion matrix per classification 

scenario was created by computing median precision values across k-folds.

Results

Eye Tracking

Figure 3 shows the percentage of scans (Y-axis) for which subjects had their eyes closed at 

a particular fMRI volume acquisition (X-axis). Individual dots represent actual scan counts 

at each TR, while the black line represents a linear fit to the data. For approximately 10% 

of scans, subjects had their eyes closed during the first fMRI acquisition. As scanning 

progresses, the number of scans for which subjects had their eyes closed increases (Linear 

Fit R=0.96). By the end of the resting state scans, in approximately 40% of scans, subjects 

had their eyes closed; signaling that as time inside the scanner advances more subjects may 

have fallen asleep.
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Relationship to Cardiac Function

Figure 4.A shows the distribution of scan-level heart rates for all 404 scans. For most scans, 

heart rate falls within the normal ranges of resting heart rate (red area), suggesting the 

“happy” software extracted valid cardiac traces. Figure 4.B shows the distribution of aliased 

cardiac rate given fMRI’s sampling frequency of 1Hz. As predicted by the simulations 

(supplementary figure 2), for some scans, aliased cardiac frequency falls within our target 

frequency range of interest (0.03 Hz to 0.07Hz; green area). Figure 4.C & D shows box 

plots of cardiac frequency and aliased cardiac frequency by scan type respectively. While 

a significant difference was observed in cardiac frequency between awake and drowsy 

scans (T=2.24, p=0.03 | U=23162, p=0.02), no such difference was found for their aliased 

equivalents (T=1.27, p=0.21 | U=21507, p=0.33).

Similarly, figures 4.E–H show equivalent information at the segment level. Again, a 

significant difference for cardiac rate between long segments of EO and EC (T=2.34, p=0.02 
| U=100228, p=0.002) was observed, but not in terms of their aliased equivalents (T=1.71, 

p=0.09 | U=95061, p=0.08).

Relationship to Global Signal

Figure 5.A shows the distribution of GSamplitude for EC and EO segments for all pre-

processing pipelines, and that of iFV amplitude. In all instances, amplitudes are significantly 

larger during EC segments compared to EO segments according to T-tests and pBonf<0.05 

(see supp. table 1 for details). Yet, in absolute terms, differences in GSamplitude went down in 

half from the Basic pipeline (0.15) to the CompCor+ pipeline (0.07).

Figure 5.B–E shows how we can reproduce prior observations regarding the relationship 

between GS, −dGS/dt and iFV made by Fultz and colleagues in our sample. Figure 

5.B shows, for a representative EC segment, both the GS (green) and the iFV signal 

(magenta). These two signals appear to be anticorrelated. Next, figure 5.C shows, for the 

same representative EC segment, both the −dGS/dt (blue) and the iFV signal (magenta). 

In this case, both signals appear to be positively correlated. Figure 5.D shows the average 

cross-correlation profile between the GS and iFV signals [Max. corr = −0.49 | lag = 2s] 

across all EC segments. Figure 5.E shows the average cross-correlation profile between 

−dGS/dt and iFV signals [Max. corr=0.32, lag = −3s] across all EC segments.

Spectral Characteristics of the iFV signal

Power Spectral Density (PSD) of the iFV signal—Figure 6.A shows average PSD 

across all scans labeled as “awake” (orange) and those labeled as “drowsy” (blue). Figure 

6.B shows average PSD across all scan segments during which subjects had their eyes closed 

(EC; blue) for at least 60 seconds and for all scan segments during which subjects had 

their eyes open (EO; orange) for the same minimum duration. We can observe that PSD is 

significantly higher for “drowsy” scans as compared to “awake” scans. The same is true for 

EC segments as compared to EO segments (pBonf<0.05). Significant differences concentrate 

primarily below 0.06Hz at the scan level, and extents all the way to 0.08Hz when looking at 

the segment level.
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Time-frequency analyses for the iFV signal—Figure 7 summarizes our results from 

the time-frequency analyses for the iFV signal. First, figure 7.A shows the temporal 

evolution of the average Power Spectral Density (PSD) in two different bands—namely the 

sleep band (PSDsleep) and control band (PSDcontrol)—for both “awake” and “drowsy” scans. 

PSDsleep evolves differently with time for both scan types. For “awake” scans, PSDsleep 

remains relatively flat for the whole scan duration. Conversely, for “drowsy” scans, the 

PSDsleep shows an incremental increase as scanning progresses. This increase becomes 

clearly apparent after the initial 3 minutes of scan. No difference in the temporal evolution of 

the PSDcontrol was observed across scan types.

As subjects are not expected to close their eyes or fall slept in synchrony, we also looked 

at cumulative versions of PSDsleep and PSDcontrol as a function of time (Figure 7.B). In this 

case, we observe a faster increase in cumulative PSDsleep for “drowsy” scans as compared to 

“awake” scans. This difference becomes clearly apparent approximately after 180 seconds. 

Conversely, for the cumulative PSDcontrol, we did not observe any difference in the rate of 

increase across scan types.

Voxel-wise zero-lag correlations

For periods of eye closure (EC, Figure 8.A), we observe wide-spread negative correlations 

between the sleep-related signal in the iFV and grey matter (colder colors). We also 

observe positive correlation in periventricular regions superior to the FV (warmer colors). 

Importantly, not all regions correlate with the same intensity. The strongest negative 

correlations (r < −0.3) concentrate on primary somatosensory regions, primary auditory 

cortex, inferior occipital visual regions and the occipito-parietal junction. The strongest 

positive correlations (r > 0.3) appear mostly on the edges of ventricular regions above FV.

For eye opening (EO) periods (Figure 8.B), although there is a mostly negative relationship 

between the signal from the 4th ventricle and the rest of the brain, this relationship is weaker 

(|r|<0.3 mostly everywhere). Figure 8.C shows the distribution of correlation values for both 

EC (blue) and EO (orange). While for EO correlation values are mostly centered around 

zero; for EC we can see a bimodal distribution with one peak around −0.3 (corresponding 

the areas of strong negative correlation within grey matter) and a second positive peak 

around 0.05 with a long positive tail (corresponding to the strong positive correlations in 

other ventricular regions). Finally, a test for statistical difference (pBonf<0.05) in voxel-wise 

correlation values between the EO and EC segments (Figure 8.D) revealed that regions with 

significant differences mimic those shown in figure 8.A as having the strongest correlations 

during EC.

Voxel-wise temporal delays

To explore differences in arrival time across the brain, we also conducted voxel-wise cross 

correlation analyses based on the iFV signal using only the “drowsy” scans. Figure 9.A 

shows the resulting average map of temporal lags, where the color of a voxel represents 

the lag conductive to the maximum positive cross-correlation value at that location. Positive 

lags mean that the fluctuations in the iFV signal precede those in that location. Negative 

lags mean the opposite, fluctuations appear in the voxel before they do in iFV. Lags vary 
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vastly across tissue compartments (Figure 9.B; lags range [min/max=−11.04/9.28 s], [5th/

95th quantile=−9.15/−2.33 s]). Positive lags concentrate in ventricular regions superior to 

the FV, and negative lags are observed across grey matter. Right-left hemispheric symmetry 

is present, with longer negative lags appearing on most lateral regions (darker blue) as 

compared to more medial regions (light blue). Also, although significant correlations can 

be observed at many locations in the posterior half of the brain, the same is not true for 

frontal and inferior temporal regions. Next, figure 9.C shows cross-correlation traces in 

six representative voxels. We can observe large variability, with cross-correlation peaks 

occurring at different times in different locations.

Effects on whole-brain functional connectivity matrices

Figure 10 shows the results for the whole-brain functional connectivity analysis. Both 

average connectivity matrices per scan type (e.g., “awake” or “drowsy”) and significant 

differences in connectivity between both types of scans were computed for three different 

pre-processing scenarios (i.e., Basic, Compcor, and Compcor+) to evaluate the effect that 

removal of ultra-slow fluctuations in GM time-locked with those in iFV may have on 

estimates of functional connectivity across the brain. Figure 10.A–E show results for the 

Basic pipeline where no signals from ventricular compartments are regressed. Figure 10.F–J 

show results when CompCor regressors (signals from all ventricles and WM) are included 

as additional regressors. Finally, Figure 10.K–O show results when voxel-wise optimally 

time-shifted versions of the iFV are also included as an additional regressor.

While average connectivity matrices for all three scenarios look quite similar for the 

“awake” scans (Figure 10.A, F & K); for “drowsy” scans we can observe stronger overall 

connectivity across most regions for the basic pipeline (Figure 10.B) compared to the two 

other pipelines that include as regressors signals from ventricular compartments (Figure 

10.G & L). Additionally, no large differences in overall levels of connectivity values are 

observed between Figure 10.G (CompCor) and Figure 10.L (CompCor+) suggesting that the 

CompCor method accounts for a large portion of the ultra-slow fluctuations time-locked to 

the iFV.

The same trends are clearly observed in terms of the distribution of connectivity values 

across the whole brain presented in Figure 10.C, H & M. While for basic pre-processing 

(Figure 10.C) the distribution of connectivity values for “drowsy” scans is clearly shifted 

toward positive values relative to the distribution for “awake” scans. Such shift is not so 

apparent in the other two pre-processing scenarios (Figure 10.H & M).

When looking at significant differences in connectivity between “awake” and “drowsy” 

scans, we can observe the effects of using ventricular signals as nuisance regressors. First, 

the use of these regressors (both in the CompCor and CompCor+ pipelines) translates into 

higher sensitivity to detect connections that are stronger during “awake” scans compared to 

“drowsy” scans (Figure 10.D,I & N). Second, it also leads to large decrease in the number 

of connections rendered significant in the other direction (“drowsy” greater than “awake”; 

Figure 10. E, J & O). It is worth noticing that for the “awake” > “drowsy” comparison, 

significand differences in functional connectivity among frontal regions of the default mode 
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network, and posterior parts of the brain only become apparent when ventricular signals are 

regressed during pre-processing.

For example, the percentage of connections with significantly stronger connectivity for 

“drowsy” compared to “awake” scans decreases from 79% (14917 connections) to 32% 

(6079 connections). Conversely, the percentage of connections that are significantly weaker 

for “drowsy” compared to “awake” subjects increases from 0.64% (122 connections 

involving 64 ROIs) to 2.5% (466 connections involving 128 nodes).

For comparative purposes, supplementary figure 3 shows results for the FC analyses when 

conducted on a variant of the Basic pipeline that also includes the GS as an additional 

nuisance regressors. In this case, average FC matrices for both conditions now contain a 

large proportion of negative correlations, concentrated primarily in connections between 

rather than within networks (panels a & b). Moreover, the distributions of connectivity 

values are centered around zero in this case (panel c). In terms of significant differences in 

FC across conditions, GS regression resulted also in higher sensitivity to detect connections 

that are stronger during “awake” scans compared to “drowsy” scans (3261 connections 

involving all ROIs), as well as a decrease in the number of connections rendered significant 

in the other direction (2971 connections involving all ROIs).

How well can it predict periods of drowsiness?

Scan-level Results—To explore the potential value of iFV fluctuations around 0.05Hz 

as an indicator of lowered wakefulness, we decided to sort all 404 scans in terms of the 

total PSDsleep (Figure 11.A). Because GSamplitude has been previously stablished as a good 

indicator of wakefulness, we also sorted scans according to this second index (Figure 11.B). 

In figures 11.A & B, each scan is represented as a vertical bar whose height is either 

the PSDsleep (10.A) or GSamplitude (11.B). Each bar is colored according to whether that 

particular scan was labeled as “awake” (orange) or “drowsy” (light blue). In both plots, there 

is a higher concentration of “drowsy” scans on the left (i.e., higher PSDsleep or GSamplitude). 

Conversely, there is a higher concentration of “awake” scans on the other end of the rank. 

This profile, of more “awake” than “drowsy” scans among those with higher PSDsleep or 

GSamplitude, and the opposite as we go down on the rank becomes more apparent when we 

look at the relative proportions of each scan type in intervals of 100 scans (Figures 11.C & 

D). Within the top 100 ranked scans, the number of “drowsy” scans is more than double 

the number of “awake” scans. Conversely, we look at the bottom 104 ranked scans, these 

proportions have reversed. Finally, it is worth noticing that PSDsleep and GSamplitude based 

rankings, although similar at the aggregate levels described here, are not equal on a scan-by-

scan basis (see suppl. figure 9 for a scatter plot of scan-level PSDsleep vs. GSamplitude). In 

other words, the specific rank of a given scan is not necessarily the same for both ranking 

schemes.

Segment-Level Results—We also evaluated the ability of PSDsleep to predict 

wakefulness at the segment level (i.e., 60 seconds segments), and how it compares to 

that of GSamplitude. Figure 12 shows results for this last set of analyses that look at 

prediction accuracy under several scenarios: a) when PSDsleep is the only input feature, 
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b) when GSamplitude is the only input feature (we attempt this for all pre-processing pipelines 

separately), c) when both PSDsleep and GSamplitude are used as input features (PSD+GS) 

and d) when PSDsleep is the only feature and labels are randomized (control condition). 

Accuracy was significantly higher (T-test; p<1e−6 in all instances) for the three non-control 

scenarios (i.e., PSDsleep: 71%, GSamplitude: 74%, PSD+GS: 70%) when compared to the 

control condition (Control: 40%). Although significant differences were also observed 

among the three non-control scenarios (not marked in figure 12.A), in this case, differences 

in accuracy in absolute terms was very small (<0.04). No significant difference in accuracy 

exists for GSamplitude computed following the different pre-processing pipelines.

Discussion

Previous work has shown that strong ultra-slow (~0.05Hz) inflow fluctuations appear in the 

FV when subjects descend into sleep, and that anticorrelated BOLD fluctuations of equal 

frequency can be observed in grey matter (Fultz et al., 2019). A similar observation was 

made earlier this year for awake scans (Yang et al., 2022). Here, we reproduce those findings 

in a much larger sample (174 subjects here vs. 13 in (Fultz et al., 2019) and 10 in (Yang et 

al., 2022)), and then we extend them in several meaningful ways.

Nature of iFV ultra-slow fluctuations and relationship to the GS—Ultra-slow FV 
fluctuations (~0.05Hz) with inflow properties (i.e., decreased intensity across successively 

acquired slices) were detected in the 7T HCP sample, despite this data not having optimal 

sensitivity for inflow effects at this location. Additionally, fluctuations in iFV showed 

maximal negative correlation to the GS for a positive lag of 2s (same as in Fultz et al.), 

and maximal positive correlation with −dGS/dt for a negative lag of −3s (−1.8s for Fultz et 

al.). Agreement between the observations made here and those in Fultz et al. suggest we are 

looking at signals of similar nature, namely CSF inflow into the FV driven by a decreases 

of cerebral blood volume (as indexed by the GS) and the need to keep the sum of all brain 

volumes inside the skull constant (Monro-Kellie doctrine; (Mokri, 2001)).

If so, then how can we explain the presence of residual inflow effects on a dataset where the 

FV sits far away from the lower end of the imaging FOV and TR is not as sort (1s here vs. 

367ms in Fultz et al.)? First, sensitivity for inflow increases with field strength and flip angle 

(Gao and Liu, 2012); both of which are higher here compared to Fultz et al. (2019). Second, 

in the HCP data, the iFV sits, on average, somewhere between slice 17 and slice 24. Given 

the use of a multi-band sequence (Feinberg and Setsompop, 2013) with factor (MB=5) and a 

number of slices equal to 85 in the 7T HCP protocol, the minimal critical imaging velocity 

(Fultz et al., 2019; Kim and Parker, 2011) for some slices sitting over the FV is 54.40mm/s. 

Awake CSF maximal velocity ranges between 20–80mm/s in healthy adults (Korbecki et al., 

2019; Lee et al., 2004; Nitz et al., 1992). Although the velocity for reversed CSF flow during 

sleep might be different, Fultz et al. already reported fast events observable four slices 

away from the lower boundary of the FOV, which would require, for their protocol, CSF 

velocities above 68mm/s. These numbers show that inflow effects may be still observable 

in the HCP data, even if the location of the slices and the TR is not optimally sensitized. 

The same might be true for other data acquired with multi-band protocols, and additional 

research should elucidate how often these fluctuations are present in resting-state datasets. 

Gonzalez-Castillo et al. Page 16

Neuroimage. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This is important, given one can expect a third of subjects to fall asleep within 3 minutes 

of scan onset (Tagliazucchi and Laufs, 2014), and that—as we shall discuss below—these 

fluctuations can significantly affect estimates of functional connectivity.

Examination of slice-dependent intensity profiles revealed two different patterns within the 

FV (figure 2). Slices inferior to the pDmR exhibited an inflow-like profile with decreased 

signal intensity across successively acquired slices. Conversely, for slices superior to the 

pDmR, CSF signal intensity decreases moving rostrally towards the brain. Despite its small 

size, the FV is a complex structure with openings towards several CSF compartments, 

namely the third ventricle via the aqueduct of Sylvius, the central canal via its narrowing 

at the Obex, the cisterna magna via the median aperture (or foramen of Magendie) and the 

pontocerebellar cistern via the two lateral apertures (of foramina of Luschka). As such, its 

fluid dynamics are complex. In our sample, it seems that inflow effects due to fresh CSF 

coming from outside the imaging FOV are only dominant for signals recorded on the caudal 

half of the FV before such fresh fluid mixes with that coming from all other chambers that 

sit inside the imaging FOV. Based on this observation we decided to constrain our analyses 

to FV signal extracted using only the caudal half of the FV (what we refer to as the inferior 

FV or iFV throughout the manuscript).

Here we decided to look beyond global effects (e.g., relationships to the GS) and explore 

in detail the spatio-temporal profile of ultra-slow BOLD fluctuations time-locked to those 

in the iFV. While doing so, we observed that the strongest anticorrelations between those 

two signals in drowsy scans occurred in visual, MT, sensorimotor, and supplementary motor 

cortexes (figure 8).

This pattern overlaps with that previously reported by Song et al. (2019) for fluctuations 

of similar frequency that appear in fMRI recordings during light sleep and track EEG 

spindles (a key signature of light sleep; (Gennaro and Ferrara, 2003)). Song et al. (2019) 

also reported that these oscillations first appear in the thalamus and sensory regions; and 

from there, they propagate to prefrontal regions. Here, we partially observe a similar pattern 

with sensory regions (e.g., motor, auditory cortex) having larger negative lags (e.g., leading 

more in front of the iFV) than frontal regions (figure 9.A, supp. figure 7). These converging 

observations emerge from a very different set of methods and assumptions. In the case of 

Song et al., the authors relied on concurrent EEG measures to detect periods of light sleep 

and subsequently evaluate changes in frequency profiles at the regional level relative to 

wakefulness. Here, we simply studied patterns of correlation with the FV signal on scans 

marked as “drowsy” based on eye tracking recordings. Once more, agreement across studies 

suggest that the bulk of our observations are indeed related to periods of light sleep, and not 

simply to subject’s lack of compliance regarding instructions to keep their eyes open. This is 

important, as with ET alone it is not possible to separate these two potential scenarios.

Contribution to GSamplitude during drowsiness—It is well established that the 

standard deviation of the global signal (GSamplitude) increases when vigilance decreases 

(Wong et al., 2013) and when subjects fall asleep (Fukunaga et al., 2006; Horovitz et al., 

2008; Larson-Prior et al., 2009). In agreement with these prior findings, here we observed a 

significantly higher GSamplitude for long segments of EC compared to EO (Figure 5.A). 
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Importantly, these differences remain significant for all other pre-processing pipelines, 

including those that attempt to remove iFV related fluctuations (supp. table 1). This suggests 

that the ultra-slow sleep-related fluctuations being studied here are not the sole driver of 

differences in GSamplitude across wakefulness states. This may be initially counterintuitive 

given those sleep-related fluctuations are quite strong and widely distributed in space. Yet, 

for any spatially distributed signal to be a contributor to the GS, such signal ought to 

appear in synchrony across the brain. Otherwise, positive and negative contributions from 

different locations may cancel each other (see (Liu et al., 2017) for a detailed description 

of the GS as a measure of synchronicity across the brain). Our results suggest that the 

reported heterogeneity regarding temporal lags (Figure 9) results in an overall effect that, 

although important, does not fully explain the increase in GSamplitude that accompanies 

decreases in wakefulness. This is not to say that such fluctuations have no effect at all. 

As supplementary table 1 shows, differences in GSamplitude between EC and EO segments 

decrease substantially for pre-processing pipelines that try to account for signals that 

correlate with those present in the ventricles (including the FV), yet not to a point of 

eliminating significance. Ultimately, what this suggests, is that differences in GSamplitude 

should not be attributed only to physiological effects that create an imprint in ventricular 

regions (e.g., cardiac, respiration, sleep-related inflow), and that other effects constrained to 

grey matter are also important.

Ability to predict drowsiness—The primary goal of this work was to evaluate how 

well spectral characteristics of ultra-slow inflow fluctuations in iFV could help us predict 

drowsiness during resting-state scans at three different levels: sample level (i.e., the whole 

dataset), scan level (i.e., that of individual scans), scan-segment level (i.e., that of portions of 

individual scans).

Regarding sample-level, it has been previously shown that approximately a third of subjects 

in the 3T resting-state HCP sample fell asleep within three minutes from scan onset 

(Tagliazucchi and Laufs, 2014). Here we report on a similar pattern for the 7T HCP 

sample (Figure 7). While that earlier report on the 3T sample relied on a hierarchical 

tree of pre-trained support linear vector machines, here we base our observation on the 

progressive increase in PSDsleep for the iFV signal. For the initial 180 seconds of scanning, 

average PSDsleep traces for “awake” and “drowsy” scans overlap. Beyond that temporal 

landmark, PSDsleep for “drowsy” scans rises above that of “awake” scans. Conversely, 

the PSD for the control band (which excludes the 0.05Hz signals of interest) did not 

differ across scan types irrespective of time; demonstrating the specificity of the effect to 

the “sleep” band. It is worth noticing that these patterns are clearly observed despite the 

large confidence intervals associated with across-scans averaged PSDs (Figure 5.A); which 

emanate from the fact that subjects fall asleep at different moments. Yet, because we can 

expect a monotonic increase in the number of subjects that fall asleep as scanning time 

increases, a clearer pattern emerges when looking at cumulative PSDs (Figure 5.B). While 

the cumulative PSDcontrol for “drowsy” and “awake” scans have equivalent small increases 

with time; PSDsleep traces clearly diverge across scan types, with “drowsy” scans showing a 

much faster increase, particularly after approx. 200 seconds from scan onset. These results 

demonstrate that an easily implementable metric, such as the PSDsleep of the FV, can 
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provide equivalent information about the progressive descent into sleep of a resting-state 

sample to that obtained using relatively more complex machine learning procedures.

Next, our scan-level exploration showed that sorting scans based on average PSDsleep 

results in a list (Figure 11.B) with “drowsy” scans appearing in higher proportion (69 

drowsy / 31 awake) at the top of the rank (e.g., higher average PSDsleep levels), and 

“awake” scans appearing at higher proportion (71 awake / 33 drowsy) at the bottom of 

the rank (e.g., lower average PSDsleep levels). Unfortunately, the rank is not perfect, meaning 

there is no certainty that a particular scan near one end of the ranking (e.g., scan ranked 

400/404) is of one specific type (e.g., “awake”). Several reasons contribute to this situation. 

First, the dichotomic labeling system (“drowsy” / “awake”) based on the presence/absence 

of long periods of eye closure may be too simplistic to represent the heterogeneity of 

sleep patterns present in the data. Similarly, a single number (average PSDsleep) may not 

suffice to characterize the wakefulness profile of complete scans with alternating periods 

of wakefulness and sleep of different durations and intensity. Second, while the absence of 

long periods of eye closure can be confidently associated with wakefulness, the presence 

of long periods of eye closure does not necessarily mean sleep. As such, some scans 

labelled here as “drowsy”, may not include sleep periods, and simply capture the fact 

that subjects stopped complying with the experimental request to keep their eyes open. 

Finally, another contributing factor might be that not every instance of increase PSDsleep is 

necessarily associated with a period of light sleep. A closer look at some of the ranking 

“misplacements” at the top of the rank—namely “awake” scans with high average PSDsleep 

(supp. figure 8) shows that in some instances (subjects A and B) periods of elevated 

PSDsleep coincide with peaks of head motion (black arrows); yet that is not always the 

case (blue arrows). Although we did not find a significant difference in head motion across 

scan types, examples such as these suggest that strong ultra-slow fluctuations in the iFV 
can indeed sometimes appear due to motion, decreasing the accuracy of PSDsleep as a 

frame-to-frame marker of sleep at the individual level.

We also observe periods of elevated PSDsleep that do not overlap with periods of higher 

motion or eye closure (e.g., subjects C & D in supp. figure 8). This suggests that 

fluctuations at around 0.05Hz in the FV are not exclusive to light sleep and can also 

occur during wakefulness in the absence of motion. This agrees with observations by 

Yang et al. (2022), who just reported the presence of ultra-slow inflow fluctuations in the 

FV in a sample of awake resting-state scans. Yang and colleagues suggest that although 

similar in their presentation, ultra-slow FV inflow fluctuations are driven by cerebral blood 

volume oscillations of different origin: neuronal during sleep and due to changes in blood 

gases concentrations (i.e., pCO2) during awake states. As both phenomena can influence 

PSDsleep similarly, this is a likely important contributor to ranking errors and segment 

misclassification (discussed in the next paragraph).

Finally, our segment-level results show that PSDsleep computed on 60 seconds segments can 

predict wakefulness (e.g., eyes open/awake vs. eyes closed/drowsy) with 71% accuracy 

(figure 12), slightly less than what is attainable (74%) using GSamplitude as the input 

feature for classification. The value of GSamplitude as a marker of vigilance/arousal is well 

stablished. Our result suggests that the spectral content around 0.05Hz of the FV signal (i.e., 
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PSDsleep) can be equally informative. When the classifier is given both metrics as input 

features (GSamplitude and PSDsleep), accuracy levels barely changed suggesting these two 

metrics did not provide complementary information the logistic classifier could exploit to 

increase accuracy. As originally stated, our goal was to keep methods as simple as possible, 

and that was the reason why we chose a simple logistic regressor for this set of analyses. 

It is possible that more advanced classification algorithms (e.g., support vector machines, 

neuronal networks) might be able to find complementary bits of information in both traces, 

and therefore the fact that the accuracy for a logistic regression machine barely improved 

when both metrics are combined should not be taken as evidence that the same will occur 

with other models.

Effects on functional connectivity—Regression of ventricular fluctuations (as in 

CompCor and CompCor+) had an equalizing effect on the distribution of FC estimates 

across the brain for “drowsy” and “awake” scans (figure 10.H & M). It also resulted 

into increased sensitivity and specificity for detecting FC differences between those two 

wakefulness states (Figure 14.D, E, I and J) and better agreement with previous findings 

regarding connectivity changes during eye closure and sleep.

When ventricular signals are not included as nuisance regressors, comparison of 

connectivity patterns for “drowsy” and “awake” scans produced two main observations: 

a) the number of connections with increased connectivity during “drowsy” scans is much 

larger than those that show a decrease in connectivity; and b) most decreases in connectivity 

for “drowsy” scans involve visual regions. These observations persist if ventricular signals 

are used as nuisance regressors during pre-processing. Yet, additional observations become 

possible such as decreased intra-network connectivity for “drowsy” scans in the visual, 

attention and default mode networks, as well as between nodes of the visual network and 

frontal eye field regions from the dorsal attention network. All these observations agree 

with those recently reported by Agcaoglu et al. (2019) when comparing eyes open to eyes 

closed resting-state scans. One key discrepancy between our results that those of Agcaoglu 

et al., is that we also observed decreased connectivity between motor and visual regions 

in “drowsy” scans. Yet, such trend has also been previously reported by Van Dijk and 

colleagues (2010) when comparing eyes open vs. eyes closed; suggesting this pattern is not 

unique to this dataset. Among the changes only observable when ventricular signals are 

modeled as nuisance regressors, we encounter a decrease in connectivity between anterior 

and posterior nodes of the default mode network, which is a key signature of sleep (Horovitz 

et al., 2009). Similarly, we also observe decreased connectivity for regions of the dorsal 

and ventral attention network. Reduced connectivity in fronto-parietal networks during 

sleep is another common finding in the literature (Larson-Prior et al., 2009; Picchioni 

et al., 2013) that is consistent with a behavior, sleep, that is characterized by reduced 

attention towards the external environment. Overall, these results suggest that removal 

of ultra-slow fluctuations is key to properly identifying previously described changes in 

functional connectivity that accompany eye closure and sleep. Yet, this does not necessarily 

imply that such an approach is free of interpretational confounds. If, as Yang and colleagues 

suggest, ultra-slow BOLD fluctuations time-locked to those in iFV have different etiology 

during awake and drowsy states, modeling these fluctuations as nuisance regressors may 
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inadvertedly remove neural activity that varies between awake and drowsy states. Moreover, 

given both our results, and prior reports (Tagliazucchi and Laufs, 2014) demonstrate that one 

can expect a range of drowsiness states in any resting-state sample, the same regressor may 

be modeling different effects (i.e., neuronal or physiological) in different parts of the sample. 

Given those considerations, researchers should always consider the acquisition of concurrent 

physiological recordings (e.g., pulse oximeter, respiration belt (Birn et al., 2006; Glover et 

al., 2000), peripheral optical imaging (Tong et al., 2015, 2013)) in fMRI samples likely to 

include fluctuations in wakefulness (e.g., resting-state).

When the GS is used as an additional regressor (supplementary figure 3.A–G) we observe 

a shift in the distribution of correlation values towards zero, which consequently resulted 

in the appearance of negative correlations that were not present otherwise. Prior work 

has demonstrated that GS regression (GSR) mathematically imposes such a shift and the 

appearance of negative correlations (Murphy et al., 2009; Murphy and Fox, 2017). In terms 

of differences across states (“drowsy” vs. “awake”), GSR produced substantially different 

results to all other pipelines. All non-GSR pipelines are characterized by a much larger 

number of connections being significantly stronger for “drowsy” states. For the “awake > 

drowsy” contrast, connections primarily included ROIs in the visual network as well as 

previously discussed signatures of sleep in DMN and attention networks. Following GSR, 

the number of significantly different connections in both directions was more similar, and 

the “awake > drowsy” connections were now distributed across most networks, in addition 

to the connections observed without GSR (supplementary figure 3.D–F & H). This is likely 

a result of documented observations that GSR will distribute distinctive signal fluctuations in 

focal brain regions into other regions (Aguirre et al., 1998) and will distribute connections 

that are focal to a subset of ROIs across other brain regions (Gotts et al., 2020, 2013; Saad 

et al., 2012). Also, these results highlight that the regression of a signal component (i.e., 

the GS) with strong links to vigilance (Liu et al., 2017) can alter observed differences in 

connectivity across scans with differing levels of drowsiness.

Study limitations—First, we cannot completely rule out the confounding effects of 

differences in cardiac and respiratory function across wakefulness states. Cardiac traces 

estimated directly from the fMRI data showed there is a small, but significant decrease in 

cardiac rate for periods of elevated drowsiness. Although such differences dissipated when 

looking at their aliased equivalent based on the fMRI sampling rate, we cannot rule out that 

second order effects (e.g., cardiac rate variability (Chang et al., 2013)) may be a contributing 

factor to observed differences. In addition, as no respiratory traces are available, we cannot 

evaluate the role of respiration to these results.

Second, as previously discussed, we indirectly infer periods of sleep/drowsiness based on 

eye closure. Although we took actions to remove from the analysis long periods of eye 

closure that were likely the result of subject’s lack of compliance with instructions to keep 

their eye open, we acknowledge that our proxy for sleep/drowsiness is not as accurate as 

an EEG based measure. Future work can use a large sample size of multi-modal EEG/fMRI 

data to better validate our current observations.
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Third, we infer an inflow origin for the targeted iFV fluctuations based on their across-slice 

profile and their relationship to cerebral blood volume as indexed by the GS and its first 

derivative. Yet, alternative ways to test the inflow nature of this phenomena should be 

explored in future studies. For example, one could rely on multi-echo fMRI—which refers to 

the concurrent acquisition of fMRI at multiple echo-times (Posse et al., 1999)—to separate 

signal fluctuations of BOLD (not inflow-related) and non-BOLD (inflow-related) origin 

based on how their amplitudes are modulated by the different echo times (Caballero-Gaudes 

et al., 2019; Gonzalez-Castillo et al., 2016; Kundu et al., 2011). One could also acquire 

fMRI data at multiple flip angles or repetition times (TR). These two imaging parameters 

affect the amount of T1-weigthing present on the recorded signals, and as such would 

have a strong modulatory effect on inflow-related fluctuations (Gao and Gore, 1994; Gao 

and Liu, 2012). Similarly, one could acquire data using two different slice geometries: 

one with slices parallel to the hypothesized direction of flow (e.g., sagittal slices), and 

one perpendicular to it (e.g., axial slices). Inflow-related fluctuations for the hypothesized 

direction of flow should only be present in the perpendicular acquisition (Gao and Liu, 

2012). Finally, researchers could also use outer volume saturation techniques to attempt 

nulling fluctuations due to incoming fluid from anatomical regions right underneath the 

imaging field of view.

Conclusions

Resting-state data is a chief component of today’s non-invasive human neuroimaging 

research (Essen et al., 2013; Miller et al., 2016). Despite its long history (Biswal, 2012; 

Snyder and Raichle, 2012), there are many open questions regarding what mechanisms lead 

to the formation of resting-state networks and their time-varying profiles (Gonzalez-Castillo 

et al., 2021). One such question is the role that shifts in vigilance and arousal play in 

shaping resting-state results (Laumann et al., 2016; Tagliazucchi and Laufs, 2014), which 

remains rarely explored because it requires concurrent electrophysiological or eye tracking 

recordings. Here we study how signatures of CSF inflow during light sleep in fMRI data 

(Fultz et al., 2019) can be exploited to extract information about wakefulness levels in 

resting-state data. Our results demonstrate that it is possible to detect this phenomenon 

in data with relatively small inflow weighting, and that it has value as a marker of 

wakefulness fluctuations at the sample, scan and segment levels. We also discuss how the 

use of ventricular signals as nuisance regressors significantly alters inferences about how FC 

changes during sleep because of the link (i.e., co-linearity) between ultra-slow fluctuation 

of inflow origin in the FV and those of BOLD origin in GM. These considerations are 

important because, as we reproduce here for the HCP 7T dataset, large resting-state samples 

can often include scans from subjects with quite different wakefulness profiles. Today, 

in most resting-state studies, those differences are ignored, and all resting-state scans 

are considered equivalent. This can translate into the undesired mixture of two distinct 

connectivity profiles into one that may not be easily interpretable, as it does not represent 

the average of a homogenous sample (see (Liu and Falahpour, 2020) for a discussion of a 

similar concern specific to vigilance). Data-driven methods such as the one described here, 

allow us to easily extract information about wakefulness states, and should help ameliorate 

this issue by helping us partially segregate scans and segments into more homogenous 

samples.
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Figure 1. 
(A) Distribution of percentage of total eye closure per resting-state scan across the whole 

sample. Ranges used for the selection of scans marked as “awake” and “drowsy” are 

depicted by rectangles in light blue and orange respectively. (B) Distribution of mean values 

of framewise displacement across both groups of scans. (C) Presentative pupil size trace 

for a scan labeled as “awake”. (D) Representative pupil size trace for a scan labeled as 

“drowsy”.
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Figure 2. 
Evaluation of inflow-like properties for FV signals during long EC segments. (A) Average 

of mean timeseries is original space across the 29 scans used in these set of preliminary 

analyses. (B) Magnified view of the average presented in panel A. To the right we show 

the distribution of slice number for slices cutting through the Obex (blue), the dorsomedial 

recess (red) and the inferior end of the Aqueduct of Sylvius (orange). Dotted lines show the 

median slice number for each of these structures. Black arrows indicate the outlier location 

of these structures for one scan that was removed from the analyses. (C) Slice timing profile 

for the HCP 7T resting-state data. Each slice (labeled sXX) is represented by a colored 

square in a 2D plane defined by slice number/position in space (X-axis) and slice timing/

position in time (Y-axis). Squares are colored according to acquisition shot. Six different 

ascending trajectories (tilted bold black arrows) are identified. Of these, two (grey shade) 

contain slices sitting over the FV. (D) Average 95th to 5th percentile FV signal amplitude 

ratio for slices crossing this anatomical structure. Bar color indicate acquisition shot number. 

Red dashed vertical line indicated the average location of the dorsomedial recess. (E) Same 

as D but only for slices in Trajectory A. (F) Same as D but only for slices in Trajectory B.
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Figure 3. 
Percentage of scans with eyes closed at a given fMRI acquisition. As scanning progresses, 

the number of subjects with their eyes closed at a given fMRI acquisition (i.e., TR) 

increases.
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Figure 4. 
Analysis of data-driven estimates of cardiac traces. (A) Distribution of scan-level heart rate 

across all scans. Red indicates common ranges for resting heart rate. (B) Distribution of 

aliased scan-level heart rate across all scans. Green indicates the target frequency range in 

fMRI recordings for sleep-related fluctuations in the FV. (C) Box plots of scan-level heart 

rates for awake (orange) and drowsy (light blue) scans. (D) Box plots [middle line = median, 

box edges = 25–75 quantiles, whiskers = furthest data point within 1.5 times the interquartile 

range above and below the box edge] of scan-level aliased heart rates for awake (orange) 

and drowsy (light blue) scans. (E) Distribution of segment-level heart rate across all scans. 

Red indicates common ranges for resting heart rate. (F) Distribution of aliased segment-level 

heart rate across all scans. Green indicates the target frequency range in fMRI recordings 

for sleep-related fluctuations in the FV. (F) Box plots of segment-level heart rates for EO 

(orange) and EC (light blue) segments. (D) Box plots of segment-level aliased heart rates for 

EO (orange) and EC (light blue) segments.
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Figure 5. 
Relationship between GS, −d/dtGS and iFV signal. (A) Segment-level GSamplitude for 

different pre-processing pipelines and for the iFV signal. In all instances we observed a 

significant difference across segment types. (B) iFV and GS signal for one representative 

EC segment. (C) iFV and −d/dtGS for the same representative EC segment. (D) Cross-

correlation between GS and iFV signal (blue line) (E) Cross-correlation between −d/dtGS 
and iFV signal (blue line). In both (D) and (E) shaded blue regions indicate 95% confidence 

interval for the actual data and dashed black lines indicate 95% confidence interval when 

data is shuffled (n=1000 permutations).
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Figure 6. 
Power Spectral Density (PSD) analysis for the average fMRI signal in the 4th ventricle. (A) 

Average PSD for “awake” and “drowsy” scans. (B) Average PSD across eyes closed and 

eyes open segments. In both panels, frequencies for which there is a significant difference 

(pBonf<0.05) are marked with an asterisk.
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Figure 7. 
Time-frequency analyses for the BOLD signal from the 4th ventricle. (A) Temporal 

evolution of the power spectral density (PSD) of this signal in two different frequency 

bands (sleep band: 0.03 – 0.07Hz, control band: 0.1 – 0.2Hz) for scans labeled as “awake” 

and “drowsy”. (B) Cumulative PSD for the same two bands and scan types shown in the 

top panel. In both panels, lines show the average across all scans of a given type, and 

shaded regions indicate 95% confidence intervals (bootstrapping n=1000). Continuous lines 

correspond to trends for the sleep band, while dashed lines corresponds to the control band.
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Figure 8. 
(A) Group-level map of voxel-wise average correlation between the iFV signal and the rest 

of the brain for periods of eye closure longer than 60 seconds. (B) Same as (A) but for 

periods of eye opening longer than 60 seconds. In both (A) and (B), areas with | R | > 0.3 are 

highlighted with a black border and no transparency. Areas with |R| < 0.3 are shown with a 

higher level of transparency. (C) Histogram of voxel-wise average R values across all scan 

segments for both conditions. A shift towards stronger correlation values can be observed for 

the eyes closed condition. (D) Significant differences in voxel-wise correlation between eyes 

closed and eyes open condition (pBonf<0.05).
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Figure 9. 
(A) Whole brain lag maps for the iFV signal. Color indicates the temporal lag conductive 

to maximal positive correlation within the lag range (−15s, 15s). A negative lag means the 

signal in that voxel precedes the iFV. (B) Distribution of temporal lags across the brain. (C) 

Representative voxel-wise cross-correlation traces for six different locations marked with 

numbered circles in panel (A).
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Figure 10. 
Whole-brain functional connectivity results. (A-E) Results for the Basic pre-processing 

pipeline. (F-J) Result for the CompCor pipeline. (K-O) Results for the CompCor+ pipeline. 

In all rows the left most column shows the average connectivity matrix for all “awake” 

scans. The next column shows the average connectivity matrix for all “drowsy” scans. 

The middle column shows the distribution of correlation values across the whole brain for 

both scan types: drowsy in blue; and awake in orange. Finally, the last two columns show 

connections that were significantly different between the two scan types. The left most of 

these two columns show connections with stronger correlation for “awake” scans relative 

to “drowsy”. Conversely, the right most column shows those that are stronger for “drowsy” 

relative to “awake” scans. Significance was evaluated using Network-based statistics (T> 

3.1, 5000 permutations, p<0.05 at the component level).
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Figure 11. 
(A) Ranked scans according to the total PSD in the sleep band (0.03Hz – 0.07Hz) for the 

signal from the 4th ventricle. (B) Ranked scans according to the amplitude of the global 

signal. In both (A) and (B), each scan is represented by a vertical bar. The color of the 

bar indicates whether a given scan was labeled “drowsy” or “awake” based on the total 

amount of time subjects kept their eyes closed during that particular scan. (C) Proportion of 

“drowsy” and “awake” scans in rank intervals (1 – 100, 101 – 200, 201 – 300, 301 – 304) for 

PSD-based ranks. (D) Proportion of “drowsy” and “awake” scans in rank intervals (1 – 100, 

101 – 200, 201 – 300, 301 – 304) for GS-based ranks.
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Figure 12. 
Prediction accuracy for a logistic regression classifier with different set of input features: 

PSDsleep, GSamplitude (computed for different pre-processing pipelines), randomized 

PSDsleep (control) and PSDsleep + GSamplitude.
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Table 1.

Criteria for elimination of individual scans from the final sample entering all analyses.

Elimination Criteria Scans Removed Scans Remaining

Automatic parcellation for 4th ventricle failed 4 719

ET data not available 149 570

Error while loading ET data 2 568

ET data lacks onset information for synchronization to fMRI scans 4 564

ET data not available for the full fMRI scan 3 561

Scans that do not meet criteria to be labeled as “awake” or “drowsy” 157 404
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