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Abstract

The metabolically active retina obtains essential lipids by endogenous biosynthesis and from 

the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence 

as to the relationships between circulating lipid levels and the development and progression 

of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials 

that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-

lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are 

in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection 

against diabetic retinopathy, the effect was independent of changes in traditional blood lipid 

classes. While systemic LDL-cholesterol lowering with statins did not afford protection against 

diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as 

the main outcome, data from very large database studies suggest the possible effectiveness 

of statins. Potential challenges in these studies are discussed, including lipid-independent 

effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering 

drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol 

accumulation and potential formation of cholesterol crystals are also addressed.
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Introduction

Hyperglycaemia is a major risk factor for diabetic retinopathy and improving blood glucose 

control substantially protects against diabetic retinopathy onset and progression in people 

with type 1 or type 2 diabetes [1, 2]. Furthermore, metabolic memory exists for blood 

glucose levels and diabetic retinopathy [3–5]. While not as strong or consistent as the 

links between glucose and diabetic retinopathy, and between lipids and CVD, evidence 

from clinical studies suggests associations between traditional lipid profiles and diabetic 

retinopathy [6]. There is also evidence of metabolic memory of some vascular beds for lipids 

and lipid-lowering drugs [7], likely modulated by epigenetics [8].

In this review we discuss associations between traditional blood lipid levels and diabetic 

retinopathy, challenges in this research area, and the effects of lipid-lowering drugs on 

diabetic retinopathy, including a meta-analysis of relevant trials. We then discuss the 

potential retinal-specific mechanisms of lipid-lowering and of immune cells in diabetic 

retinopathy, and the role of the bone marrow in vascular repair, before providing a summary 

and suggesting future directions.

Associations between circulating lipid levels and diabetic retinopathy

Since recognition of the association between circulating lipid levels and retinal hard 

exudates in the 1950s [9, 10], cross-sectional and longitudinal studies have evaluated 

associations between traditional lipid classes, total cholesterol, triacylglycerols (TGs), 

HDL-cholesterol and (usually calculated) LDL-cholesterol, and the novel prothrombotic 

proatherogenic lipoprotein(a). Some illustrative studies are summarised in Table 1 [11–

28]. Associations are not always consistent, possibly relating to differences in study size, 

diabetes type and duration, definitions of diabetic retinopathy, lipid assays and other factors 

(discussed next).

Challenges in evaluating the roles of lipids and lipid-lowering drugs in 

retinopathy

Many factors make it difficult to discern the relative importance of lipids and lipid-lowering 

drugs in diabetic retinopathy [6]. Likely confounding factors include interactions between 

lipids, blood glucose levels and other retinopathy risk factors such as obesity, renal 

dysfunction and smoking. Other challenges are the long duration over which retinopathy 

develops and the potential for different lipid effects on the different stages (e.g. initiation 

or progression) of diabetic retinopathy. Differences between studies in the type of diabetes, 

diabetes duration, retinopathy status at initial visit and duration of follow-up and in the 

definitions of diabetic retinopathy and methods used to assess it may also contribute. 

Furthermore, most clinical studies use relatively simple measures of circulating lipoproteins, 

such as total, LDL-cholesterol and HDL-cholesterol and TG levels for what are complex 

quantitative and qualitative changes in lipoproteins. Additionally, circulating lipid levels do 

not best reflect extravasated and modified lipids, such as in the retina, nor intra-retinal lipid 

metabolism, which may be more pathogenic than unmodified lipoproteins in plasma. Often 

only a single measure of blood lipid levels is evaluated in relationship to diabetic retinopathy 
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status (or only a few measures) and there may be little consideration of confounding effects 

such as blood glucose levels, metabolic memory for glucose, lipids and some drugs [7, 8], 

unmeasured genetics, epigenetic effects and other yet to be determined factors.

Of further importance to understanding the potential role of lipid-lowering drugs in 

ameliorating diabetic retinopathy is the direct and indirect effects of these drugs. Their 

pleiotropic effects are common to most lipid-lowering drug classes, in spite of different 

mechanisms of action and predominant lipid targets. A novel approach to help elucidate 

the role of lipids in diabetic retinopathy are Mendelian randomisation studies, in which the 

impact of genes involved in high or low lipid levels are related to the condition of interest 

[29], and a recent study is described herein.

Effects of lipid-lowering drugs

Lipid-lowering drugs are broadly classified by their predominant lipid target. Unlike CVD, 

there is a relative paucity of evidence and sometimes inconsistent evidence regarding the 

effect of lipid-lowering drugs on diabetic retinopathy. Basic science studies can be very 

helpful in preclinical drug testing and in elucidating mechanisms [30–39] but results do not 

always translate to the human setting. We now summarise key lipid-lowering drug trials that 

have evaluated diabetic retinopathy endpoints and highlight evidence gaps.

TG-lowering and LDL-lowering drugs

As yet there are no large placebo-controlled diabetic retinopathy primary endpoint trial 

results related to the (TG-lowering) fibrates, fish oils or eicosapentaenoic acid (EPA). 

Apart from some early small intervention studies (1–50 participants) with 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) [40–43], there are no 

large, randomised controlled trials for (LDL-lowering) drugs with a diabetic retinopathy 

primary endpoint. The LDL-lowering drug classes of interest are as follows: statins; 

ezetimibe; resins; proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors; and 

bempedoic acid (the first in the LDL-lowering drug class of ATP citrate lysase inhibitors, 

which acts upstream of HMG-CoA reductase) [44].

Fibrates—In an early (1968) trial, a 3 year study of clofibrate in 23 individuals with 

exudative diabetic retinopathy and 25 control individuals, clofibrate significantly reduced 

exudate severity but did not improve other retinal vascular lesions or visual acuity; there 

was no association between exudate severity or improvement and serum lipid levels [45]. 

Subsequently, there have been much larger RCTs of fenofibrate, though retinopathy was 

not the main focus of these trials. The peroxisome proliferator-activated receptor alpha 

(PPARα)-agonist fenofibrate has positive diabetic retinopathy-related findings from two 

major placebo-controlled RCTs in type 2 diabetes, the Fenofibrate Intervention and Event 

Lowering in Diabetes (FIELD) trial [46] and the Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) Lipid Eye Trial [47].

The FIELD trial was a cardiovascular trial wherein microvascular complications were 

not the primary endpoint, thus not all participants had retinal imaging, ocular coherence 

tomography (OCT) was not used, and the then-standard therapy for sight-threatening 
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diabetic retinopathy (STDR) was retinal laser photocoagulation. In the FIELD trial 

(n = 9795), comicronised fenofibrate 200 mg once daily for a median of 5 years 

significantly reduced STDR incidence requiring retinal laser therapy by 31%, with all 

STDR events being verified by adjudicating ophthalmologists. Similar benefits were seen for 

proliferative diabetic retinopathy (PDR) and diabetic macular oedema (DMO). In the FIELD 

ophthalmology substudy (n = 1012), which included serial retinal images, the composite 

exploratory endpoint (two-step progression of Early Treatment Diabetic Retinopathy Study 

(ETDRS) severity scale grade, DMO or laser photocoagulation) was significantly reduced 

by 34% by fenofibrate allocation, with results driven by the pre-existence of diabetic 

retinopathy [46].

In the ACCORD Eye Lipid trial (n = 1593), simvastatin therapy was combined with 

fenofibrate 160 mg daily or placebo for a mean of 4 years. Simvastatin with fenofibrate 

group had significantly reduced diabetic retinopathy progression (by ≥3 ETDRS severity 

scale steps based on grading of seven-field stereoscopic fundus photo of all participants or 

need for laser or vitrectomy therapy) by 40% compared with simvastatin with placebo group 

[47]. Participants were also examined by an ophthalmologist or optometrist at baseline and 

at 4 years.

In both the FIELD and the ACCORD Eye Lipid trials, results were consistent regarding 

fenofibrate showing similar magnitude of benefit in diabetic retinopathy which was 

independent of both baseline lipids and changes in traditional lipid classes and without 

benefit to visual acuity [46, 47].

Cultured retinal cell and diabetic animal models support potentially protective mechanisms 

of fibrates being due to a combination of anti-inflammatory effects, suppression of vascular 

endothelial growth factor (VEGF) via modulation of the PPARα–Wnt–β-catenin signalling 

pathway, outer blood–retina barrier (BRB) breakdown, neuroprotection and anti-apoptotic 

effects on retinal microvascular cells [30, 31, 33, 35–39, 48]. Fenofibrate has been shown 

to reverse the adverse effects of hyperglycaemia-induced metabolic memory in endothelial 

cells [7, 8] through a sirtuin (silent mating type information regulation 2 homolog) 1 

(SIRT1)-dependent mechanism [49]. Benefits of the intraocular administration of fibrate 

have been demonstrated [31, 50] but as yet there are no human studies using this route. 

Ocular delivery may increase retinal drug levels, reduce toxic systemic drug levels and 

side effects and enable treatment in those for whom the systemic drug is contraindicated 

(e.g. individuals with end stage renal disease). Based on non-primary endpoint retinal 

outcome data, fenofibrate is approved in 19 (mainly low and low-middle income) countries 

in which intraocular anti-VEGF agents are less-widely available for use. However, it has not 

been approved by major regulators (European Medicines Agency [EMA], Food and Drug 

Administration [FDA]) for type 2 diabetes with diabetic retinopathy.

As yet, there are no completed fibrate trials specifically addressing diabetic retinopathy in 

type 1 or type 2 diabetes, although several trials with primary endpoints related to diabetic 

retinopathy are in progress: the Fenofibrate and Microvascular End-points (FAME-1) Eye 

trial in adults with type 1 diabetes and existent diabetic retinopathy (ETDRS severity scale 

35–53) (results anticipated in 3 years) [51]; the Lowering Events in Non-Proliferative 
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Retinopathy in Scotland (LENS) trial in people with type1 and type 2 diabetes [52, 53]; 

and the Fenofibrate for Prevention of Diabetic Retinopathy Worsening trial in the USA 

[54]. As well as fenofibrate studies, retinopathy-related data related to other more recently 

developed fibrates, such as fenofibric acid and pemafibrate, are merited.

Omega-3 fatty acids—Omega-3 fatty acids, found in fish, nuts, fish oils or purified EPA 

supplements, also lower TGs. There are very limited data relating the effects of fish oils 

or EPA supplements to diabetic retinopathy. Most studies have focused on CVD, as did 

the Prevención con Dieta Mediterránea (PREDIMED) study testing Mediterranean diets 

supplemented with extra virgin olive oil or nuts vs a control diet [55]. In this type 2 diabetes 

trial (n = 3482), 75% of the participants met the dietary long-chain ω-3 polyunsaturated 

fatty acid (LCω3PUFA) recommendation (≥500 mg/day) and over 6 years of follow-up 

there were 69 new-onset STDR cases, with (on adjusted analyses) a 48% reduced risk of 

incident STDR in those meeting vs. not meeting the dietary target. However, these data are 

observational and robust clinical trials using omega-3 fatty acid and EPA supplements with 

detailed primary diabetic retinopathy endpoints are merited.

Statins—HMG-CoA reductase inhibitors (statins) have major primary and secondary 

cardioprotective effects in diabetes [56] but a meta-analysis of 13 trials (n = 91,140; mean 

follow-up of 4 years) revealed that statins can significantly increase the risk of new-onset 

type 2 diabetes (OR 1.09; 95% CI 1.02, 1.17). People with statin-induced new-onset diabetes 

should be screened for diabetic retinopathy, and the overall cardiovascular and death risk/

benefit ratio for most people offered statin therapy remains favourable [57].

Early relatively small statin studies (1–50 participants with diabetes) suggested statin benefit 

for retinopathy, including protection against late-stage diabetic retinopathy complications 

and visual acuity loss [23, 41, 58]. In early statin CVD trials, such as the primary CVD 

prevention Collaborative Atorvastatin Diabetes Study (CARDS) trial in type 2 diabetes 

[59], no diabetic retinopathy benefit was evident [59]. These relatively small trials of short 

duration designed for cardiovascular primary endpoints are not conclusive for a condition 

such as diabetic retinopathy that develops very slowly. Large observational studies, usually 

with more potent statins, do support some statin benefit for diabetic retinopathy but no 

consistent improvement in visual acuity [60–65]. Indeed, several studies support different 

aspects of statin benefit in the development or progression of diabetic retinopathy: the 

Longitudinal Health Insurance Database in Taiwan adults with type 2 diabetes (n = 

37,894) [64]; a Taiwanese population-based cohort (n = 219,359) with type 2 diabetes 

and dyslipidaemia [65]; a large USA health insurance claims database study of adults with 

type 2 diabetes (n = 269,782) [61]; and a Japanese prospective clinical practice study of 

40- to 75-year-old individuals with type 1 and type 2 diabetes (n = 363 and n = 5489, 

respectively) [63]. However, not all observational studies evaluating statins and risk of 

diabetic retinopathy result in positive findings [60].

Potential mechanisms by which statins may reduce retinopathy risk, other than their lipid 

benefits, include anti-inflammatory, antioxidant, anti-platelet, anti-clotting, vasodilatory, 

immunomodulatory, cell-signalling, epigenetic and stem-cell effects [66]. Other lipid-

lowering drugs, such as the fibrates, have similar pleiotropic effects [37].
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Meta-analysis of statin and/or fibrate trials for diabetic retinopathy endpoints

A recent systematic review and meta-analysis evaluated statin and/or fibrate RCTs for 

prevention and progression of diabetic retinopathy using Cochrane guidelines, the PRISMA 

Statement and GRADE approach regarding evidence certainty [67]. Included were four 

fibrate trials, three statin trials and one fibrate plus statin trial, with eight for diabetic 

retinopathy therapy and four for diabetic retinopathy prevention. Without increased adverse 

events in 1309 participants, fibrates were associated with a 45% risk reduction of DMO 

incidence. There were no other positive outcomes. Trial quality was not ranked highly in this 

meta-analysis [68], nor were 13 trials in a separate similar meta-analysis [67].

Potential retinal-specific mechanisms of lipid lowering in diabetic 

retinopathy

As described above, lipid-modifying therapies (in particular fenofibrate) may have some 

protective effects against diabetic retinopathy but existent trials are limited by retinopathy 

not being the main endpoint. Moreover, the connection between the benefits of lipid-

lowering drugs in the retina and the effect of these drugs on traditional blood lipid classes 

is not established, suggesting that non-traditional lipoprotein-related measures, such as 

lipoprotein subclasses, modified lipoproteins and/or retinal-specific effects could be at play.

Cholesterol input into retina

The retina is a highly specialised organ in which lipid levels are tightly regulated 

independently of their systemic levels. Under normal conditions, retinal cholesterol levels 

are controlled by a balance of input and output mechanisms [69]. Cholesterol input in the 

retina includes local biosynthesis [69–75] and uptake from the circulation (Fig. 1). Local 

cholesterol biosynthesis is the primary source of cholesterol in the retina. Most retinal cells 

express the enzymes involved in cholesterol biosynthesis, with the highest levels found in 

Muller cells and photoreceptor inner segments (Fig. 1). Unique to the retina are the BRBs 

separating the neuroretina from the systemic circulation, requiring specialised cholesterol 

transport mechanisms [70, 71]. The inner BRB is comprised of retinal endothelial cells 

(RECs) connected by tight junctions and is virtually impermeable to cholesterol under 

normal conditions (Fig. 1). Retinal pigment epithelium (RPE) cells, also connected by tight 

junctions, make up the outer BRB (Fig. 1). LDL receptors (LDLRs) and scavenger receptors 

class B (SR-B) type 1 and type 3 (CD36) [70, 72, 76–81] expressed on the basal membrane 

of the RPE provide the mechanism for controlled cholesterol-rich lipoprotein particle uptake 

from the circulation [74, 82] through the outer BRB (Fig. 1). Once in the RPE, cholesterol 

is transported through the apical membrane by ATP-binding cassette subfamily A member 

1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1) transporters and 

delivered by lipoproteins to the neural retina [75, 76, 83–86].

Cholesterol output from retina

In a healthy retina, cholesterol input is balanced by cholesterol removal. Cholesterol efflux 

is aided by the ABCA1 and ABCG1 transporters on the RPE cells and endothelial cells, 

which deliver cholesterol to lipoprotein particles in the choroidal or retinal circulation 
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through a process called reverse cholesterol transport [75, 76, 83–86]. In addition to reverse 

cholesterol transport, cholesterol is removed from the retina through metabolism to more 

soluble oxysterols by cytochrome P450s, 27A1 and 46A1 [75, 76, 83–87]. Oxysterols are 

rapidly diffused into the systemic circulation and are delivered to the liver for conversion to 

bile acids. Oxysterols are the activating ligands for liver X receptor (LXR).

Dysregulation of retinal cholesterol in diabetes

LXR downregulation—In diabetes, LXR is downregulated leading to dysregulation of 

retinal cholesterol metabolism and increased proinflammatory signalling. Moreover, there is 

reduced oxysterol production due to a decrease in cytochrome P450 27A1 and cytochrome 

P450 46A1 in the diabetic retina, further reducing LXR activity. Diabetes-induced disruption 

of the LXR signalling and decrease of oxysterol production, result in diminished cholesterol 

removal and increased cholesterol accumulation in the retina [88–90] (Fig. 1). In addition 

to cholesterol dyshomeostasis in the diabetic retina, the breakdown of the outer and inner 

BRBs (Fig. 1) in diabetes further promotes cholesterol accumulation in the retina. Activation 

of LXR in animal models of diabetes restores cholesterol transport, leads to normalisation 

of cholesterol homeostasis and repression of inflammatory genes, such as those coding for 

inducible nitric oxide synthase (iNOS), IL-1β, intercellular adhesion molecule-1 (ICAM-1), 

and C-C motif chemokine ligand 2 (CCL2) in the retina [89], and prevents the formation of 

diabetes-induced acellular capillaries.

Cholesterol crystal formation—Disruption in cholesterol homeostasis and metabolism 

leads to a high cholesterol concentration in the diabetic retina, comparable with the levels 

that have been previously shown to lead to spontaneous formation of cholesterol crystals 

(CCs) in atherosclerotic plaques [91–93]. Accumulation of cholesterol in the diabetic retina 

thus creates a favourable environment for the formation of CCs [94–101] (Fig. 1). Indeed, 

the crystalline structures consistent with CCs (hyperreflective crystalline deposits) were 

recently identified by spectral-domain OCT in the retina and choroid of individuals with 

diabetes [102], age-related macular degeneration [103–105] and Coats disease [106] and are 

associated with diabetic retinopathy progression. The presence of hyperreflective deposits 

has been proposed as a novel prognostic biomarker in diabetic retinopathy [102, 106–

111]. Although cholesterol is likely to be the main component of crystalline structures in 

hyperreflective deposits, a positive identification of these deposits cannot be made based on 

OCT alone. Moreover, CCs are often overlooked in traditional scanning electron microscopy 

and immunohistochemistry as the ethanol used as a dehydrating agent in standard tissue 

preparations can dissolve the CCs, masking their presence and their potential involvement in 

pathogenic mechanisms.

Since CCs are very stable physiologically and are not easily amenable to dissolving in vivo, 

they become a source of chronic inflammation. CCs are recognised by the innate immune 

system as foreign bodies because of their shape, firmness and inability to be dissolved [97, 

112–123]. CCs can activate all three complement pathways (classical [121], lectin [124] and 

alternative [115, 123]) in the extracellular space and can activate intracellular complement 

system [125–128]. Emerging experimental and clinical evidence supports the link between 
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the complement system and diabetic vascular complications, including diabetic retinopathy 

and atherosclerosis [129–154].

Membrane attack complex is the final step in the activation of complement. Increased 

membrane attack complex deposition is found in eyes with diabetic retinopathy but not 

in those without [148] and is believed to be the result of reduced levels of complement 

regulatory proteins and sustained activation of the alternative complement pathway [147]. 

Circulating extracellular vesicles, such as exosomes, activate the complement system via 

the classical pathway and contribute to microvascular damage in diabetic retinopathy [155]. 

Moreover, genetic association studies have linked complement genes to diabetic retinopathy, 

as exemplified by the finding that intronic SNP rs2269067 in the C5 gene is a risk 

factor for PDR in the Chinese Han population [139]. CCs were shown to activate the 

complement factor 5a (C5a) and C5a receptor (C5aR) pathways leading to the upregulation 

of complement receptor 3 (CR3) [121]. CR3 (CD11b/CD18), a β2 integrin, is a highly 

versatile pattern-recognition receptor that activates leucocytes, mediates phagocytosis and 

promotes leucocyte transmigration [156]. CR3 and C5aR link CC to leucocyte activation 

[157]. CC-induced cytokine/chemokine production occurs through interaction of C5a with 

C5aR [157].

Importantly, CCs also induce inflammation via the NOD-like receptor family pyrin domain 

containing 3 (NLRP3) inflammasome, which mediates the formation of activated IL-1β [97, 

158], a key inflammatory mediator in diabetic retinopathy. HDL, the only known element in 

the body that can dissolve CCs [96] is often reduced and/or dysfunctional in diabetes and 

has poor accessibility to deep tissue sites such as the retina. Thus, diabetic individuals are 

particularly at risk for developing CCs.

Potential immune cell-specific mechanisms of lipid lowering in diabetic 

retinopathy

In addition to retinal-specific effects described above, lipid-lowering drugs can affect the 

retina through specific effects on immune cells. Lipid dysregulation can contribute to low-

grade chronic inflammation [159, 160] and VEGF receptor 2 (VEGFR2) activation, resulting 

in increased retinal endothelial permeability and cell injury [161].

Support for the modulation of immune cell behaviour in the prevention of atheromatous 

disease exists; however, for diabetic retinopathy evidence is lacking. Statins have a major 

primary and secondary cardioprotective effect in diabetes [56], yet diabetic individuals 

exhibit impaired plaque regression [162], possibly reflecting differences in statin effects on 

CCs by diabetes status. Clinical studies provide support for the inflammatory hypothesis 

of atherosclerosis [163], including the recent Canakinumab Anti-Inflammatory Thrombosis 

Outcome Study (CANTOS) showing that controlling vascular inflammation independent of 

lipid lowering could lower the rates of recurrent cardiovascular events [164]. However, none 

of these trials had diabetic retinopathy progression as an endpoint and thus assessment of the 

impact of controlling inflammation on diabetic retinopathy is lacking.
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Hypercholesterolaemia increases the levels of circulating CCs [99, 165, 166]. As described 

above, CCs can activate the innate immune system [167] and can trigger the NLRP3 

inflammasome [168]. CCs, when interacting with innate immune receptors, can enhance 

tissue damage and initiate inflammatory responses though secretion of IL-1 and IL-18 [169–

171]. Hypercholesterolaemia is associated with increased proliferation and mobilisation 

of haematopoietic stem cells (HSCs) [172] and can directly regulate the function 

of HSCs through epigenetic reprogramming. This can occur through the upregulation 

or downregulation of different epigenetic enzymes (such as histone demethylases and 

methylases) or the upregulation of the granulocyte-macrophage colony stimulating factor 

(GM-CSF) receptor. GM-CSF receptor upregulation results in the differentiation of HSCs 

towards the monocyte lineage [173, 174] (Fig. 2). Inflammasome activation promotes 

neutrophil recruitment and neutrophil extracellular trap formation (NETosis) (Fig. 2) in 

atherosclerotic plaques, leading to the development of advanced atherosclerotic lesions 

[175]. Neutrophil expansion, activation and mobilisation from the bone marrow is the result 

of hypercholesterolaemia [176, 177]. Yet only in preclinical studies has the impact of 

changes in the bone marrow been examined regarding diabetic retinopathy [178–180].

LXR is a critical modulator of cholesterol metabolism (Figs 2, 3). Its activation is a 

key cellular pathway regulating intracellular cholesterol and plays an important role in 

inflammation and disease pathogenesis [181]. LXR is a major regulator of ABCA1 and 

ABG1 transporter expression (Figs 2, 3). In addition to its role in cholesterol removal, LXR 

has pronounced anti-inflammatory properties through the inhibition of NF-κB signalling 

(Fig. 3). Since diabetes is associated with chronic systemic inflammation, these clinical 

findings support the notion that activating Toll-like receptors (TLRs) can worsen cholesterol 

homeostasis. Thus, bacterial and viral particles that activate TLR3/4 profoundly inhibit 

both the expression of LXR target genes and the ability of macrophages to efflux 

excess cholesterol [182]. The activation of TLRs 3/4 suppresses the activity of LXR on 

corresponding genes in macrophages, thus reducing cholesterol efflux and contributing to 

hypercholesterolaemia-related inflammation [182]. The effect of TLRs occurs through the 

viral response transcription factor interferon regulatory factor 3 (IRF3). Expression and 

activation of IRF3 in macrophages is necessary and sufficient to block the transcriptional 

activity of LXR on the ABCA1 promoter and to inhibit cholesterol efflux from macrophages 

[182]. These findings provide an unexpected mechanism whereby microbial infection may 

contribute to cardiometabolic disease, such as type 2 diabetes, by interference with LXR-

dependent cholesterol metabolism.

Macrophage LXR signalling pathway is an important determinant of vascular damage 

including in the retina [89, 90, 180, 183] as LXR interferes with the action of NF-κβ on the 

promoters of inflammatory genes. LXR thus serves to integrate lipid metabolic and innate 

immune functions in macrophages (Figs 2, 3).

The diabetic bone marrow and vascular reparative dysfunction

Low-level chronic inflammation as seen in type 2 diabetes can alter the homeostatic balance 

of most tissues, including the bone marrow microenvironment [184]. Myeloidosis, defined 

as an increase in the proportion of myeloid-derived leucocytes, is a common feature in 
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diabetic bone marrow and promotes the systemic inflammatory phenotype [185]. Bone 

marrow supernatant fractions from diabetic mice displayed significant increases in the 

levels of secreted proinflammatory proteins, including TNF-α, IL-3 and CCL-2, promoting 

differentiation towards myeloid cells. Bone marrow is also the source of vascular reparative 

cells, which are called myeloid angiogenic cells. In disease states such as diabetes and CVD 

myeloid angiogenic cells are reduced in number and function, thus leading to compromised 

endothelial recovery [186–188].

The molecular defect in these cells results in their compromised function [180, 189–194]. 

Migration of myeloid angiogenic cells is impacted by cell rigidity, which is markedly 

increased in the cells of diabetic individuals (Fig. 3). In diabetic dyslipidaemia, cholesterol 

accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the 

ability of cells to transduce ligand-activated signalling pathways. N,N-dimethyl-3β-hydroxy-

cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol 

efflux arm of the LXR pathway with minimal stimulation of TG synthesis by the liver. 

DMHCA rejuvenates membrane fluidity in myeloid angiogenic cells and reduces the 

proinflammatory microenvironment of the diabetic bone marrow. Using single-cell RNA 

sequencing on HSCs from untreated and DMHCA-treated diabetic mice, it was found 

that DMHCA increased the expression of several LXR target genes, confirming that 

DMHCA directly modulates these primitive cells. An increase in immediate early gene 

expression in HSCs was also observed, as the DMHCA-enhanced formation of membrane 

microdomains amplifies the transduction of intercellular signalling. Together, these findings 

suggest that DMHCA treatment normalises the bone marrow microenvironment. Thus, 

through modulation of LXR and other key signalling pathways, cholesterol homeostasis 

plays a critical role in immune function and in vascular repair. Loss of the function of bone 

marrow-derived myeloid angiogenic cells can lead to inadequate repair of injured retinal 

capillaries, leading to vasodegeneration and development of diabetic retinopathy [195–199]. 

One area of ongoing research involves pharmacological strategies that normalise cholesterol 

synthesis and membrane fluidity of myeloid angiogenic cells to improve diabetic retinopathy 

outcomes.

Summary and future directions

Lipids are implicated in the pathogenesis of diabetic vascular complications, including 

retinopathy; lipid-lowering drugs may be protective, though large robust clinical trials and 

observational studies with detailed eye-related primary endpoints and lipid and lipoprotein-

related measures are still merited. Studies with more recently available lipid-modulating 

drugs and of ocular drug delivery are also of interest. Usually, two or more trials with 

positive results will be required to change clinical practice and gain regulatory approval and, 

importantly, such treatments must then be translated into clinical practice. Recognition of 

effects specific to bone marrow, immune cells and the retina could help design more specific 

treatments. Further understanding of the accumulation of CCs and hyperreflective crystalline 

deposits generation in the diabetic retina as well as circulating cells could result in a novel 

prognostic biomarker and a novel therapeutic target in diabetic retinopathy.
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CC Cholesterol crystal
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C5aR Complement factor 5a receptor
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FIELD Fenofibrate Intervention and Event Lowering in Diabetes
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HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A

HSC Haematopoietic stem cell

IRF3 Interferon regulatory factor 3

LDLR LDL receptor

LENS Lowering Events in Non-Proliferative Retinopathy in Scotland
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LXR Liver X receptor

NETosis Neutrophil extracellular trap formation

NLRP3 NOD-like receptor family pyrin domain containing 3

OCT Ocular coherence tomography

PDR Proliferative diabetic retinopathy

PPARα Peroxisome proliferator-activated receptor alpha

REC Retinal endothelial cell

RPE Retinal pigment endothelium

SR-B Scavenger receptor class b

STDR Sight-threatening diabetic retinopathy

TLR Toll-like receptors

TG Triacylglycerol

VEGF Vascular endothelial growth factor
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Fig. 1. 
Dysregulation of cholesterol metabolism leading to cholesterol accumulation and formation 

of hyperreflective crystalline deposits (CCs) in diabetic retina. Cholesterol plays an 

important role in normal retinal function, and the balance of retinal cholesterol production, 

uptake by RPE cells and elimination is tightly controlled. At the outer BRB, cholesterol 

uptake from circulation by RPE cells through CD36, SR-B and LDLR is normally balanced 

by oxidation to oxysterols, LXR activation and production of ABCA1 and ABCG1, which 

control cholesterol efflux through RPE cells. Reduced production of oxysterols, decreased 

LXR expression and activity and thus decreased expression of ABC cassette cholesterol 

efflux transporters, collectively lead to cholesterol accumulation in the neuroretina. At 

high concentrations, cholesterol has the propensity to crystalise, forming proinflammatory 

and pro-atherogenic CCs. The endothelial cells of the inner BRB are not permeable to 

cholesterol uptake; however, endothelial cells express ABC cassette cholesterol efflux 
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transporters. Inner BRB breakdown in diabetes leads to leaky blood vessels. Coupled with 

decreased expression of ABC transporters, this can lead to accumulation of cholesterol in the 

inner retina. GLC, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; 

IS, photoreceptor inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, 

photoreceptor outer segment. This figure is available as part of a downloadable slideset
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Fig. 2. 
Dysregulation of cholesterol metabolism in diabetes and immune system. In a healthy retina 

(control), oxidation of cholesterol to oxysterols, LXR activation and production of ABCA1 

and ABCG1 maintains cholesterol homeostasis. However, in diabetes, the disruption of 

these processes can lead to hypercholesterolaemia and CC formation, which can activate 

the innate immune system and trigger the NLRP3 inflammasome. CCs, when interacting 

with innate immune receptors, can enhance tissue damage and initiate inflammatory 

responses though secretion of IL-1β and inflammation. This can lead to HSC epigenetic 

reprogramming resulting in the differentiation of HSC towards the monocyte lineage, 

neutrophil activation and NETosis, and macrophage activation and foam cell formation. 

ApoE, apolipoprotein E. This figure is available as part of a downloadable slideset
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Fig. 3. 
Dysregulation of cholesterol metabolism in diabetes in bone marrow-derived cells. In 

control cells, LXR activation leads to increased expression of cholesterol efflux transporters 

ABCA1 and ABCG1, and inhibition of expression of NF-κB-controlled inflammatory 

factors. Inhibition of LXR in diabetes leads to cholesterol accumulation, CC formation and 

increased inflammation. Increased membrane rigidity of reparative cells due to cholesterol 

accumulation further exacerbates diabetes-induced damage. NCoR, nuclear receptor 

corepressor; RE, response element. This figure is available as part of a downloadable 

slideset
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