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ABSTRACT
◥

Ovarian high-grade serous carcinoma (HGSC) prognosis corre-
lates directly with presence of intratumoral lymphocytes. However,
cancer immunotherapy has yet to achieve meaningful survival
benefit in patients with HGSC. Epigenetic silencing of immunos-
timulatory genes is implicated in immune evasion in HGSC and re-
expression of these genes could promote tumor immune clearance.
We discovered that simultaneous inhibition of the histone methyl-
transferases G9A andEZH2 activates the CXCL10–CXCR3 axis and
increases homing of intratumoral effector lymphocytes and natural
killer cells while suppressing tumor-promoting FoxP3þCD4T cells.

The dual G9A/EZH2 inhibitor HKMTI-1–005 induced chromatin
changes that resulted in the transcriptional activation of immunos-
timulatory gene networks, including the re-expression of elements
of the ERV-K endogenous retroviral family. Importantly, treatment
withHKMTI-1–005 improved the survival ofmice bearingTrp53�/�

null ID8 ovarian tumors and resulted in tumor burden reduction.
These results indicate that inhibiting G9A and EZH2 in ovarian
cancer alters the immune microenvironment and reduces tumor
growth and therefore positions dual inhibition of G9A/EZH2 as a
strategy for clinical development.

Introduction
Despite ample evidence that the prognosis of patientswith advanced

ovarian high-grade serous carcinoma (HGSC) is strongly influenced
by the immunemicroenvironment (1), current immunotherapies have
failed to produce a meaningful survival benefit for patients (2). HGSC
cells can evade immune responses by altering their epigenome, and
targeting ovarian cancer epigenetics can reactivate cancer testis anti-
gens (3), induce viral mimicry (4), and alter the tumor immune
microenvironment and immune cell function (5). DNA methylation
and histone deacetylation are two mechanisms that play a role in
cancer immune evasion (6), and, although inhibitors of both DNA
methylation and histone deacetylation are currently used in some
hematologic malignancies, their use in solid malignancies has been
limited due to toxicity and limited efficacy (7). More recently, histone
methylationmediated by bothG9AandEZH2has been identified as an
important pathway that influences the immune system in ovarian

cancer and multiple other malignancies, including multiple myeloma
and hepatocellular carcinoma (8–12).

Increased levels of the chemokines CXCL9, CXCL10, CXCL11, and
CCL5 are all associated with an immune-reactive ovarian cancer
microenvironment and improved patient prognosis (13). CXCL9,
CXCL10, and CXCL11 are IFN-inducible and bind to CXCR3. The
Cancer Genomic Atlas (TCGA) Research Network identified a sub-
group of patients with HGSC with an activated CXCR3/CXCL9–11
pathway (14). Critically, when these chemokines are present at high
concentrations within tumors, patients achieve a longer disease-free
interval and overall survival (15). The primary role of these IFNg-
inducible chemokines is trafficking of activated CD8þ, CD4þ T cells,
and natural killer (NK) cells. In preclinical models of ovarian cancer,
increased expression of CXCL10 can reduce tumor burden and ascites
accumulation (16). CCL5 is also associated with T-cell infiltration and
tumor control in other carcinomas (17). Coukos and colleagues
recently showed that CCL5hiCXCL9hi ovarian tumors are immuno-
reactive and responsive to immune checkpoint blockade, with tumor-
derived CCL5 driving expression of CXCL9 from intratumoral
immune cells, such as antigen-presenting cells, which in turn supports
T-cell engraftment in the tumor (18).We reasoned that pharmacologic
approaches to activate the CXCR3/CXCL9–11 pathway might be of
therapeutic benefit in ovarian cancer.

Using a medium-throughput screening library of epigenetic com-
pounds, we sought to discover epigenetic mechanisms that can
augment immune responses in HGSC. We discovered that dual
inhibition ofG9A andEZH2histone lysinemethyltransferases induces
potent release of lymphocyte chemotactic chemokines, including
CXCL9, CXCL10, CXCL11, and CCL5, confirming these results in
a panel of human cell lines and primary patient samples. We also
showed that the dual G9A/EZH2 inhibitor HKMTI-1–005 (19) pow-
erfully modified accessible chromatin in a syngeneic HGSC model,
accompanied by transcriptional upregulation of immune pathways
and, critically, substantial modulation of the tumor immune micro-
environment. Importantly, we describe how G9A/EZH2 inhibition
generated a significant influx of effector CD8þ T cells, NK cells,
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activated conventional type 1 dendritic cells (cDC1) while depleting
tumors of CD4þ T regulatory cells. We observed a significantly
extended survival of mice treated with HKMTI-1–005, indicating that
G9A/EZH2 inhibition may provide a useful tool to overcome the poor
immune reaction to ovarian cancer in patients.

Materials and Methods
Ethics statements

All in vivo experiments performed in mice were approved by the
Animal Welfare & Ethics Review Body (AWERB) at the University of
Glasgow and Imperial College London. Experiments were performed
under the project license numbers 70/8645 at the Cancer Research UK
Beatson Institute and project licenses 70/7997 and PA780D61A at
Imperial College London. All experiments conformed to UK Home
Office regulations under the Animals (Scientific Procedures) Act 1986,
including Amendment Regulations 2012. Ascites from patients with
ovarian cancer was collected and utilized under the auspices and
ethical approval of the Imperial College Healthcare Tissue Bank (HTA
license 12275, Research Ethics Committee number 17/WA/0161,
Project ID R18060).

In vivo syngeneic mouse model of ovarian cancer and cell lines
We utilized the ID8 syngeneic murine model (20) with bi-allelic

Trp53 deletions that we described previously (21). A total of 5 � 106

Trp53�/� ID8 cells/mouse were injected intraperitoneally in 6-week-
old C57BL/6J female mice. At defined endpoint, ascites, intra-
abdominal tumors (formed in omentum and porta hepatis) and
spleens were collected (Supplementary Fig. S1). When no ascites was
present, peritoneal cells were collected by lavage with 5 mL PBS. For
survival experiments, humane endpoints included weight loss of 20%
or more, ascites equivalent to full term pregnancy, reduced/slow
activity, pale feet, and visible symptoms of distress such as hunching,
piloerection, closed eyes, and isolation from cage mates.

HKMTI-1–005 (patent WO/2013/140148; ref. 19) was synthe-
sized at Imperial College London and converted to HCl salt, which
was used in the biological experiments. It was dissolved in DMSO
for long term storage and reconstituted in 1% Tween/0.9% NaCl
vehicle, just prior to injection, and given as twice daily intraper-
itoneal injections of 20 mg/kg. Mice were randomly assigned to a
2-week treatment with HKMTI-1–005 or vehicle alone (control)
starting on day 21 following intraperitoneal cell inoculation. The
investigators deciding on endpoint were blinded to the treatment
administered.

Kuramochi andOVCAR-3 cells were obtained fromProfessor Sadaf
Ghaem-Maghami (Imperial College London). OVCAR-4 were
obtained from Dr Richard Camalier (NCI Frederick). All human cell
lines were authenticated by 16 locus short tandem repeat profiling
(Eurofins Genomics, January 2019) and tested weekly for mycoplasma
infection (MycoAlert Mycoplasma Detection Kit (Lonza, LT01–318).

Drug library screening
The drug library of epigenetic compounds was provided by Struc-

turalGenomicConsortium(SupplementaryTable S1). 2�104Trp53�/�

ID8 cells/per well were seeded in 364-well black polypropylene, flat-
bottom plates on day �1. On day 0, the drug library was added, along
with 1 ng/mL of mouse IFNg (Thermo Fisher Scientific, #PMC4031).
After 72 hours, supernatant was transferred onto CXCL10 ELISAplates
(R&D Systems DY466) using the JANUS G3 MDT automated work-
station (Perkin Elmer) for downstream analysis (R&D Systems,

DY466). Cell viability was measured by 40,6-diamidino-2-phenylindole
(DAPI) staining.

Gene expression assays
RNA was extracted from cells with the Qiagen RNeasy protocol

(Catalog No. 74004). Quality control and quantification were
performed using the NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific). RNA was aliquoted and stored at �80�C. cDNA
synthesis was performed using high-capacity cDNA Reverse
Transcription Kit from Thermo Fisher Scientific (4368814) and
iTaq/universal probes mastermix (Bio-Rad, 1725131) was used for
single-gene RT-qPCR reactions (Supplementary Table S2). Che-
mokine expression was quantified using RT2 Profiler PCR array for
mouse chemokines/cytokines (Qiagen PAMM-150ZA, 330231)
with data analysis performed using the Qiagen online tool PCR
Array data analysis Web portal (https://www.qiagen.com/gb/resources/
resourcedetail?id¼20762fd2–8d75–4dbe-9f90–0b1bf8a7746b&lang¼en).
The chemokines tested, quality control, and normalization analysis are
found in Supplementary Tables S3 to S5.

Human ascites
After sterile collection, spheroids were captured on a 40 mm

membrane and placed into T75 ultra-low attachment flasks (ULA,
Corning, 3814) and cultured in advanced DMEM/F12 medium
(Life Technologies, 12634010), supplemented with 10% autologous
ascites, 10 mmol/L HEPES, 1� N-2 supplement (Thermo Fisher
Scientific, 17502048), 1� serum-free B-27 supplement (Thermo
Fisher Scientific, 17504044), 100 U/mL penicillin plus 100 mg/mL
streptomycin (penicillin/streptomycin, Thermo Fisher Scientific,
15140–122), and 2 mmol/L L-glutamine (Thermo Fisher Scientific,

25030–081 ). Spheroids were allowed to grow for up to 72 to 96 hours
after which they were dissociated and treated as a monolayer. Cells
were stained for PAX8 and sequenced for TP53 (Illumina Ampliseq)
as detailed in Supplementary Materials and Methods. Patient details
and cell line data are given in Supplementary Table S6.

Flow cytometry
Fresh tumor deposits from the omentum and the porta hepatis of

mice bearing Trp53�/� ID8 tumors were harvested. Tumor digestion
was performed as described previously (22) modified with the use of
collagenase (Sigma, C7657) and dispase (Gibco, 17105041). Tumor
cells (20� 106/mL) were plated in 96-well V-bottomed plates followed
by FcR II/III block [BD Biosciences, 553142, diluted 1:200 in FACS
(0.5%FBS, 2mmol/L EDTA in PBS) buffer]. Antibody details are given
in Supplementary Table S7. Cells were fixed with 2% neutral-buffered
formalin diluted in FACS buffer following addition of Zombie Yellow
fixable viability dye (BioLegend, #423103, 1:200 in PBS).

For intracellular assessment of T-cell activity, 20 � 106/mL tumor
cells were plated in clear untreated U-bottom plates (SLS, 3879) after
tumor digestion. After stimulation (PMA and ionomycin, eBioscience,
00–4970, 2 mL/mL, 1 hour), protein transport inhibitor cocktail
(eBioscience, 00–4980, 2 mL/mL) was added. After 4 hours, cells were
transferred to a V-bottom plate and stained for the membrane
markers, viability dye Zombie Yellow, and fixed followed by intracel-
lular staining using the intracellular staining permeabilization buffer
(BioLegend, 421002). Samples were analyzed on a 3-LASER Cytek
Aurora (Cytek Biosciences) cytometer and the software FlowJo 10.7.1.
Only samples that reached a threshold of 200 events per sample were
included in the quantitative analysis. The geometricmean fluorescence
intensity (MFI) was calculated by subtracting by an average (minus
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FMO) fluorescence value from pooled samples from each individual
test sample.

RNA and ATAC sequencing
Frozen mouse tumors (≤10 mg) were homogenized in a Precellys

homogenizer using ceramic beads at 2,000 � g for two pulses of 30
seconds. RNA was extracted from the lysate with the Qiagen RNeasy
protocol (Catalog No. 74004). RNA with an RNA Integrity number
(RIN) of >7 as measured in an Agilent 2200 TapeStation was used for
downstream-sequencing analysis. Following ribosomal RNA deple-
tion (NEBNext, E6350) from 250 ng total RNA, sequencing libraries
were constructed using the NEBNext Ultra II Directional Library Prep
Kit for Illumina (E7760S). Following QC (Agilent D5000 Screen Tape
System) and quantification [Qubit dsDNA High-Sensitivity Assay Kit
(Thermo Fisher Scientific, Q32854)], samples were sequenced
[Nova6000 SP flow cell (Illumina) 50 bp PE, target 50 million read
pairs per sample].

For the assay of transposase-accessible chromatin using sequencing
(ATAC-seq), the published protocol Omni-ATAC (23) was optimized
for Trp53�/� ID8 tumors. 20 mg tumor deposits were homogenized
with a glass Dounce homogenizer. The lysate was then mixed in an
iodixanol concentration gradient (25%–29%–35% concentration gra-
dient, iodixanol Sigma-Aldrich, D1556) and centrifuged in a swinging
bucket at 4,000� g for 20 minutes. After centrifugation, 20,000 nuclei
per sample were harvested from the nuclear band and treated with
100 nmol/L hyperactive transposase enzyme (Nextera Tagment DNA
enzyme I #15027916) for 30minutes at 37�C, shaking at 400 rpm, in an
Eppendorf Thermomixer comfort incubator. The purified, transposed
DNA was amplified using customized primers as published previous-
ly (24). After quality control (Agilent D5000 Screen Tape System), the
amplified library was sequenced [Nova6000 S1 flow cell (Illumina),
50 bp PE].

Raw-sequencing reads were aligned to mouse genome version
GRCm38.p4 (mm10) using the STAR aligner with default para-
meters (25). Raw counts were generated using the Rsubread pack-
age (26) and differentially expressed genes (DEG)were identified using
the DESeq package (27). All analyses, statistical tests, and plots were
generated in R version 3.3.3 unless specified otherwise. MultiQC was
used to collate data across different programs (28). For functional
annotation of DEGs, we used the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID) online Functional Anno-
tation Tool (29) with access to Gene Ontology (GO; ref. 30), and
KEGG (31) databases. For analysis of endogenous retroviruses (ERV),
a mm10 annotation for mouse endogenous viral elements was
obtained from the gEVE database (http://geve.med.u-tokai.ac.jp).
During alignment, only primary alignments were taken into account,
a method adapted by Haase and colleagues (32). For ATAC-seq
methodology, the MACS2 tool was used to call peaks on all individual
control and treatment samples (33). Immune cell composition was
inferred using seq-ImmuCC (34)

Data availability
All RNA-seq and ATAC-seq data are available in Supplementary

Tables S8 to S11 and via ENA (https://www.ebi.ac.uk/ena/submit/sra/
#home). Primary accession no. PRJEB44851, secondary accession no.
ERP12894.

Statistical analysis
Statistical analyses were performed in GraphPad Prism (v9.0.0). For

mean comparisons between two groups, t test was used for populations
with normal distribution and Mann–Whitney test for nonparametric

distribution. One-wayANOVAwas used for comparison ofmore than
two groups. Matched-pair t test was used to compare mean values for
patient samples. Log-rank test was used to compare differences in
survival. When indicated, ROUT (Q ¼ 1%) method was used to
identify outliers.

Results
Combined G9A/EZH2 inhibition upregulates chemotactic
chemokines in vitro

We initially screened 38 epigenetic drugs forCXCL10 production by
IFNg stimulated Trp53�/� ID8 (21) cells using ELISA. We wished to
identify chromatinmodifying drugs that could enhance IFNg-induced
Cxcl10 transcription. Although no statistically significant increases
were observed in an initial single concentration screen (Fig. 1A), a two-
dose re-screen was performed with 10 drugs that had caused a
numerical increase in mean CXCL10 production and that covered a
wide range of epigenetic targets (Fig. 1B). UNC0642, an inhibitor of
G9A (EHMT2) and G9A-like protein (GLP; ref. 35), significantly
upregulated CXCL10 production compared with IFNg stimulation
alone (mean fold change 16.1 � 7.4 vs. 1.8 � 0.3, P < 0.0001; Fig. 1B
and C), at doses that were not cytotoxic (dose–response curves,
Supplementary Fig. S2).

As G9A can cooperate closely with Enhancer of Zeste homolog 2
(EZH2; ref. 36), we combined UNC0642 with the EZH2 inhibitor
UNC1999, the latter chosen based on prior published data (37) and
drug availability. We also evaluated HKMTI-1–005 (Fig. 2A), the first
described dual G9A/EZH2 inhibitor (19), which, in contrast to other
EZH2 inhibitors, has a peptide substrate competitive mechanism. The
combination of UNC0642 andUNC1999 induced a greater increase of
both Cxcl10 mRNA and CXCL10 protein than either drug alone
(mRNA mean fold change 109.4 � 25.0 vs. 12.3 � 0.67 vs. 12.49 �
3.1, P < 0.0001; protein mean fold change 2.23� 0.07 vs. 1.9� 0.01 vs.
1.4� 0.01, P < 0.0001, Fig. 2B andC). At doses that reduced repressive
histone marks (Supplementary Fig. S3) and that were not significantly
cytotoxic (Supplementary Fig. S4), HKMTI-1–005 induced stronger
upregulation of Cxcl10 than either methyltransferase inhibitor
alone (mean fold change 159.6 � 12.5 vs. 12.3 � 0.67 vs. 12.49 �
3.1, P < 0.0001, Fig. 2B), as well as combination treatment with the
two single inhibitors (mean fold change 159.6� 12.5 vs. 109.4� 25.0,
P ¼ 0.001, Fig. 2B). HKMTI-1–005 treatment also resulted in higher
CXCL10 protein production than the individual inhibitors given alone
(mean fold change 3.1� 0.03 vs. 1.9� 0.01 vs. 1.4� 0.01, P < 0.0001)
and in combination (mean fold change 3.1 � 0.03 vs. 2.2 � 0.1,
P < 0.0001, Fig. 2C).

An 84 chemokine/cytokine gene expression array confirmed that
dual G9A/EZH2 inhibition with HKMTI-1–005 had a potent effect on
chemokine expression in vitro. Specifically, it upregulated Cxcl10
3-fold (P ¼ 0.001), Cxcl9 22-fold (P ¼ 0.0006), and Ccl5 14-fold
(P < 0.0001), compared with IFNg stimulation alone (Fig. 2D). In
contrast, chemokines secreted upon cell death, such as IL1 or IL18,
were not increased (IL1a fold-change 0.43, P¼ 0.34; IL1b fold-change
0.61,P¼ 0.30; and IL18 fold-change 0.02,P< 0.0001). This implies that
the upregulation of the CXCR3-binding chemokines CXCL9,
CXCL10, and CCL5 is not a cell death-associated stress response.
HKMTI-1–005 treatment also upregulated CXCL10 transcription in
established human HGSC cell lines, including OVCAR3 (fold change
4.9, P < 0.0001), OVCAR4 (fold change 3.1, P < 0.0001), and
Kuramochi (fold change 66.9, P < 0.0001), when compared with IFNg
stimulation alone (Fig. 2E). These lines were selected for their resem-
blance to HGSC at phenotypic, genomic, and copy-number level (38).
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Importantly, treatment of ascites-derived primary cells from patients
(three HGSC, one grade 2–3 endometrioid carcinoma) with HKMTI-
1–005 significantly increased CXCL10 (P ¼ 0.028), CXCL11 (P ¼
0.017), and CCL5 (P ¼ 0.027) mRNA levels, compared with IFNg
stimulation alone (Fig. 2F), demonstrating that dual G9A/EZH2
inhibition may have an immunostimulatory effect in the tumor
microenvironment (TME) in patients with ovarian carcinoma.

Dual G9A/EZH2 inhibition alters transcription and chromatin
conformation in vivo

We hypothesized that altered chromatin accessibility induced by
G9A/EZH2 inhibition could explain the changes in gene expression.
To investigate this, we used the ATAC-seq and RNA-seq on tumors

harvested after 14 days of HKMTI-1–005 treatment. ATAC-seq
showed more peaks representing areas of open chromatin in the
HKMTI-1–005-treated samples compared with controls (Fig. 3A),
with most peaks in intergenic regions (58.4%). Approximately 33% of
peaks were intronic and 6.5% were in promoter regions (Fig. 3B).
Peaks were present in genes involved in the activation pathways for
Cxcl9, Cxcl10, and Ccl5, including Stat1, Irf1, NF-kB p105 subunit
(Nfkb1), and inhibitor of NF-kB kinase subunit b (Ikbkb). We found a
statistically significant overlap of 1,106 genes in common between
DEG identified by RNA-seq and those in an euchromatin state
identified by ATAC-seq (Fig. 3C). Among these were the Toll-like
receptor Tlr13 (Log2FC 2.9, FDR ¼ 7.42e�19), the IFN pathway
mediator Stat1 (Log2FC 1.01, FDR¼ 4.1e�03), Cd274, which encodes
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Figure 1.

G9A inhibition upregulates CXCL10 in an ovarian cancermodel.A, 2� 103 Trp53�/� ID8 cells in 384-well plateswere treatedwith the SGC drug library (all drugswere
at a final concentration of 1 mmol/L apart from GSK-J4: 0.2 mmol/L) with 1 ng/mL of murine IFNg . CXCL10 ELISA was performed on day 4. Box and whiskers show all
values obtained from four technical replicates. Mean values were compared with IFNg stimulation alone, using one-way ANOVAwith Dunnett multiple comparisons
test. The results were not statistically significant. B and C, CXCL10 protein fold change following treatment with 10 selected SGC library drugs (1 and 10 mmol/L apart
fromGSK-J4: 0.1 and 0.5 mmol/L).B andC, showdata from separate experiments. Box andwhiskers show all values obtained from four technical replicates. One-way
ANOVAwithDunnettmultiple comparison testwas used to compare allmeanvalues to IFNg alone; statistically nonsignificant results are not shown (���� ,P<0.0001).
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Dual inhibition of G9A/EZH2 upregulates chemotactic chemokines in vitro in mouse and human.A,Chemical structure of HKMTI-1–005.B,Cxcl10mRNA fold change,
normalized toGapdh housekeeping gene, following treatment of Trp53�/� ID8 cellswith IFNg 1 ng/mLwith orwithoutUNC0642 5mmol/L (G9A inhibitor), UNC1999 2
mmol/L (Ezh2 inhibitor), or HKMTI-1–005 6 mmol/L (dual G9A/EZH2 inhibitor) for 72 hours. Mean values across treatments were compared with ordinary one-way
ANOVA with Tukey multiple comparison test. Bars represents mean � SEM, n ¼ 3 biological replicates. Doses for UNC0642 and UNC1999 differed from the initial
screening (Fig. 1) following further optimization. C, CXCL10 protein fold change determined by ELISA following treatment as per A. Mean values across treatments
were compared using one-way ANOVA with Dunnett multiple comparisons test. Bars represents mean � SEM, n ¼ 3 biological replicates. D, Expression of 84
chemokines and cytokines following treatment of Trp53�/� ID8 cells with IFNg 1 ng/mL (left) with or without treatment with HKMTI-1–005 6 mmol/L (right) for
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following treatment of OVCAR3, Kuramochi and OVCAR4 cell lines with IFNg 1 ng/mL or HKMTI-1–005 10 mmol/L plus IFNg 1 ng/mL for 72 hours. DDCT values were
normalized to control ACTB housekeeping gene CT values. Mean values across treatments were compared by ordinary one-way ANOVA with Tukey multiple
comparison test and only comparisons between HKMTI-1–005 10 mmol/L plus IFNg versus IFNg alone are shown. Each bar represents mean� SEM, n¼ 3 biological
replicates. F, CXCL9, CXCL10, CXCL11, and CCL5 expression in four human ascites derived cultures. Three with ovarian HGSC and one with grade 2 to 3 endometrioid
ovarian carcinoma. Each dot represents themean� SEMof three technical replicates for each patient. DCt valueswere normalized toACTB housekeeping gene. Data
represent fold change relative to IFNg . Mean values were compared using paired t tests (���� , P < 0.0001; ��� , P < 0.001; �� , P < 0.01; � , P < 0.05; ns, nonsignificant).
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PD-L1 (Log2FC 1.39, FDR ¼ 8.99e�06), and genes involved in
antiviral response, such as Mx2 (Log2FC 1.86, 2.43e�08) and Oas3
(Log2FC 2.2, FDR ¼ 6.3e�11; Fig. 3C). Using the DAVID functional
annotation tool, we found that the most statistically significant upre-
gulated genes with open chromatin belonged to signatures categorized
as immune system process (GO:0002376, FDR ¼ 6.25e�34), defense
response to virus (GO:0051607, FDR ¼ 1.31e�20), and innate
immune response (GO:0045087, FDR ¼ 1.58e�19; Fig. 3D). Other
significantly upregulated pathways were cellular response to IFNb
(GO:0035458, FDR¼ 7.65e�15) and response to virus (GO:0009615,
FDR ¼ 4.32e�14). More widely, treatment with HKMTI-1–005
significantly altered the transcriptome of tumors in vivo. The most
significantly upregulated biological processes sub-ontology pathway in
the HKMTI-1–005-treated tumors was the immune pathway immune

system process (GO:0002376, FE 7.1, FDR ¼ 7.43e�67), with more
than 10% DEGs overlapping with genes in this pathway (Fig. 3E).
Innate immune response (GO:0045087, FE 5.37, FDR ¼ 9.55e�41)
and defense response to virus (GO:0051607, FE 7.4, FDR¼ 3.12e�30)
were also significantly upregulated (Fig. 3E). Fewer pathways were
downregulated following HKTMI-1–005. Among those were positive
regulation of glucose metabolic process (GO:0010907, FE 13.6,
FDR ¼ 1.82e�05), positive regulation of lipid metabolic process
(GO:0045834, FE 16.6, FDR ¼ 3.21e�05), and negative regulation of
gluconeogenesis (GO:0045721, FE 11.9, FDR ¼ 5.02e�05). Analysis
using the KEGG database also revealed immune pathways being
significantly enriched after treatment, such as antigen processing and
presentation (mmu04612, FE 5.4, FDR¼ 1.11e�10), natural killer cell
mediated cytotoxicity (mmu04650, FE 3.3, FDR ¼ 6.45e�05), and
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ATAC-seq and RNA-seq on murine
omental tumor deposits. A, Number
of ATAC-seq peaks for control
(n ¼ 6) and HKMTI-1–005 samples
(n ¼ 5), before applying filtration cri-
teria. One HKMTI-1–005 sample did
not yield enough sequencing reads
and was removed from analysis. B,
Distribution of ATAC-seq peaks across
the genome. C, Overlap of genes with
ATAC-seq peaks showing increased
chromatin accessibility that were also
differentially expressed (n ¼ 1,106)
by RNA-seq following HKMTI-1–005
treatment in vivo (HKMTI-1–005
n ¼ 7, control n ¼ 7). FC, fold change.
Purple color: Log2FC ≥ 1, gray color:�1
< Log2FC ≤ 1, and blue color: Log2FC ≤
�1. D, Biological processes (BP) sub-
ontology for 1,053 genes from C that
overlapped with gene expression sig-
natures from DAVID online Functional
Annotation Tool. Gene count denotes
the number of genes found to overlap
with genes within the respective sig-
nature and the dot size represents the
percentage of these genes within the
signature. FE, fold enrichment. E andF,
DEG following HKTMI-1–005 classified
by BP and KEGG sub-ontologies,
respectively. Gene count denotes the
number of genes found to overlapwith
genes within the respective signature
and the dot size represents the per-
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nature. G, Volcano plot showing dif-
ferentially expressed ERVs, following
HKMTI treatment (n ¼ 7) versus con-
trol (n ¼ 7). Purple color: Log2FC ≥ 1,
gray color: �1 < Log2FC ≤ 1 and green
color: Log2FC ≤ �1. H, Volcano plot
showing individual DEG following
HKMTI treatment (n ¼ 7) versus con-
trol (n¼ 7) byRNA sequencingwith an
FDR <0.05. Purple color: Log2FC ≥ 1,
gray color: �1 < Log2FC ≤ 1 and green
color: Log2FC ≤ �1. Cellular response
to IFNb (GO:0035458,FDR¼ 7.65e�15)
and response to virus (GO:0009615,
FDR ¼ 4.32e�14).
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cytokine–cytokine receptor interaction (mmu04660, FE 2.6, FDR ¼
2.51e�06; Fig. 3F).

Because we observed an upregulation of the defense response to
virus pathway, we analyzed the differential expression of endogenous
retroviruses (ERV) followingHKMTI-1–005 treatment. These ancient
transposable elements are epigenetically silenced under homeostatic
conditions (39) but can potentiate antitumor immunity if transcrip-
tionally active (4). 51 ERVswere differentially expressed at the 5%FDR
threshold following HKMTI-1–005 treatment, of which 39 were
upregulated (Fig. 3G), including the IAP ERVK elements IAPEY3-
int|LTR/ERVK (log2FC 2.89; FDR ¼ 2.40e�22) and ERVB2 ERVK
(log2FC 2.67; FDR ¼ 2.41e�23). In contrast, almost all of the down-
regulated retrotransposons belonged to the ERV1 class, including
MuRRS4-int|LTR/ERV1 (log2FC �1.92, FDR < 0.001) and
MURVY-int|LTR/ERV1 (log2FC �1.6, FDR < 0.001).

At the individual gene level, a total of 1,146 genes were upregulated
and 733 genes downregulated following HKMTI-1–005 treatment
(Fig. 3H). Among the upregulated genes were Cxcl10 (Log2FC 1.69,
FDR < 0.001), Cxcl11 (Log2FC 1.19, FDR < 0.001), and Ccl5 (Log2FC
1.84, FDR¼ 8.33e�08). Anumber of other immune-stimulatory genes
were also upregulated, including the gene encoding granzyme B
(GzmB; Log2FC 2.74, FDR ¼ 3.49e�09) and Klrk1 (Log2FC 1.15,
FDR ¼ 0.016), which encodes NKG2D, the major NK- and T-cell
receptor for recognition and elimination of tumor cells. Moreover,
Stat2 (Log2FC 1.36, FDR¼ 1.61e�10) and Tlr9 (Log2FC 1.21, FDR¼
5.00e�05), integral parts of type I IFN-mediated responses, were also
upregulated. Other type I IFN systemmediators were upregulated with
treatment, such as Irf7 (Log2FC 2.28, FDR¼ 1.26e�19), Irf9 (Log2FC
0.68, FDR¼ 1.79e�05), and Irf5 (Log2FC 0.41, FDR¼ 0.02), as well as
type I IFN inducible genes including Oasl1 (Log2FC 1.87, 3.61e�19),
Oas2 (Log2FC 1.94, 5.79e�11), and Oas3 (Log2FC 2.22, 6.30e�11),
which are all involved in the antiviral defense gene network (40).
Olfr732 showed the largest reduction (Log2FC -6.13, FDR ¼ 0.038),
although its relation to cancer is unclear. The most statistically
significant reduction occurred in Macrophage Receptor with Collag-
enous Structure Marco (Log2FC -5.12, FDR ¼ 7.57e�24), which
encodes a pattern-recognition receptor of the class A scavenger
receptor family, expressed in tumor-associated macrophages
(Fig. 3G). ATAC-seq confirmed that Marco had reduced chromatin
accessibility (Fig. 3C), indicating HKMTI-1–005 may also act on
tumor-associated macrophages.

Dual G9A/EZH2 inhibition prolongs survival in vivo
We next wanted to understand if modulating chromatin accessi-

bility and stimulating gene expression, most importantly of chemo-
kines associated with T- and NK-cell infiltration, could alter tumor
growth and the immune response in vivo (Fig. 4A and B). HKMTI-1–
005 treatment resulted in a prolongation of median survival (48 days
vs. 54.5 days, P < 0.0001; HR, 0.33; 95% CI, 0.17–0.64; Fig. 4C), a
reduction of tumor weight at the end of treatment (135 mg � 5.2 vs.
108 mg � 5.6, P ¼ 0.001, Fig. 4D) and completely abrogated the
development of ascites in this model (602 mL � 297 mL vs. 0 mL,
P¼ 0.0012, Fig. 4E). There were no toxicity signals observed through-
out treatment and no significant weight difference between treatment
groups (Supplementary Fig. S5).

Dual G9A/EZH2 inhibition alters immune composition in vivo in
tumor and peritoneal cavity

We hypothesized that the transcriptomic changes induced by
HKMTI-1–005 could alter immune cell infiltration in vivo. We thus
examined the effect of 14 days of HKMTI-1–005 treatment using two

separate sites of disease in all analyses (Fig. 4A). Although cell
composition inferred from RNA-seq data did not change significantly
(Supplementary Fig. S6), flow cytometry showed significantly
increased numbers of tumor-infiltrating NK cells (porta hepatis
3.8 � 106 � 0.8 vs. 8.2 � 106 �1.8 cells/g, P ¼ 0.01; omentum
2.2 � 106 � 0.23 vs. 3.6 � 106 � 0.39 cells/g, P ¼ 0.0067, Fig. 5A).
Moreover, the effector CD44þCD62L� CD8þ cytotoxic T-cell popu-
lation was significantly increased in the porta hepatis deposit (37.1%�
11.5% vs. 66.7% � 4.9% effector CD8þ/total CD8þ, P ¼ 0.03) with a
similar, but statistically nonsignificant, trend in the omental deposit
(67.2% � 6.1% vs. 75.0% � 2.1%, P ¼ 0.27). Similarly, the na€�ve
CD44�CD62Lþ CD8þ T-cell population was decreased in the porta
hepatis (14.1% � 4.5% vs. 3.2% � 1.6% naive CD8þ/total CD8þ,
P ¼ 0.03; Fig. 5B–D). In addition, granzyme-Bþ CD8þ cells were
significantly more frequent following treatment (porta hepatis
22.1% � 6.6% vs. 65.7% � 2.7% GZM-BþCD8þ/total CD8þ, P <
0.0001; omentum 32.3 � 5.4% vs. 64.59 � 3.8% GZM-BþCD8þ/
total CD8þ, P¼ 0.0002; Fig. 5E and F), further indicating activation
of effector CD8þ cells. These changes were accompanied by
a decrease in the immunosuppressive FoxP3þ regulatory CD4þ

population, mainly in omentum (1.2 � 106 � 0.16 vs. 0.5�106 �
0.10 cells/g, P ¼ 0.014), with a statistically nonsignificant decrease
in the porta hepatis (2.9 � 106 � 0.92 vs. 1.2 � 106 � 0.15 cells/g,
P ¼ 0.114; Fig. 5G). Expression of CXCR3 was increased on all
lymphoid subsets in both tumor deposits, complementing our
in vitro data (porta hepatis 1,581 � 504.3 vs. 3,899 � 432.3 MFI
on CD8þ cells, P ¼ 0.0049; omentum 2,485 � 204.0 vs. 4,012 �
273.6 MFI on CD8þ cells, P ¼ 0.0005, Fig. 5H and I).

HKMTI-1–005 treatment decreased expression of CD206 on cDC1
(omental tumor 1,456 � 100.5 vs. 925.8 � 113.6 MFI, P ¼ 0.006), a
marker mainly associated with induction of T-cell tolerance (Fig. 5J;
ref. 41). CD206 was also downregulated on macrophages in the
omental deposit (5,220 � 508 vs. 7,620 � 626 MFI, P ¼ 0.01;
Supplementary Fig. S7), further supporting the hypothesis that
G9A/EZH2 inhibition can block steps that lead to immunosuppres-
sion (42). HKMTI-1–005 treatment also resulted in a profound
increase of Ly6Cþ macrophages (porta hepatis 0 � 106 vs. 16.21 �
106 � 2.56 cells/g, P¼ 0.0006; omentum 0.64� 0.38� 106 vs. 6.32�
106� 0.59 cells/g, P¼ 0.0006, Fig. 5K and L). Ly6C is amarker mostly
expressed by precursors of tumor associated macrophages (TAM) and
is thought to be downregulated as these precursors differentiate into
TAMs. IHC staining confirmed similar trends in the omentum with
regards to NK and FoxP3þ cell populations (Supplementary Fig. S8).

The peritoneal cavity is an important site for the transcoelomic
spread of HGSCwithmany patients developing ascites, which is rich in
both tumor and immune cells. G9A/EZH2 blockade increased
the absolute number of peritoneal NK cells (12.8 � 103 � 2.45 vs.
36.9 � 103 � 6.66 cells/mL, P ¼ 0.006), a higher percentage of which
were IFNgþ, indicative of an active antitumor response (27.5% �
7.29 vs. 62.5% � 3.97 IFNgþNK cells/total NK cells, P ¼ 0.001;
Fig. 6A and B). As with the solid tumor deposits, depletion of T
regulatory cells in the peritoneal cavity was observed (2.5 � 103 �
0.55 vs. 0.7� 103 � 0.29 cells/mL, P¼ 0.01) and an increase in Ly6Cþ

macrophages (10.7 � 103 � 3.4 vs. 51.6 � 103 � 7.62 cells/mL,
P ¼ 0.0005; Fig. 6C and D). Furthermore, mirroring our intratumoral
findings, the expression of CXCR3 was significantly increased on all
lymphoid cell subpopulations (1,746 � 318 vs. 6,144 � 460 MFI on
CD8þ cells, P < 0.0001; Fig. 6E and F), suggesting that this response is
driven by the CXCL10 axis.

Finally, we analyzed the spleens of mice following G9A/EZH2
blockade to determine if treatment could potentiate an adaptive
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T-cell response in this important secondary lymphoid organ.
Interestingly, we found that spleens treated with HKMTI-1–005
contained a higher percentage of CD8þ cells containing intra-
cellular IFNg (18.1% � 1.04% vs. 22.1% � 0.9% IFNgþCD8þ/total
CD8þ cells, P ¼ 0.012) and perforin (5.9% � 0.8% vs. 10.2% �
0.9% perforin positive CD8þ/total CD8þ cells, P ¼ 0.004,
Fig. 6G). We also observed a higher percentage of NK cells
containing granzyme-B (43.9% � 4.0% vs. 58.4% � 2.5% GZMB
positive NK/total NK cells, P ¼ 0.007, Fig. 6H). This provided
further evidence that G9A/EZH2 blockade drives an antitumoral
response, not only directly in the tumor deposits but also more
systemically.

Discussion
The drivers of the immune microenvironment in ovarian cancer

remain unclear, although the extent of immune cell infiltration is
strongly prognostic (13). Here we investigated whether modulation of
epigenetic pathways could augment immune cell infiltration in HGSC,
the commonest subtype of ovarian cancer in light of previous data
suggesting that epigenetic mechanisms could underpin immune eva-
sion in ovarian cancer (4, 43).

Using a mouse model that faithfully reproduces HGSC peritoneal
dissemination, established cell lines, and ascites-derived primary cell
cultures, we show that dual blockade of the histone methyltransferases
G9A and EZH2 reprogrammed the immune TME and activated the
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HKMTI-1–005), CD4þ (n¼ 6 vehicle and n¼ 6HKMTI-1–005), CD8þ (n¼ 6 vehicle and n¼ 7HKMTI-1–005), andNK cells (n¼ 7 vehicle and n¼ 8HKMTI-1–005) in the
porta hepatis deposits. Statistical significance was tested by unpaired t-test. I, CXCR3 MFI on CD3þ (n¼ 9 vehicle and n¼ 8 HKMTI-1–005), CD4þ (n¼ 9 vehicle and
n¼ 8HKMTI-1–005), CD8þ (n¼ 8 vehicle and n¼ 8HKMTI-1–005), andNK cells (n¼ 9 vehicle and n¼ 8HKMTI-1–005) in omental deposits. Unpaired t test. J,CD206
MFI on cDC1 dendritic cells (CD11b�MHCIIþCD11cþ) in porta hepatis deposits (n ¼ 4 vehicle and n ¼ 1 HKMTI-1–005, statistics not performed as n < 3) and omental
deposits (n¼6vehicle andn¼5HKMTI-1–005). Statistical significancewas testedbyunpaired t test.K, Ly6Cþmacrophages (CD11bþMHCIIþF4/80þ) in porta hepatis
and omentum deposits with vehicle (both n¼ 7) versus HKMTI-1–005 (n¼ 7 and 8, respectively) treatment. Statistical significance was tested by theMann–Whitney
test. L, Representative flow cytometry plot with pseudocolour heatmap showing Ly6Cþ macrophages from a representative omental deposit from K. cDC2þ cells
were subsequently gated on a CD11cþ (���� , P < 0.0001; ��� , P < 0.001; �� , P <0.01; � , P < 0.05; ns, nonsignificant). Error bars represent SEM.

Spiliopoulou et al.

Mol Cancer Ther; 21(4) April 2022 MOLECULAR CANCER THERAPEUTICS530



A B

C

Vehicle HKMTI-1-005

D

E

NK cells

Tregs

IFNγ + NK cells

CXCR3 - peritoneal fluid

Ly6C+ macrophages 

CD8+ cells  NK cells 

NK1.1

D
X.

5

D
X.

5

NK1.1

CD4+

Fo
xP

3+

Fo
xP

3+

CD4+

F

G H

Vehicle HKMTI-1-005

CXCR3

0

10

20

30

%
C

el
ls

/C
D

8+ IFNγ
Perforin
GZMB

0

20

40

60

80

100

%
C

el
ls

/N
K 

ce
lls

V H V H V H V H V H V H

0

2,000

4,000

6,000

8,000

10,000

M
FI

  

CD3+

CD4+

CD8+

NK 

V H V H V H V H

CD8+ cells

FMO

Vehicle

HKMTI-1-005

Vehicle HKMTI-1-005

0

2

4

6

×1
03

 C
el

ls
/m

L

×1
03

 C
el

ls
/m

L

0

20

40

60

80

100

×1
03

 C
el

ls
/m

L

0

20

40

60

80

%
 C

el
ls

/to
ta

l N
K 

ce
lls

0

20

40

60

80

100

V H V H

V H V H

** **

* ***

**** **** **** ***

*** **

IFNγ
Perforin
GZMB

Natural killers cells

FoxP3 CD4+ cells

Natural killers cells
2.94

17.3
FoxP3 CD4+ cells

1.58

13.3

Figure 6.

Dual G9A/EZH2 inhibition changes peritoneal cavity immune cell composition and chemokinemilieu in the spleen in amouse ovarian cancer model.A, (Left) Density
of NK cells (CD3�NK1.1þDX5þ) in the peritoneal fluidwith vehicle (n¼ 7) versus HKMTI-1–005 (n¼ 8) treatment frommice bearing intraperitoneal Trp53�/� ID8 cells
as per Fig. 4A. Statistical significancewas tested by unpaired t test. (Right) Percentage IFNgþNK cells in peritoneal fluid frommice treatedwith vehicle (n¼6) versus
HKMTI-1–005 (n¼ 7) treatment. Statistical significance was tested by unpaired t test. B, Representative flow cytometry plot from A. C, (Left) Density of regulatory
T cells (CD4þFoxP3þ) in peritoneal fluid frommice treatedwith vehicle (n¼ 7) versus HKMTI-1–005 (n¼ 8) treatment. Statistical significancewas tested by unpaired
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HKMTI-1–005 (n¼ 8) treatment. Statistical significancewas tested by unpaired t test (���� , P <0.0001; ��� , P <0.001; �� , P <0.01; � , P <0.05; ns, nonsignificant). Error
bars represent SEM.
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transcription of immune networks both in vitro and in vivo. Specif-
ically, we identified accumulation of effector cytotoxic lymphocytes
and NK cells, and reductions in immunosuppressive Treg CD4þ cells.
These changes were accompanied by a small but significant prolonga-
tion of survival in vivo. Furthermore, treatment also reduced the
expression of the suppressive receptor CD206 on dendritic cells and
macrophages, and blocked monocyte-to-macrophage differentiation
in both the TME and peritoneal cavity. TAMs derive from the large
population of CCR2highLy6Cþ inflammatory monocytes that con-
stantly contributes to the pool, and Ly6C expression gradually reduces
as TAMs differentiate within tumors (44). HKMT-1–005 treatment
increased the abundance of Ly6Cþ macrophages, suggesting that this
epigenetic modifier may impede the differentiation of the monocyte
precursor pool into fully differentiated TAMs.

The preclinical results presented here provide evidence that dual
inhibition of G9A and EZH2 induces more robust chemokine
induction than blockade of either methyltransferase alone. Recently,
the co-dependence of EZH2 and G9A was established by Mozzetta
and colleagues (36) and this has led to efforts to discover pharma-
cologic inhibitors that target both enzymes simultaneously, with
HKMTI-1–005 being the described first (19). Curry and colleagues
showed that treatment of the breast cancer cell line MDA-MB-231
with HKMTI-1–005 induced transcription of SPINK1, which did
not occur when EZH2 or G9A were individually knocked down (19).
The interplay between EZH2 and G9A in regulating CXCL10
transcription has also recently been observed in idiopathic pulmo-
nary fibrosis by Coward and colleagues (45), further supporting our
findings.

This work has generated interesting questions with regards to
mechanism of action of G9A/EZH2 blockade that will need further
investigation. First, our transcriptional and chromatin accessibility
analyses were based on whole-tumor sequencing and therefore do not
identify the cell type subjected to transcriptional modifications by
HKMTI-1–005 treatment. Single-cell sequencing may help to delin-
eate whether HKMI-1–005 acts primarily on tumor or immune cells
in vivo. Second, the contribution of ERV-K retroelements to the
immune responses following HKMTI-1–005 treatment warrants fur-
ther exploration. Recent evidence suggests that ERVs can potentiate
antitumor immunity when they are transcriptionally active (4, 46, 47)
and that activation of evolutionary young elements is associated with
innate immune responses (48). ERVK, an evolutionary young element,
was activated following treatment with HKMTI-1–005 and, interest-
ingly, antibodies against ERVK have been detected in the serum of
patients with ovarian cancer (49). Similarly, our team has previously
shown that expression of ERVK elements correlate with a transcrip-
tome indicative of strong immune cell infiltration in TCGA ovarian
carcinoma datasets (50) and that epigenetic manipulation of ERV
expression by DNA methyltransferase inhibition can result in aug-
mented immune cell killing of tumor cells in vitro. Recently, Steiner
and colleagues mapped human ERVs at a locus-specific resolution,
creating the platform whereby ERVs and their relation to immune
response can be further explored in greater granularity (51). The
downregulation of the macrophage receptor MARCO following
HKMTI-1–005 treatment is also an intriguing finding; inhibiting
MARCO reprogrammes macrophages to acquire an antitumor phe-
notype, inhibiting tumor cell growth (52). In the work presented here,
we used a single ovarian cancer mouse model ID8, engineered with
Trp53�/� deletion, which represents the only universal genomic
alteration in HGSC. This model faithfully recreates the intra-
abdominal dissemination of HGSC with widespread peritoneal and
omental deposits and formation of ascites, as commonly observed in

human disease. Moreover, the models that we generated are now in
widespread use and have supported critical studies on the nature of
immune cell composition in the TME (53, 54). However, it will be
important in future work to assess the influence of tumor genotype in
the response to HKMTI-1–005 in light of recent data showing that
BRCA1 deficiency drives inflammation that supports both immuno-
reactivity and immune resistance (55). However, we used a series of
established human ovarian cancer cell lines that are representative of
HGSC as well as primary ascites-derived cultures to reinforce our
findings with the Trp53�/� ID8 model.

Although the primary aim of our study was to investigate epigenetic
regulation of the TME, one critical outstanding question is whether the
increase in survival seen following HKMTI-1–005 treatment is driven
by the changes in immune cell composition. Certainly, the doses
utilized in vitro were noncytotoxic, but detailed evaluation would
require depletion of multiple immune lineages as well as complex
combination experiments that lie beyond the scope of this study.
However, the results that we present support the hypothesis that dual
blockade of G9A/EZH2 histone methyltransferases modulates the
tumor immune microenvironment within the peritoneal cavity, con-
fers a survival benefit in an aggressive murine model of HGSC and
warrants further investigation towards clinical development.
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