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Abstract

Purpose of review.—This review describes the contribution of coagulation factor XII (FXII) in 

sterile inflammation and wound healing with a focus on recently identified roles for zymogen FXII 

in neutrophil functions.

Recent findings.—Recent studies have identified an important role for FXII in neutrophil 

trafficking. In particular, following neutrophil activation, autocrine FXII signals through its 

receptor urokinase plasminogen activator receptor (uPAR) on the neutrophil surface to upregulate 

neutrophil functions. The sum of these activities leads to neutrophil adhesion, chemotaxis, and 

neutrophil extracellular (NET) formation. Downregulating FXII-mediated signaling in neutrophils 

is associated with improved wound healing.

Summary.—These recent findings add to our understanding of the sophisticated role of FXII in 
vivo and create new avenues of research for the treatment of chronic inflammatory diseases.
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INTRODUCTION

Factor XII (FXII) is the zymogen of serine protease, factor XIIa (FXIIa). FXII enzymatic 

activities are well-established and FXIIa inhibition has emerged as a potential target to 

prevent thrombosis without increasing bleeding risk [1–5]. In contrast, few zymogen FXII-

initiated functions have been appreciated. Older reports indicate that FXII deficiency is 

associated with decreased migration of inflammatory cells into skin windows [6]. In human 

plasma, FXII and FXIIa assemble on the surface of neutrophils [7] and induce neutrophil 

aggregation [8]. In the central nervous system, FXII through urokinase plasminogen 

activator receptor (uPAR), induces a cytokine shift in dendritic cells contributing to 

neuroinflammation [9]. In acute respiratory distress syndrome, increased levels of FXII 

modulate the production and release of proinflammatory cytokines in the lung and correlate 
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with clinical outcome [10]. These FXII functions occur independently of plasma kallikrein 

and support that FXII directly engages in cellular proinflammatory responses [10]. In 

contrast to other components of the coagulation system, FXII has two epidermal growth 

factor domains and has mitogenic activity in endothelial and smooth muscle cells [11,12]. 

These combined data indicate that zymogen FXII influences cell biology independent of its 

protease function.

Here, we review the role of FXII in neutrophil trafficking at sites of sterile inflammation. 

We will focus on its contribution to wound healing and potential therapeutic applications in 

chronic inflammatory disease states.

FXII DEFICIENCY FACILITATES WOUND REPAIR

We recently reported our findings examining the role of FXII in neutrophil proinflammatory 

responses. We found that FXII deficient (F12−/−) mice exhibit significantly faster wound 

closure rates compared to wild type (WT) mice [13]. Histologically, the re-epithelialization 

rate was significantly greater in F12−/− wounds compared to WT wounds. In regards to 

the composition of wounds, immunofluorescence studies indicated a substantial decrease in 

neutrophils with decreased neutrophil elastase and reduced citrullinated histone H3, a NET 

marker, compared to WT wounds.[14] Although bradykinin (BK) is considered the major 

inflammatory mediator of contact system activation and can directly influence leukocyte 

function[15,16], we did not observe decreased neutrophil recruitment in skin wounds when 

we examined bradykinin B2 receptor-deleted (Bdkrb2−/−) mice and Bdkrb2−/− mice treated 

with a bradykinin B1 receptor antagonist, R715. These combined data indicated that reduced 

neutrophil recruitment in FXII deficient states had a beneficial effect on wound healing and 

this finding was independent of reduced bradykinin formation.

LOCAL FXII PRODUCTION IN NEUTROPHILS

An increased presence of contact system components including FXII, was recently 

demonstrated in bronchoalveolar lavage fluid from ARDS patients. Although loss of 

vascular integrity and dissemination of plasma proteins can in part explain these findings, 

the possibility of local intrapulmonary FXII production was raised [10]. The authors also 

refer to unpublished findings of intrapulmonary FXII production in patients with chronic 

lung pathologies such as idiopathic pulmonary fibrosis [10]. Similarly, in order to determine 

whether plasma-derived FXII directly contributes to leukocyte function, we targeted FXII 

production in the liver by F12 siRNA [17]. We found that F12 siRNA significantly reduced 

FXII coagulant activity to < 5% within 24 h. However, unlike F12−/− mice, F12 siRNA-

treated mice did not exhibit significant reduction in neutrophil recruitment into skin wounds 

[14]. Infusion of FXII into F12−/− mice such that the plasma FXII concentration was made 

physiologic, did not correct cell migration into the peritoneum after thioglycolate-induced 

peritonitis [14]. These studies indicated that decreased neutrophil migration in F12−/− mice 

is not dependent on plasma FXII. Gene sequencing confirmed the presence of FXII cDNA 

in murine and human neutrophils while confocal immunofluorescence studies provided 

evidence that following neutrophil activation, FXII translocates from the intracellular 

compartment to the neutrophil surface [13].
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THE FXII-uPAR INTERACTION IN NEUTROPHILS

The presence of FXII in neutrophils prompted investigations to determine its role in 

neutrophil functions. One would expect that FXII is secreted from these cells. Indeed, we 

confirmed that following neutrophil activation by fMLP, FXII content decreased in the cell 

fraction and increased FXII was detected in the supernatant over time [13]. It was previously 

shown that neutrophils provide a circulating platform for components of the contact-phase 

system [7]. Therefore, we examined if secreted FXII remained bound on the neutrophil 

surface. In search of putative FXII receptors, we focused on uPAR given prior studies that 

uPAR is functionally important for leukocyte activities [18–22] and also serves as a receptor 

for FXII on endothelial cells [12]. Co-immunoprecipitation studies showed that FXII and 

uPAR interact on the neutrophil surface (unpublished data). Surface plasmon resonance 

studies showed that FXII bound to uPAR in a concentration-dependent manner. Binding 

kinetics showed a high-affinity interaction with kon (association rate constant) of 2.03 ± 0.85 

105 M−1 s−1, koff (dissociation rate constant) of 5.02 ± 2.82 10−3 s−1, and KD (equilibrium 

dissociation constant) of 37.1 ± 29.4 nM [14].

THE FXII-uPAR-pAkt2 SIGNALING AXIS

We sought to determine if the physiologic interaction between FXII and uPAR results in 

cell signaling. In neutrophils, the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade 

is involved in adhesion, migration, degranulation and superoxide production [23]. In human 

and mouse neutrophils, only Akt1 and Akt2 are expressed but Akt1 has no defined role 

[23,24]. In contrast, Akt2 is the only isoform that translocates to the leading edge of 

neutrophils where it regulates key functions [23,24]. Akt2 KO mice have reduced neutrophil 

chemotaxis and impaired superoxide production in response to fMLP, C5a, and phorbol-12-

myristate-13-acetate (PMA) [24]. Therefore, we examined if FXII and uPAR preferentially 

activate Akt2 by promoting Akt2 phosphorylation at Ser474. In WT cells, pAkt2S474 was 

substantially increased in response to fMLP and FXII/Zn2+ [14]. In F12−/− neutrophils, both 

fMLP and FXII/Zn2+ promoted pAkt2S474. FXII-induced pAkt2S474 proceeded through 

uPAR since Plaur−/− neutrophils did not exhibit Akt2S474 phosphorylation in response to 

FXII/Zn2+ while this was partly preserved with fMLP [14]. These data showed that in 

neutrophils, the FXII-uPAR interaction induced Akt2 phosphorylation.

During these signaling studies, FXII remained a single chain (~ 78kDa) on reduced 

SDS-PAGE, suggesting that FXII did not auto-activate to FXIIa (two-chained) during its 

incubation with neutrophils. However, it was recently shown that single chain FXII exhibits 

weak proteolytic activity [25]. In order to conclusively determine if the effect of FXII 

on neutrophils is a zymogen property or an enzymatic activity we generated a double 

FXII mutant, termed FXII-D, that consists of two mutations: FXII Locarno (FXII-R353P 

mutation) [26] and FXII-S544A (an alanine substituting the active site serine) [25]. FXII-D 

lacks all enzymatic activity and is incapable of contact-activation [14]. Independent of its 

inability to generate enzymatic activity, FXII-D was able to promote pAkt2. These studies, 

along with kinetic enzymatic assays, showed that FXII-mediated signaling in neutrophils is a 

zymogen FXII function.
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Given that the plasma concentration of FXII is ~ 450 nM and since FXII action on 

neutrophils relates to its zymogen form, the question arises as to why FXII-uPAR do 

not interact constitutively. Indeed, there are rate-limiting steps that regulate FXII-uPAR 

binding. It is ingrained in our understanding that uPAR is membrane-anchored on the 

surface of neutrophils; one can assume that this association occurs through the entire life 

cycle of neutrophils. However, it was previously shown that in resting neutrophils, uPAR 

molecules are stored in two distinct intracellular compartments: easily mobilizable secretory 

vesicles and specific granules [27]. Stimulation of neutrophils with various agonists results 

in a rapid increase in the expression of uPAR and is accompanied by the translocation 

of increasing amounts of uPAR to the neutrophil plasma membrane [27]. This step-wise 

appearance of FXII receptor binding sites on activated neutrophils can explain in part, why 

the FXII-uPAR interaction is not operating continuously. Another key aspect to consider is 

FXII’s cell-binding ability. In vivo, circulating FXII is not constitutively bound to cells in 

the intravascular compartment; it does so, only when the local free zinc ion concentration 

rises significantly from physiologic plasma levels of ~ 20 nM [28,29] to a micromolar (μM) 

range. The heavy chain of FXII contains four zinc binding sites which are in close proximity 

to its artificial surface- and cell-binding regions [30–37]. The source of extracellular zinc 

was previously shown to derive from activated cells such as platelets and endothelial 

cells [37,38]. Neutrophils themselves contain zinc-sensing receptors and may potentiate 

the mobilization of zinc towards the extracellular compartment during inflammation. To this 

end, surface plasmon resonance studies confirmed that FXII did not interact with uPAR in 

the absence of zinc. In sum, FXII-uPAR complex formation is a tightly regulated process in 
vivo [14].

Since FXII signals in neutrophils, we examined if it regulates cell activities. FXII-mediated 

signaling had not been previously studied in neutrophils. When cells were stimulated with 

fMLP, we found that F12−/− neutrophils had significantly reduced adherence to integrin 

binding glycoproteins fibronectin and fibrinogen. Using a novel microfluidic chamber 

and time lapse microscopy, we determined that FXII is a very potent chemotaxin [14]. 

Dissecting the mechanisms involved downstream of pAkt2, we found that FXII-uPAR 

upregulate the surface expression of αMβ2 integrin, increase intracellular Ca2+mobilization, 

and promote histone citrullination and NET formation [14]. When neutrophils were 

pretreated with LRG20, a uPAR Domain II inhibitory peptide that blocks the FXII-uPAR 

interaction, pAkt2 formation and extracellular DNA release were significantly reduced in 

FXII-stimulated WT neutrophils [14].

In sum, data show that the FXII-uPAR interaction contributes to cell adhesion, chemotaxis, 

and NETosis (Figure 1). uPAR itself is a regulator of integrin activity modulating their 

affinity and avidity [18,19]. In endothelial cells, occupancy of uPAR by FXII promotes 

the formation of uPAR-integrin complexes that subsequently activate intracellular signaling 

pathways (outside-in signaling) [12]. Whether this lateral association between FXII-uPAR 

and αMβ2 integrin directly contributes to neutrophil functions is the focus of on-going 

investigations in our lab. Importantly, what the aforementioned studies support is that the 

FXII-uPAR interaction in neutrophils precedes NET formation. Finding a pathway for NET 

formation through FXII is novel and therapeutically applicable given the current paradigm 
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that their relationship lies solely on contact activation of circulating FXII on the surface of 

preformed NETs [39].

HARNESSING THE FXII-uPAR AXIS IN NEUTROPHILS - THERAPEUTIC 

POTENTIAL

Efficient wound repair requires the coordinated effort of many different cell types. Following 

hemostasis, a healing wound typically goes through phases of inflammation, proliferation 

and remodelling/scar formation [40]. The inflammatory phase, is an important part of the 

wound healing response. Neutrophils are the first inflammatory cells to be recruited to 

the wound site. Their primary function is to prevent infection but their ability to generate 

cytokines and growth factors allows them to do more than simply sterilize wound sites [40]. 

In fact, studies demonstrated that a variety of genes encoding proteins that recruit more 

neutrophils, promote angiogenesis, and stimulate keratinocyte and fibroblast proliferation is 

upregulated in wound-resident neutrophils compared to circulating neutrophils [41].

While neutrophils are an integral part of the inflammatory response, recent evidence 

suggests that timely resolution of inflammation is equally important for wounds to progress 

through subsequent phases of healing [42]. Therefore, continued recruitment, or buildup 

of active neutrophils, can prolong inflammation and contribute to the development of 

chronic wounds. Animal models show that excess neutrophil influx into wound sites impairs 

keratinocyte migration and proliferation [43]. In addition, the persistence of neutrophils in 

wounds leads to unrestricted proteolytic activity mediated by neutrophil granular enzymes 

leading to matrix disruption and proteolysis of growth factors and their receptors [44]. 

Indeed, neutrophil elastase was previously shown to be markedly increased in the exudate 

of non-healing human wounds [45]. Circulating neutrophils from diabetic humans are 

primed to produce NETs [46] and NETosis delayed diabetic wound healing in mice and 

humans [47]. In contrast, high levels of alpha1-antitrypsin, an in vivo neutrophil elastase 

inhibitor, are a biomarker of successful wound healing [44]. Altogether, these data support 

that limiting the activity of neutrophils may be beneficial for the treatment of chronic, 

non-healing wounds.

Our prior studies showed that a) the effect of FXII on neutrophils is a bone marrow-endowed 

function and b) the degree of inflammatory component in wounds is dependent upon 

neutrophil FXII [14]. More recently, we examined the crosstalk between neutrophils and 

keratinocytes in a purified system in vitro. We determined that addition of stimulated WT 

neutrophils to skin epithelial cells (SECs) resulted in significant inhibition of wound closure 

(unpublished data). Addition of stimulated F12−/− neutrophils to adherent SECs, resulted in 

considerably accelerated wound closure compared to WT neutrophils. To confirm that loss 

of FXII-uPAR activity in neutrophils alone accelerates SEC migration, WT neutrophils were 

pre-treated with LRG20, a uPAR Domain II peptide, before they were stimulated with fMLP 

or PMA and added to SECs. We found that SEC migration rate was significantly increased 

in the presence of LRG20-treated neutrophils compared to activated WT neutrophils. These 

studies confirm that a) wound closure is dependent on the activation state of neutrophils; b) 
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downregulation of FXII-mediated signaling in neutrophils, restricts neutrophil activation and 

improves epithelial cell migration.

How can these findings be translated therapeutically? Systemic inhibition of FXII could 

adversely affect endothelial cell proliferation [12], prekallikrein activation [25], and the 

structure of fibrin [48]. Similarly, ubiquitous uPAR inhibition can impair access of other 

ligands and affect fibrinolysis. To circumvent these issues, a potential approach is to 

selectively abrogate the FXII-uPAR interaction specifically on the surface of neutrophils. 

Our on-going studies show that site-specific inhibition of FXII-uPAR binding, can 

effectively curb neutrophil responses while preserving systemic FXII functions and uPAR 

availability to other ligands (unpublished data).

We found that FXII signaling in neutrophils upregulates the surface expression of αMβ2 

integrin, previously shown to be the main receptor for neutrophil adhesion on fibrinogen 

and also responsible for stable heterotypic cell-cell interactions with platelets [49–51]. It 

would be interesting to determine if FXII’s action on neutrophils, and downstream integrin 

surface expression, creates additional binding sites between neutrophils, platelets, and fibrin 

to facilitate thrombus propagation. Recognition of such a function for FXII would be novel 

and complementary to its enzymatic activity.

Overall, targeted abrogation of the FXII-uPAR interaction can be therapeutically relevant 

in disease states where neutrophils contribute to disease. However, one should consider 

the elucidation of tissue-specific neutrophil recruitment patterns. In this context, a recent 

study identified that the neutralization of cathepsin G in mouse models did not affect 

neutrophil extravasation during acute lung inflammation but instead, specifically limited 

atherogenic leukocyte recruitment [52]. Tissue-specific neutrophil recruitment patterns have 

been identified for the kidney, lung and liver [53], and should be taken into consideration 

when designing anti-inflammatory strategies. Similarly, future studies should examine if 

simultaneous silencing of FXII-uPAR and possible lateral partners of their complex, are 

more efficient at overriding redundant neutrophil trafficking cues.

Finally, one cannot avoid addressing the long-awaited question as to physiologic role of 

FXII. Why does it exist and why has it persisted in vivo. Animal studies appear to support 

the notion that FXII deficiency comes with experimentally demonstrated “benefits” only. 

To the consternation of investigators in the field, FXII deficiency is not associated with 

obvious disease that makes it easy to show why investigation on it is important and relevant. 

However, this very fact may make FXII a better target for disease modification. It is also 

worth noting a key point. A systematic assessment of FXII deficient individuals is presently 

lacking. This is primarily due to the fact that these individuals do not constitute a “patient” 

population per se as they do not suffer from an obvious disorder e.g. bleeding tendency. In 

addition, it is inherently more difficult to capture positive phenotypic changes (such as faster 

wound healing) among individuals, than negative traits. A detailed epidemiologic study is 

lacking to conclusively determine beneficial (or not) characteristics in these individuals. 

Unless such study is completed, the role of FXII in physiology cannot be presumed to be 

non-existent. Indeed, FXII is highly conserved among mammals. One would assume this 

is due to its participation in important functions. Prior studies from our group and others 
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show that FXII is a growth factor promoting endothelial cell proliferation and in vitro and 

in vivo angiogenesis [12]. This FXII function is independent of its catalytic and contact 

activation properties. Being part of the kallikrein kinin system (KKS), FXII contributes to 

liberation of bradykinin, a biologic peptide that regulates vessel tone, intravascular nitric 

oxide (NO), prostacyclin (PGI2) and tissue plasminogen activator liberation [54–56]. We 

estimate that FXIIa accounts for ~50% of constitutive plasma bradykinin levels. In fact, a 

gain-in-function mutation in FXII is mechanistically associated with Type III angioedema. 

Given that single-chain FXII has been proposed as an activator of prekallikrein [25], it may 

be an initiator of activation of the KKS independent of contact activation. All these studies 

support that FXII and its various forms contribute to both physiologic and pathologic events.

We believe that our studies on FXII functions in neutrophils, as neutrophils themselves, 

ought to be considered separately in non-sterile vs. sterile inflammatory states. During 

infection(s), neutrophil recruitment constitutes the first line of defense against pathogens. 

As inflammation progresses, DNA associated with NETs functions as a “contact” substrate, 

promptly activating FXII leading to fibrin formation. The fibrin scaffold generated by 

this synergism between the coagulation pathway (FXII and the extrinsic pathway) and 

neutrophils, entraps microbes within microvessels limiting the systemic spread of infection 

while enhancing the clearance of pathogens by activated leukocytes [57,58]. The process 

appears to be more complex in vivo and pathogen-specific. FXII deficiency confers 

protection from Klebsiella pneumoniae sepsis but not from Streptococcus pneumoniae 
sepsis [59]. Therefore, FXII in specific infectious settings, can be viewed as an important 

contributor to innate immune functions.

From a teleological viewpoint, these functions appear to have emerged as part of the host 

immune response to invading pathogens. However, there has been a recent epidemiological 

transition associated with decreased incidence of infections and the development of chronic 

inflammatory diseases. In these scenarios of sterile inflammation, neutrophils have proven to 

damage host tissues, contribute to the development of autoimmunity and lead to a multitude 

of adverse outcomes [47,60–62]. In these settings, the contribution of FXII to neutrophil 

activation may be maladaptive and targeting its activity is therapeutically relevant.

CONCLUSION

Recent studies have identified a novel signaling pathway in neutrophils that involves 

autocrine FXII and its receptor uPAR, that upregulate neutrophil functions. The FXII-

uPAR axis becomes operative after initial cell activation and appears to sustain neutrophil 

primeness and propagates neutrophil pro-inflammatory responses. Targeted abrogation 

of the FXII-uPAR interaction downregulates neutrophil activation, resolves perpetuating 

inflammation and promotes wound healing. Future studies are required to establish its 

therapeutic potential in other disease states driven by excess sterile inflammation.
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Key points

• Recent studies have identified distinct FXII functions in sterile inflammation 

that occur independently on its protease activity.

• Autocrine FXII-uPAR-pAkt2 upregulate neutrophil functions and promote 

neutrophil trafficking at sites of sterile inflammation.

• Continued recruitment, or buildup of active neutrophils, can prolong 

inflammation and contribute to the development of chronic wounds. Targeting 

FXII-mediated signaling in neutrophils improves wound healing potential.

• Selective abrogation of the FXII-uPAR interaction in neutrophils can be 

therapeutically effective in chronic wounds and potentially, in other chronic 

inflammatory disease states.
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Figure 1: Role of FXII in inflammation and wound healing.
Following initial neutrophil activation, autocrine FXII and uPAR interact on the neutrophil 

surface to promote Akt2S474 phosphorylation. Propagation of FXII-mediated neutrophil 

activities leads to 1) surface expression of αMβ2 integrin, 2) increase in intracellular 

calcium (Ca2+), and 3) histone citrullination and extracellular (EC) DNA release. The sum 

of these activities sustains neutrophil proinflammatory responses and contributes to delayed 

wound healing. Neutrophil-derived FXII activities are distinct from plasma FXII functions 

of contact activation on the surface of preformed NETs. Areas of active investigation to 

further delineate the FXII-uPAR interactome are marked as “?”.
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