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Abstract

Astronomy was among the first disciplines to embrace Big Data and use it to characterize spatial 

relationships between stars and galaxies. Today, medicine, in particular pathology, has similar 

needs with regard to characterizing the spatial relationships between cells, with an emphasis on 

understanding the organization of the tumor microenvironment. In this paper, we chronicle the 

emergence of data-intensive science through the development of the Sloan Digital Sky Survey and 

describe how analysis patterns and approaches similarly apply to multiplex immunofluorescence 

(mIF) pathology image exploration. The lessons learned from astronomy are detailed, and the new 

AstroPath platform that capitalizes on these learnings is described. AstroPath is being used to 

generate and display tumor-immune maps that can be used for mIF immuno-oncology biomarker 

development. The development of AstroPath as an open resource for visualizing and analyzing 

large scale spatially-resolved mIF datasets is underway, akin to how publicly-available maps of the 

sky have been used by astronomers and citizen scientists alike. Associated technical, academic, 

and funding considerations, as well as extended future development for inclusion of spatial 

transcriptomics and application of artificial intelligence, are also addressed.
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INTRODUCTION

Throughout history, people have looked to the stars for answers to vital questions. Until 

the 18th century, astrology formed the bridge between Astronomy and Medicine, and the 

study of the motions of celestial bodies were often linked the rhythms of the human body 

or specific organ systems, Figure 1.1 Vestiges of this relationship remain even today, e.g. the 

term ‘lunatic’, which derives from the concept that the moon’s trajectory impacted human 

physiology. There are also a number of exceptional medical astronomers. For example, 

while Nicolas Copernicus is best known for pioneering the heliocentric theory, he was a 

practicing medical doctor. Three centuries later in 1839, John William Draper, MD, took the 

first photograph of the moon.1

DATA-INTENSIVE SCIENCE: THE FOURTH PARADIGM

Both medicine and astronomy have become pure sciences over the last few centuries, and 

the current link between these two disciplines is more tenuous than in earlier centuries. 

However, the relationship is converging again, due to the emergence of Big Data and the 

Fourth paradigm of science. Jim Gray (in collaborating with Szalay) called this the Fourth 

Paradigm of science .2,3 In brief, thousands of years ago, science was largely empirical 

in nature and focused on the description of natural phenomena, e.g., the Chinese star 

charts. Then hundreds of years ago, theoretical science emerged as the Second Paradigm, 

expressing physical laws as mathematical models, abstractions e.g., Kepler’s or Newton’s 

Laws, etc., and was exemplified by the work of Albert Einstein. Advanced computing 

ushered in the Third Paradigm, as it allowed for the computational simulation of complex 

phenomena such as atomic or molecular dynamics. Approximately 20 years ago, the Fourth 

Paradigm of (Big) data-driven science started to emerge. Astronomy has been the flagship 

discipline for this Fourth Paradigm, in its uniform approach to data that transcends scientific 

discipline. Its key pillars include data mining, statistical learning, pattern detection, and 

artificial intelligence.

This shift towards data-intensive science has implications for experimental design and 

associated workflows. The conventional approach has been that data is first acquired, 

then analyzed, and the results are published. Additional confirmatory studies may then 

be performed after publication. In contrast, Big Data-based studies revert this paradigm, 

Figure 2. Here, data is acquired, calibrated and organized, essentially ‘published’ before data 

analysis is performed, correlations are discovered and then confirmatory studies performed. 

Put another way, the raw data is processed or presented, a.k.a. ‘published’ in such a way 

that it becomes fodder for exploration and analysis, and in many instances the hypotheses 

to be explored are often derived from the data itself. Astronomy was a natural leader in 

this space, as the ability to conduct true laboratory experiments is prohibitive, and instead 

passive observations of data are typically required. In this model, scientists are forced to 

become publishers. Data may be organized into a database, which can then be opened up to 

everyone. As such, the scientists serving the data become trusted intermediaries to external 

users, and this often requires lots of specialized expertise in handling and processing raw 

data and organizing it into an accessible database.
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SLOAN DIGITAL SKY SURVEY (SDSS)

Before SDSS was developed, astronomers performed bespoke analyses in their own 

institutions using customized processing algorithms. The vast majority of an astronomers’ 

time was spent generating the data, and in the end, it was often difficult to directly compare 

scientific analyses across laboratories, given the site-to-site variations in data acquisition 

and handling. SDSS I-II was a 16-year effort (1992–2018) that transcended this issue.4,5 

SDSS used a dedicated telescope in New Mexico, which acquired approximately 200 GB 

of images of the sky each night. Raw patches/tiles of sky were processed in an overlapping 

fashion that allowed for correction of various instrumental artifacts as well as facilitated 

stitching of a seamless and accurate map of the sky. The raw image tiles were automatically 

processed and incorporated into a spatial database. It opened to the public in 2001, and 

provided annual updates ever since (SDSS-V has just started). In the end, the SkyServer 

hosted several hundred terabytes of multispectral imaging and spectroscopy data that were 

collected and processed in a uniform fashion.

SDSS transformed astronomy. With high-quality data provided, astronomers were able 

spend the majority of their time on building creative scientific hypotheses via data 

exploration, rather than generating the primary data itself. To date, over 9,000 refereed 

publications and 500,000 citations have been based on SDSS data. The open platform of 

SDSS, the SkyServer, allowed not just astronomers, but citizen scientists to access the 

publicly-served data, leading to important discoveries by non-astronomers including a Dutch 

school teacher and a group of computer gamers.6,7

Importantly, the SkyServer contained a rich and evolving toolset of spatial functions and 

analytics, integrated with a relational database into a collaborative science platform8. 

Its most important feature was its “shrink-wrapped” quality: providing a data set that 

was statistically as uniform as possible, properly calibrated against systematic errors, 

well documented, had information about the lineage and provenance of the data and all 

processing steps, provided deep links to the underlying raw data, and was presented through 

tools which are intuitive and easy to use. Furthermore, the data was stable over extended 

periods, allowing time to build trust with the user community.

THE ASTROPATH PLATFORM

The SkyServer has evolved into the SciServer,8 hosting data from a broad array of 

disciplines through the Institute for Data Intensive Engineering and Sciences (IDIES; 

http://idies.jhu.edu/) at the Johns Hopkins University. Projects are as diverse as studying 

turbulence,9,10 ocean circulation models,11 soil ecology, and digital sociology,12,13 including 

mapping abandoned row houses in Baltimore to help determine which ones should be rebuilt 

rather than torn down to provide more greenspace in neighborhoods. Medical applications 

include supporting genomic datasets14,15 and mapping neural connectomes.16

Most recently, we have begun to apply our experience in hosting and querying spatially-

resolved data to tissue pathology images. The specific use case that initiated this 

collaboration was the desire to quantify multispectral, multiplex immunofluorescence (mIF) 
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images of tumor tissue across large cohorts of patients. The next generation of prognostic 

and predictive biomarkers will capitalize on the spatial arrangements of cells in situ, 

and their distinct co-expression profiles. One particular area of interest is studying tumor 

tissue in the context of immuno-oncology, as the interaction of the immune system with 

tumors has prognostic implications.17–23 Spatial representations of this interplay can also 

be used as biomarkers for immunotherapy.24–26 Emerging platforms that use multiplex 

immunofluorescence (mIF) and spatial transcriptomic approaches have the potential to 

characterize the complexity of the tumor-immune interaction more completely than ever 

before, and it is now possible to label individual cells with 5–50 markers in the case of 

protein labels and regions of interest with hundreds of transcripts in the case of mRNA 

expression profiling.

The long-term goal of the AstroPath effort is to generate spatial maps of tissue using 

these multiple modalities, such that the data generated is both large in amount in the 

tissue covered and high-dimensional in the number of markers mapped. The amount of 

tissue mapped vs. the number of markers is a compromise, and different investigative 

groups and platform developers value this trade-off differently. The key then to multimodal 

integration of tissue imaging is to have a foundational, reference map with a broad and 

deep enough feature vector to be able to cover the whole tissue. mIF with ~5–8 markers 

is a robust method that can be used to serve this purpose, and the resultant mIF maps 

can then form the scaffolding by which other spatial-immune data from other platforms, 

e.g. spatial transcriptomics, or even higher order mIF, etc, can be further contextualized. 

There are continued analogues to astronomical mapping. In fact, the current status of spatial 

transcriptomics (high dimensionality in number of markers tested, but with less resolution 

and smaller area covered) is analogous to how spectroscopic data was layered onto discrete 

object imagery in the SDSS (the MANGA instrument with integral-field spectroscopy). 

Similarly, the Hubble data was very deep but only covered ~45 square degrees of 40,000 

in the whole sky, while the SDSS covered 15,000 square degrees but in much less depth. 

This is also akin to how the higher-plex approaches to mIF –such as tissue mass cytometry 

imaging with ~40–50 markers – may be achieved, yet are currently accompanied by the 

trade off of less surface area covered.

There are many additional direct comparisons between mIF tissue imaging and where 

the astronomy field was a few decades ago, such as the need to scale and organize 

multicolor photometric data, acquire and segment images, optimize signal to noise ratios 

for low-level signal detection, obtain robust measurements of marker expression intensity, 

and perform spatial statistics, Figure 3. To begin to address these challenges, we developed 

a mIF workflow that included standards for staining, image acquisition and processing, 

segmentation and associated phenotyping of cells, controlling for batch effects, and data 

handling, Figure 4. Importantly, rather than imaging singular high-power fields (HPFs) on a 

slide, we adopted the approach used by SDSS, whereby overlapping HPF image tiles were 

acquired across the whole slide, Figure 5. The image tiles overlapped the neighboring tiles 

by 20% surface area, facilitating correction of inherent, residual lens-distortions, flat-fielding 

of microscope optics and seamless stitching of whole slide images and an a priori selection 

of a statistically fair subset of the image pixels for further analyses. The end result was 

Szalay and Taube Page 4

Clin Cancer Res. Author manuscript; available in PMC 2023 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly accurate tumor-immune maps with single cell resolution, organized in a relational 

database that could be queried similar to the SkyServer.

We used the tumor-immune maps and developed an approach for reducing whole-slide 

imagery to an actionable, biomarker score for predicting response and long-term outcomes 

following anti-PD-1-based therapy for patients with melanoma.27 Key features measured 

as a part of this score included the intensity of PD-1 expression, the identification of 

rare cell types such as CD8+FoxP3+cells and tumor or CD163+ cells that were PD-L1 

negative. This required the accurate quantification of PD-1 and PD-L1 intensity in situ, 

which was achieved in the AstroPath database with corrections for illumination variation 

and a standardized approach to batch-to-batch correction. The unbiased acquisition of the 

whole slide in a tiled fashion also allowed for testing various slide-sampling strategies in 

a rational, user-independent manner. We showed that the predictive value for detecting the 

rare CD8+FoxP3+ population was improved when ~10–30% of the slide with the highest 

CD8 densities was sampled. Such comparisons had not previously been performed for mIF 

assays and are important for biomarker optimization and standardization prior to clinical 

implementation.

We are now expanding the number of pre- and on-treatment tumor types mapped using 

the AstroPath platform, and currently have over half a billion individual cells spatially 

mapped across the tumor microenvironment (TME) in the database. Our long-term goal 

is to build the pathology equivalent of the SkyServer, including an interactive AstroPath 

browser with a navigation interface that can zoom seamlessly from whole-slide images of 

tumor tissue to individual HPFs and individual cells with a few mouse-clicks. The viewer 

will flexibly display boundary overlays and centroids of individual cells, save them in 

an online “lab-notebook” and export lists of marked regions. The tool will also enable 

pathologists to create custom annotations and store them in their own part of the database. 

Most of the necessary computations will be performed server-side, thus requiring only a 

standard light-weight web browser for the end-user conducting the analysis. We plan to build 

custom aggregation functions that can feed into various higher-level (R/Python) statistical 

packages, running in Jupyter notebooks. These tools will include distribution functions or 

characterizations of the intercellular distances of various subsets and will be both staining 

panel and platform agnostic, i.e., can host data from MIBI, Codex, Vectra, and other such 

technologies including those focused on spatial transcriptomics. This will make scalable 

analyses involving tens to hundreds of millions of cells as easy as working with a small 

Excel spreadsheet today.

LESSONS LEARNED

There are several lessons from astronomy, learned the hard way, which were laid out in a 

systematic fashion before development of the AstroPath platform began. The main design 

principles are listed below:

a. Scalability is hard. Maximal automation and parallelism should be built in from 

the very beginning. Data should flow seamlessly from instrument to database, 

with minimal (possibly with zero) human intervention. This requires a well-
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defined and strict protocol on file formats, naming conventions and directory 

structure, laid out in a short reference document. Human effort can then more 

efficiently used for executive oversight.

b. The whole pipeline should be designed with extreme hardware parallelism in 

mind, so that in the future each slide can be processed on separate servers, if 

needed, up to the final database.

c. Having the final data in a well-designed relational database makes data 

consistency and reproducibility much easier. Self-documenting, consistent 

metadata must be fully part of the database from the beginning.

d. With large enough data sets statistical errors become small, and systematic 

errors dominate. These can only be discovered with a conscious systematic 

effort, using redundant observations. Statistical reproducibility requires a well-

thought out quality assurance and calibration process. Error estimates must be 

derived objectively, internally, from multiple independent observations of the 

same physical pixels.

e. Everything is spatial. All geometric information, positions, and shapes should 

be captured and calibrated carefully, since in the studies of the TME, relative 

proximities are extremely important. Various spatial operations on points and 

polygons (buffer, intersection, union, search, distance) should be implemented 

inside the database for speed. It should be possible to locate objects (cells) within 

arbitrary geometric regions. A flexible visual browser capable of displaying all 

this information from the whole slide to the level of the individual cells is 

needed.

f. Cloud computing has a lot of appeal, but is best adopted at specific project 

stages in an elastic fashion. Long-term cloud-based storage is currently 7–10x 

more expensive than keeping servers locally. It is also 3x more expensive 

than locally-kept (and fully utilized) AI-computing infrastructure, but for sparse 

use the Cloud is already cheaper. The clear advantage to Cloud computing is 

apparent when large, transient computing capability is needed. In the long run, 

once Cloud pricing changes, this will inevitably become part of our computing 

infrastructure. Nonetheless, we’ll always need significant storage immediately 

next to the microscopes to capture the immediate data.

REMAINING CHALLENGES

There are also a number of differences between characterizing astronomical objects and 

those of the tumor microenvironment, many of which also represent the ongoing challenges 

with multiplex immunofluorescence image handling. In SDSS, the vast majority of the data 

was collected using one main telescope, whereby with mIF, there is a large assortment of 

different platforms and reagents in use, and the proliferation of technologies is not expected 

to abate in the near future. Imaging of the sky also requires correction for conditions of the 

atmosphere, including weather and variations in atmosphere thickness. Astronomers have 

had to develop calibrations that allow them to calculate the brightness of the emissions 
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as if there were no atmosphere, while algorithms have yet to be able to correct for pre-

analytic variation in tissue handling practices. Another difference is that in astronomy, 

many pixels are empty sky, with much smaller fraction covered by “useful” fluxes. As 

such, segmentation of images into individual cells (rather than stars or galaxies) is more 

challenging in the densely packed cellular environment of a tumor. These and associated 

challenges are described in detail below.

Technical

We have completed the first proof of principle experiments and mapped out the pipeline 

with AstroPath with regard to ‘manufacturing’ data. We would now like to undergo an 

‘industrial revolution’ where mass production of data is our norm. The genomics community 

have undergone this transition, and pathology is now poised to cross over. We proposed a 

standardized approach for each step in the generation of mIF data, with an eye to modularity 

and parallelism.17 In this model, data will be generated from multiple microscopes running 

simultaneously, and each will have to be calibrated individually to ensure they generate 

equivalent results. While this may be controlled within a single laboratory, numerous 

different platforms with different specifications and output formats are being used across the 

community, which is a major, unsolved challenge. Further, even within a given platform, the 

microscopes themselves and associated reagents are still in development and are changing 

over time. Numerous analytic pipelines are emerging and evolving as well.27–29 For a true 

community archive of mIF images to be developed, such methodology will need to become 

more formalized and consistent across laboratories. In the meantime, best practices for 

reproducible image acquisition and analysis will need to be agreed upon, akin to what has 

been described for chromogenic, in situ hybridization tests, and mIF slide staining.30–32 

Image analysis pipelines that can ingest data from different platforms or which capitalize 

on pre-existing, standardized workflows (such as those for flow cytometry), are also an 

important step towards this goal.29,33,34

As extremely large data sets are collected, statistical noise will decrease, but it is anticipated 

that systematic errors will become more of a concern. Variation in instrument calibration 

is only one of the many possibilities that could fall into this category, and there are 

likely errors that will be experienced that we are not even aware of yet today. Artificial 

Intelligence should be very good at detecting hidden patterns in the data that may be 

correlated with instrumental sources, and alerting users to and even potentially correcting 

for these systematic differences. As datasets grow, Artificial Intelligence will be applied 

to the data sets, and will undoubtedly identify subtle patterns that are of biological 

import. Some exciting developments in this area include those that facilitate ‘interpretable’ 

weakly supervised deep learning.35 These approaches highlight the features that the 

machine learning model uses to make the decision, thus potentially revealing previously 

unappreciated or underappreciated facets of the TME.

Another major hurdle that has yet to be addressed in a meaningful way is the impact of 

pre-analytic variables in large pathology datasets. Pre-analytic variables in tissue collection, 

processing, and storage can impact mIF staining performance. It will be important to define 

parameters such as sample age, and interfering substances such as melanin or anthracotic 
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pigment, which have the potential to impact marker signal acquisition. This has been a 

time-honored challenge in pathology, but is even more important if the goal is to measure 

the intensity of marker fluxes in situ, as opposed to just scoring staining as a binary positive 

vs. negative.27 Once these factors are defined, it may be possible to prospectively collect and 

keep specimens according to the requisite conditions. It would also be advantageous to be 

able to correct for pre-analytic variables in specimens that have already been collected under 

diverse conditions, akin to how the astronomers have addressed variation in atmospheric 

conditions. This will require a sophisticated calibration, as the different degrees of freedom 

in tissue samples are greater, yet it is worth pursuing—such calibrations would ensure that 

mIF studies could be reproducibly conducted across pre-existing archives of formalin-fixed 

paraffin embedded tissues from surgical pathology laboratories from around the world.

Academic and funding considerations

Academia offers a fertile environment for large multidisciplinary and “antedisciplinary”36 

efforts such as AstroPath, which includes experts in Big Data, pathology, immunology, 

oncology, engineering, computer vision, biostatistics, etc. However, the attribution of 

academic credit for such efforts can be challenging using the traditional currency of paper 

publications. The creation of large datasets and associated pipelines to generate them are 

their own area of specialized expertise, yet there are several questions surrounding this 

new publication form – including whether they have to be ‘published’ through traditional 

publishing houses, how to recognize authors of the dataset itself, and whether they need to 

be peer-reviewed. Often when large datasets are published, it is as supplementary materials 

to a more traditional research publication, which may not provide appropriate credit to those 

who generated the foundational dataset. Astronomy has addressed this by partnering with 

a print journal and releasing descriptions yearly about updates to the dataset and providing 

a new link to the latest dataset version in a manuscript format.37 Each year, the authors 

generating the latest version of the dataset are represented on that print publication, which is 

the official academic release of the data, yet independent of any scientific studies that may 

have been conducted on the dataset. The mechanism by which peer-review of such published 

datasets would be conducted remains an open question, as review of each SDSS TB-sized 

data release has not been practicable. One can argue that the transparency, consistency, and 

stability surrounding data releases over the two decades, along with the ~9,000 refereed 

publications to date, indicate the trust the astronomy community has in the SDSS data, and 

provides a reputation-based metric. More than half of these papers are by non-SDSS authors. 

In astronomy, a typical paper costs ~$100,000 in students/post-doc time and computing 

hardware. Thus, 5,000 papers represent close to $500M of research dollars from non-SDSS-

supported resources that have been committed over the last 20 years to explore this dataset, 

representing another relevant metric of its immense impact and associated user confidence.

Funding for generating such datasets deserves specific consideration. The Sloan Foundation 

largely funded SDSS (augmented by National Science Foundation, Department of Energy, 

and NASA), and the continued AstroPath platform development is currently funded near-

completely by private foundations, many of which have connections to entrepreneurial, 

billionaire investors. The phases of a project’s lifetime include its architecture, prototyping, 

implementation, and then sustainability. Start-ups often fail at the transition between 
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prototyping and a fuller implementation. This “Valley of Death” is the critical time when 

a polished product needs to be presented to users/customers to get them to abandon their 

current approach and move over to the new solution. Supporting this key transition after 

a prototype makes it to a beta-version is difficult in the traditional peer-reviewed setting. 

Probably the best hope is in public/private partnerships, where riskiest parts of developing 

a new breakthrough dataset are underwritten by a private foundation, while the longer-term 

operation is supported by a federal grant.

Critical, well calibrated data sets have an increasingly important role for Artificial 

Intelligence. Many of the recent breakthroughs in Deep Learning came from the 

combination of such a unique data set with a disruptive idea.38 Every AI project needs 

large, well labelled training sets containing ground truth data. The ultimate quality of the 

resulting inferences from Deep Learning will reflect upon the quality of the input data. 

As a result, the community will need much bigger and better public data sets which are 

“AI-ready”. We hope that the approach outlined here will help to convince our peers to join 

a wide community-based effort to share well-calibrated, high-quality data through an open 

cancer cell repository, what will support a variety of cross-cutting explorations.
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Figure 1. ‘Astrology Man’ relates the constellations to the human body.
For example, Leo is related to the heart, and Capricorn is related to the knees (Ketham, 

Joannes de, et al. Fasciculus Medicinae. Venetiis: Joannem and Gregorium de Gregoriis, 

fratres, 1500. Historical Collection, Institute of the History of Medicine, The Johns Hopkins 

University; used with permission). The constellations were the first attempt at a spatial index 

on a celestial sphere, illustrating an early understanding of the need for such a reference 

system in the history of medicine.
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Figure 2. 
The time-honored relationship between data acquisition, analysis, and publishing (grey) is 

reversed in the era of Big Data (orange).
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Figure 3. Cells in pathology are similar to stars and galaxies in astronomy.
The astronomy viewer for the SkyServer is shown on the left, and a pathology viewer 

for multispectral, mIF is shown on the right. Similar functionalities in both viewers 

include the ability to assess spectral strength, segment the image into discrete objects, and 

quantify spatial relationships between objects, amongst others. Images courtesy of SDSS 

(the Sloan Digital Sky Survey; www.sdss.org) and Akoya Biosciences, respectively; used 

with permission.
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Figure 4. Multiplex immunofluorescence (mIF) AstroPath pipeline for high-quality, whole slide 
data with single cell resolution.
Each step from staining to batch correction needs to be formalized and standardized to 

ensure the generation of robust, reproducible mIF data. Batch-to-batch corrections may be 

facilitated by running a control slide with each batch, or ideally, with a positive control 

section mounted on the same slide as the patient control specimen. In the future, controlling 

for pre-analytic variables will further contribute to the reproducibility of results. Specifically, 

pre-analytic variation may be mitigated by standardizing specimen handling procedures such 

as establishing maximum cold ischemia time, uniform fixation conditions for tissue, etc. 

It may also be possible to algorithmically correct for pre-analytic variation during image 

processing, using sophisticated computational approaches, allowing for specimens that were 

not handled uniformly to also be analyzed with robust results.
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Figure 5. Image tiles of whole slides stained with mIF were acquired using the approach used in 
SDSS.
Each blue square represents a single HPF image tile. It can take over 1000 HPFs to 

comprehensively tile the TME on a slide. When stained with ~5–8 mIF markers and imaged 

in this fashion, each tumor required approximately 300 GB of disk space and benefited 

from specific data organization and handling considerations learned from astronomy.27 The 

resultant mIF maps can be used for biomarker discovery independently, and/or they can also 

be used to contextualize additional spatial-immune data from other platforms such as spatial 

transcriptomics or higher-plex mIF of ~40–50 markers, since these other modalities typically 

image on the order of 1–5% of the tumor surface area shown here in this example.
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