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Abstract

The glycoprotein Ib–IX (GPIb-IX) complex mediates initial platelet adhesion to von Willebrand 

factor (VWF) immobilized on subendothelial matrix and endothelial surfaces, and transmits 

VWF binding-induced signals to stimulate platelet activation. GPIb-IX also functions as part 

of a mechanosensor to convert mechanical force received via VWF binding into intracellular 

signals, thereby greatly enhancing platelet activation. Thrombin binding to GPIb-IX initiates 

GPIb-IX signaling cooperatively with protease-activated receptors to synergistically stimulate 

the platelet response to low dose thrombin. GPIb-IX signaling may also occur following 

the binding of other GPIb-IX ligands such as leukocyte integrin αMβ2 and red cell-derived 

semaphorin 7A, contributing to thrombo-inflammation. GPIb-IX signaling requires the interaction 

between the cytoplasmic domains of GPIb-IX and 14-3-3 protein and is mediated through Src 

family kinases, the Rho family of small GTPases, phosphoinositide 3-kinase-Akt-cGMP-mitogen-

activated protein kinase, and LIM kinase 1 signaling pathways, leading to calcium mobilization, 

integrin activation and granule secretion. This review summarizes the current understanding of 

GPIb-IX signaling.
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Introduction

The heavily glycosylated platelet membrane glycoprotein Ib-IX complex (GPIb-IX), is 

composed of disulfide-linked glycoprotein (GP) Ibα and GPIbβ and the noncovalently 

bound GPIX.1, 2 This complex is also noncovalently associated with GPV, a negative 
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regulator of GPIb-IX function.3, 4 Since the discovery that reduced expression of a major 

platelet glycoprotein (later known as GPIb) in Bernard-Soulier syndrome patients was 

responsible for their defective platelet adhesion to the subendothelium,5 it has been well-

established that GPIb-IX is a major and von Willebrand factor (VWF) receptor important 

in platelet adhesion to the blood vessel wall upon vascular injury.6 The GPIb-IX-VWF 

interaction is particularly crucial in platelet adhesion and thrombus formation under high 

shear blood flow (such as in arteries and arterioles),although one should not overlook the 

importance of GPIb-IX in thrombus formation under low shear flow conditions as well.7, 8 

Over the years, accumulating data have demonstrated that GPIb-IX not only mediates 

platelet adhesion, but also signaling leading to filopodia formation, granule secretion and 

importantly the activation of another major adhesion receptor, the integrin αIIbβ3 (GPIIb-

IIIa).9, 10 The cooperative functions of both GPIb-IX and integrin αIIbβ3 are critical for 

stable platelet adhesion under flow, for hemostasis and thrombosis, and for the role of 

platelets in thrombo-inflammatory conditions.11, 12 GPIb-IX is not only a classic receptor 

in which ligand binding elicits signal transduction leading to platelet activation, but it also 

functions as part of a mechanosensor that, through the binding of VWF, converts mechanical 

force into chemical signals.13, 14 This force-enhanced signal transduction enables GPIb-IX 

to sense the levels and patterns of shear force to induce and regulate platelet responses while 

also allowing the shear-independent receptor functions of GPIb-IX to occur in response to 

different types of ligands. Thus GPIb-IX signaling is critical for rapid platelet adhesion and 

activation in flowing blood in response to different types of vascular insults including injury 

and inflammation. Despite its importance, many aspects of the mechanisms and pathways 

of GPIb-IX signaling are still unclear and remain a challenging opportunity for future 

research. This review briefly discusses the current understanding of GPIb-IX-mediated 

signal transduction.

GPIb-IX as a receptor for VWF and VWF-induced GPIb-IX signaling

In normal circulation, high affinity binding between plasma VWF and platelet GPIb-IX 

does not occur because the GPIbα binding site in the A1 domain of VWF is inactive 

or “hidden”.15–17 Upon vessel injury, VWF binds to the exposed subendothelial collagen, 

which induces a conformational change in VWF, revealing the “cryptic” binding site and 

triggering VWF-GPIb interaction.18 This process is facilitated by shear stress and can 

even be directly induced by very high shear force without VWF immobilization on the 

subendothelial matrix.18 VWF binding to GPIb exhibits rapid association and dissociation,19 

and mediates fast and transient platelet adhesion to the blood vessel wall. The VWF binding 

function of GPIb-IX can also be regulated by protein-disulfide-isomerase-induced reduction 

of allosteric disulfide bonds in GPIbα20 and by signals from inside platelets.9, 12, 21 The 

GPIb-IX binding site for VWF is located within the N-terminal 45kDa region of the GPIbα 
extracellular domain containing 7 tandem leucine-rich repeats (LRRs).22 Crystal structure 

analyses suggest a curved half-opened “hand”-like structure in this region of GPIbα with 

the VWF A1 domain contact sites on the concaved “palm” and “thumb”.22, 23 Biophysical 

analyses suggest that the GPIb and VWF A1 domains form a “catch” bond24, 25 (also 

described as a “flex” bond26), which exhibits flow-enhanced adhesion and a pulling force-

prolonged lifetime of the GPIbα bond with the A1 domain of VWF, much like pulling 
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a weight on a hook.27 These characteristics explain why the VWF-GPIb-IX interaction 

is resistant to and even enhanced by shear force, and capable of catching platelets from 

fast flowing blood onto the vessel wall. However, it is important to note that, despite the 

shear-resistant nature of VWF binding to GPIb-IX, GPIb-IX-mediated platelet adhesion to 

VWF is unstable unless immediately followed by activation of the ligand-binding function 

of integrin αIIbβ3, which binds to VWF, fibrinogen or other integrin ligands to mediate 

stable platelet adhesion and spreading.9, 10, 15 This is evidenced by experiments showing that 

in the presence of integrin inhibitors (such as EDTA and RGDS), platelets only transiently 

adhere to VWF (rolling) under flow shear. In the absence of integrin inhibitors, however, 

platelets stably adhere to VWF in a GPIb-IX- and integrin-dependent manner.11, 28 There 

is increasingly strong evidence that VWF binding to GPIb-IX not only mediates initial 

transient platelet adhesion but also transduces signals activating integrin αIIbβ3.12, 29–32 

VWF-induced GPIb-IX signaling also results in platelet shape changes (such as filopodia 

formation33) and secretion of granule contents,31 which likely facilitate stable platelet 

adhesion, platelet activation and thrombus formation.

Through the binding of VWF, mechanical force can induce conformational changes in 

GPIbα. Force-induced conformational changes were observed in two distinct regions of 

the GPIbα extracellular domain. The first is the ligand binding LRR domain, which was 

observed by single-molecule pulling experiments with a biomembrane force probe (BFP) 

and steered molecular dynamics simulations.32, 34 The LRR domain unfolding results in a 

more pronounced and longer-lasting catch bond with the VWF A1 domain,14 which may 

enhance shear resistance of the VWF-GPIb interaction and thus platelet adhesion in the 

presence of high shear flow.

The second force-induced conformational change was observed using optical tweezers13 

and BFP14 in a juxtamembrane region of GPIbα termed as the mechanosensitive or 

mechanosensory domain (MSD).13, 35 The MSD can be unfolded upon the application of 

a pulling force, either through the bound VWF A1 domain or through an antibody bound 

to a site N-terminal to the MSD (Figure 1).13, 14 Importantly, MSD unfolding was highly 

correlated with strong α-type calcium signals, but if the MSD was not unfolded, only weak 

β-type or null calcium signals were observed.14 These findings built upon early studies 

into platelet mechanotransduction via GPIb, which identified calcium signaling as a critical 

intermediary in the platelet signaling cascades36, 37 and provides strong evidence supporting 

the hypothesis that MSD unfolding is the essential step for the mechanotransduction of 

force signals.38 This signaling results in activation of integrin αIIbβ3, converting the integrin 

from a low affinity state into an intermediate affinity state.32 Thus, the MSD is likely part 

of a sensory module required for converting mechanical force applied via the VWF-GPIb 

interaction into intracellular signals, inducing platelet activation and stable platelet adhesion. 

Interestingly, pulling force applied to GPIbα through the binding of the wild-type VWF 

A1 domain induces a strong calcium signal, whereas that with a mutant VWF A1 domain 

associated with type 2 von Willebrand diseases induces a weak calcium response. This 

difference correlates with the formation of a force-resistant catch bond between GPIbα and 

the wild type VWF A1 domain but only a weak slip bond between GPIbα and the mutant 

VWF-A1 domain.14 Furthermore, only a durable force, but not a short transient force, 

induces a strong elevation of intraplatelet calcium.14 These data suggest that GPIbα not only 
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senses the strength and duration of pulling forces, but also differentiates the force and bond 

lifetime patterns.

In addition to pulling force, MSD conformation can be affected by other factors. For 

example, removal of sialic acids leads to the unfolding of the O-glycosylated MSD in the 

absence of force, which is associated with platelet filopodia formation,39 suggesting possible 

alternative ways to transmit signals via the MSD. These data also suggest that glycosylation 

stabilizes the MSD in a folded conformation, making GPIb ready for the force-induced 

unfolding and signal transduction. It remains unclear whether and how ligand binding may 

affect MSD conformation in the absence of force. However, it is clear that the force-induced 

MSD unfolding is not the only mechanism for GPIb to transmit signals. VWF binding 

under static conditions is also capable of inducing GPIb signaling to activate integrin αIIbβ3 

and integrin-dependent stable platelet adhesion and spreading on VWF,40 although this 

signal may not be sufficient to stimulate potent platelet aggregation without shear force. 

Additionally, the binding of other ligands such as thrombin to GPIbα can also transmit 

signals, which appears to be independent of shear force. Thus, GPIb-IX-dependent platelet 

adhesion on immobilized VWF and signal transduction can both occur under no or low shear 

conditions, but are greatly enhanced by high shear force. VWF-induced GPIb-IX signaling 

leading to integrin activation is independent of other platelet receptors,41 although GPIb-IX 

signaling cooperates with other agonist pathways to greatly promote platelet activation. The 

mechanisms of VWF-induced GPIb-IX transmembrane and intracellular signaling are likely 

shared by other GPIb-IX ligands and will be discussed in the following sections.

GPIb-IX as a thrombin receptor and thrombin-induced GPIb-IX signaling.

GPIb-IX has long been identified as a major high affinity thrombin-binding platelet 

membrane protein. The thrombin binding site is located in the C-terminal end of the 45 

kDa N-terminal fragment of GPIbα surrounding 3 sulfated tyrosine residues (Y276DYY), 

near to but distinct from the site of VWF binding.12 GPIb-IX was convincingly shown 

to participate in low dose thrombin-induced platelet activation by multiple approaches.9 

However, there have been controversies regarding whether GPIb serves as merely a docking 

site for thrombin to enhance thrombin cleavage of G protein-coupled protease-activated 

receptors (PARs)42 or if thrombin binding to GPIb-IX can also transmit signals directly into 

the cell to induce platelet activation as a classic receptor.4, 43 More recent data suggest a 

signaling-based cooperativity between GPIb-IX and PARs.44 Thrombin binding to GPIb 

likely induces GPIb-IX signaling, which greatly enhances platelet responses to PARs. 

Conversely, thrombin activation of the PAR signaling pathway is also crucial for inducing 

GPIb-IX-dependent activation of the Rac1-LIMK1 signaling pathway, which is essential 

for GPIb-IX-PAR cooperativity. Thus, at low concentrations of thrombin, both GPIb-IX 

signaling and PAR signaling are required for thrombin to induce platelet aggregation.44 A 

key distinction between thrombin and VWF-mediated GPIb-IX signaling is that thrombin-

induced GPIb-IX signaling fails to elicit calcium elevation without the cooperativity of 

the PAR signaling pathway, whereas VWF induces calcium elevation on its own. The 

cooperativity between GPIb-IX signaling and PAR signaling is likely to be most important 

during thrombus formation in vivo under arterial flow, as thrombin concentrations at the 
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site of limited arterial injury, particularly in the early phase of thrombus formation, are very 

low.44

Other GPIb-IX ligands and their roles in GPIb-IX signaling.

Although the primary ligands for the GPIb-IX receptor are VWF and thrombin, this 

multifunctional receptor also binds to a number of other proteins in the circulation that 

can be grouped into the following three categories. (1) Regulators of GPIb-IX ligand binding 

functions: High molecular weight kininogen (HK) negatively regulates thrombin binding to 

GPIbα and low dose- thrombin-induced platelet activation.45 Coagulation factor XII also 

binds GPIb-IX and partially displaces HK binding. However, only the activated form of 

FXII (FXIIa) has inhibitory effects on thrombin-induced platelet activation, even though 

the catalytic activity of FXIIa is not required.46 Protein-disulfide-isomerase (PDI) binds to 

GPIbα and catalyzes the reduction of disulfide bonds of Cys4-Cys17 and Cys209-Cys248, 

facilitating VWF binding to GPIb-IX, platelet-neutrophil interactions and vascular occlusion 

under thrombo-inflammatory conditions.20 (2) Counter receptors or ligands that facilitate 

GPIb-IX-dependent platelet adhesion to other cells: The GPIb-IX interaction with P-selectin 

was reportedly involved in platelet adhesion to vascular endothelial cells47 whereas GPIb-

IX binding to Mac1 is important in platelet-leukocyte interactions leading to thrombosis 

and inflammation.48 Semaphorin 7A, a newly reported GPIb-IX ligand, also promotes 

neutrophil-platelet interactions particularly during myocardial ischemia-reperfusion injury.49 

(3) Other GPIb-IX ligands facilitating platelet adhesion under high shear: Reelin forms 

a complex with the amyloid precursor protein (APP) and apolipoprotein E receptor 2 

(ApoER2) 50 and these complexes participate in GPIb-IX-dependent platelet activation 

and thrombus formation under high shear.50 Thrombospondin-1 can also mediate platelet 

adhesion under high shear,51 however, the in vivo role of thrombospondin in thrombosis 

requires VWF,52 possibly due to the role of thrombospondin-1 in regulating VWF cleavage 

by ADAMTS13. It is not totally clear whether GPIb-IX signaling plays a role in the 

action of these GPIb-IX binding proteins. However, semaphorin 7A and reelin/APP/ApoER2 

were suggested to stimulate platelet activation and enhance platelet thrombus formation 

under flow in a GPIb-IX-dependent manner.49, 50 Also, Mac1 expressed on leukocyte 

microparticles was suggested to activate platelets via interaction with GPIb.53 These data 

suggest that at least some of these GPIb-IX ligands induce GPIb-IX signaling, leading to 

platelet activation.

Mechanisms and pathways of GPIb-IX signal transduction.

The known binding sites for various GPIb-IX ligands are almost all located in the N-

terminal region of GPIbα. Thus, the binding-initiated signals of these ligands are likely 

to be transmitted through the central stalk of GPIbα to reach the membrane spanning 

region of the GPIb-IX complex, possibly by the following mechanisms individually or in 

combination: (1) allostery by force-induced conformational change; unfolding of the MSD 

and other ectodomain conformational changes caused by force through VWF binding under 

shear is likely to be propagated across the membrane into the cytoplasmic domain of 

GPIb-IX.13, 14 (2) Ligand-binding induced receptor clustering; this possibility is suggested 

by the data that extracellular crosslinking of anti-GPIbα antibodies or induction of GPIb-IX 
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clustering intracellularly caused similar GPIb-IX signaling to activate integrin αIIbβ3.54 (3) 

Force-independent conformational changes induced by ligand binding. The conformational 

changes in the ligand binding sites of GPIbα and the MSD are likely propagated to the 

membrane-spanning complex of GPIbα, GPIbβ and GPIX (Figure 1). This is likely required 

for transmembrane signal transmission, as different monoclonal antibodies recognizing 

epitopes in the extracellular domain of GPIbβ reportedly inhibited or stimulated GPIb-IX 

signaling.55, 56 The cytoplasmic domains of GPIbα and GPIbβ reportedly interact with 

several intracellular proteins (Figure 1), including Filamin A (actin-binding protein),57 

14-3-3 proteins,58 PI3K,59, 60 Src family kinases (SFK),61 TNF receptor-associated factor 

4 (TRAF4)62, 63 and calmodulin.64 Filamin A binding to the cytoplasmic domain of 

GPIbα serves as a major link between GPIb-IX and the actin cytoskeleton underlying the 

membrane (membrane skeleton) and thus functions as an important structural protein in 

shear-resistance and in maintaining membrane integrity and platelet shape.65 The Filamin 

A-GPIb-IX interaction was also suggested to regulate the binding of VWF multimers66 

and shear-dependent GPIb-IX-mediated protein tyrosine phosphorylation.67 Furthermore, 

Filamin A binds to numerous intracellular signaling molecules including tyrosine kinase 

Syk and the small GTPases Cdc42 and RhoA.68 The Syk-Filamin interaction promotes 

ITAM signaling stimulated via GPVI and the C-type lectin-like receptor 2.69 Cdc42 plays a 

key role in GPIb-IX-stimulated filopodia formation,33 and both Cdc42 and RhoA regulate 

GPIb-IX-mediated transendothelial platelet biogenesis.33, 70

14-3-3 in GPIb-IX signaling.

The 14-3-3 proteins are a family of highly conserved dimeric 30 kDa proteins that bind 

to certain phosphorylated-serine containing peptide motifs and regulate phosphorylation-

dependent protein-protein interactions.21 The ζ isoform of 14-3-3 was initially reported 

to bind to GPIb-IX.58 However, subsequent studies showed that GPIb interacts with all 6 

14-3-3 isoforms expressed in platelets.71 Three reported 14-3-3 binding sites in the GPIbα 
cytoplasmic domain are the C-terminal binding site S602IRYSGHpSL610,72 the near C-

terminal binding site L580VAGRRPpSALpS590,60, 73 and the central region R557GpSLP561 

sequence.74, 75 There is also a reported binding site in GPIbβ at Arg164-Pro170.75 All 

binding sites are peptide motifs containing a key phosphorylated serine.

The binding of 14-3-3 to the GPIb-IX cytoplasmic domains plays a role in transmitting 

signals to regulate the extracellular ligand binding function of GPIb-IX. Phosphorylation 

at S166 in the 14-3-3 binding site of GPIbβ by protein kinase A reduces (but does not 

abolish) VWF binding to GPIb-IX.73, 76 Thus, mutating S166 of GPIbβ to alanine in a 

Chinese hamster ovary cell model enhanced VWF binding.72, 76 This enhancement was 

diminished by mutating/deleting the C-terminal 14-3-3 binding site of GPIbα.72, 76 Blocking 

14-3-3 binding to GPIb-IX with a synthetic peptide (MPαC) derived from the GPIbα C-

terminal 14-3-3 binding sequence inhibited ristocetin- and botrocetin-induced VWF binding, 

and also inhibited GPIb-IX-dependent transient platelet adhesion to VWF under shear.72 

Based on these data, a “toggle switch” theory was proposed in which the interaction 

of 14-3-3 with its binding sites in GPIbα alone results in multimeric VWF binding to 

GPIb-IX. However, increased cAMP causes PKA activation-dependent 14-3-3 binding to 

both GPIbα and GPIbβ which negatively regulates VWF binding.9, 72 Interestingly, the 
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central region 14-3-3 binding site as well as the near C-terminal 14-3-3 binding site of 

GPIbα (L580VAGRRPpSALpS590 and R557GpSLP561) overlap or partially overlap with two 

different GPIb-IX sequences necessary for interacting with filamin.73 Deleting the filamin 

binding sites together with all three 14-3-3 binding sites in GPIbα caused enhanced binding 

of VWF multimers (but not A1 domain) to GPIb-IX in the CHO cell expression model,66 

leading to the hypothesis that 14-3-3 may regulate filamin A-GPIb interaction and thus 

the binding of VWF multimers to GPIb-IX.21 A recent study showed that deletion of the 

C-terminal 24 amino acid segment of GPIbα in mouse platelets caused increased platelet 

size but showed no significant effect on GPIb-IX/integrin αIIbβ3-dependent platelet adhesion 

to VWF under flow shear.77 It would be interesting to further investigate whether GPIb-IX-

specific platelet rolling on VWF in the presence of integrin inhibitors are affected by this 

mutation. Also, as the C-terminal 24 amino acid residues of GPIbα partially overlap with 

one of the filamin binding sequences,73 it would be also interesting to know whether this 

mutant also partially affects filamin-GPIbα interaction, and thus platelet size and VWF 

binding function.

The binding of 14-3-3 to the GPIbα cytoplasmic domain is also required for the VWF-

induced GPIb-IX signaling that leads to integrin activation.14, 21, 78 This is supported by 

finding that binding of the VWF A1 domain to platelet GPIb-IX together with a pulling 

force induces calcium elevation, which can be inhibited by MPαC peptide, an inhibitor 

of 14-3-3 binding to GPIbα.14 14-3-3 binding to GPIbα also mediates thrombin-induced 

GPIb-IX signaling (but not thrombin binding) that cooperates with PAR-mediated signals 

to induce platelet activation.44 Two of the 14-3-3 binding sites in GPIbα, one at the C-

terminus and the other near the C-terminus, are both important for VWF/GPIb-IX-mediated 

integrin activation.14, 21, 78, 60, 77 Also, mouse platelets expressing GPIbα with a 6-residue 

deletion at the C-terminal 14-3-3 binding site showed impaired arterial thrombosis in the 

FeCl3-induced thrombosis model79 and impaired platelet-dependent tumor metastasis to the 

lung.79 A recent study using a deletion mutant of GPIbα lacking the C-terminal 24 amino 

acid residues showed it strongly reduced platelet thrombus formation on collagen under 

shear stress.77 The potent inhibitory effects of deletion of the GPIbα 14-3-3 binding sites 

on platelet adhesion and thrombus formation on collagen in a whole blood perfusion system 

combined with the knowledge that platelet adhesion/thrombus formation on the collagen-

rich arterial sub-endothelium is dependent on VWF and GPIb 7 supports the importance 

of the 14-3-3-GPIb-IX interaction in VWF-induced GPIb-IX signaling. It also supports 

the potential role of GPIb-IX signaling in promoting collagen-mediated platelet activation 

as previously suggested.80 However, it remains unclear how 14-3-3 mediates or regulates 

GPIb-IX signaling leading to integrin activation.

The pathway of SFK, Rac1, phosphoinositide 3-kinase (PI3K), Akt, cGMP and mitogen-
activated protein kinases (MAPK) in GPIb-IX signaling.

Besides 14-3-3, SFK provide the most proximal link between GPIb-IX and intracellular 

signaling pathways. SFK Lyn and c-Src are associated with GPIb-IX.61 SFK, particularly 

Lyn, are functionally required for signaling that results in VWF and low dose thrombin-

induced platelet activation, and in GPIb-IX-initiated, integrin-dependent stable platelet 

adhesion to VWF under shear stress.81 One platelet pathway responsible for the requirement 
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of Lyn is the Lyn-dependent phosphorylation and activation of guanine nucleotide exchange 

factor (GEF) Vav, which activates Rac1, a member of the Rho family of small GTPases.82 

Activated Rac1 mediates activation of the PI3K pathway.82 Interestingly, PI3K was shown 

to interact with GPIbα59, 83 at a binding site in the C-terminal region of GPIbα proximal 

to the C-terminal 14-3-3 binding site,84 and is important in GPIb-IX signaling.28, 85 A 

major function of PI3K is to activate protein kinase Akt. Akt1 mediates the activation of 

the cGMP pathway,28 which activates the p38 and ERK mitogen-activated protein kinase 

(MAPK) pathway.86, 87 All these pathways are thus sequentially linked and lead to GPIb-IX-

mediated platelet integrin activation and granule secretion (Figure 2).12, 85, 88 Activation 

of this pathway requires 14-3-3 binding to GPIb, as deletion of the C-terminal 14-3-3 

binding site in GPIbα or use of the inhibitor peptide derived from the GPIbα C-terminal 

sequence inhibited VWF- or thrombin-induced GPIb-IX signaling, calcium elevation and 

platelet activation.44, 72 Another MAPK, ERK5, and associated casein kinase II, have also 

been suggested to phosphorylate and attenuate Phosphatase And Tensin Homolog (PTEN) 

activity, thus promoting the GPIb-IX-mediated activation of PI3K-Akt leading to platelet 

activation.89

The role of cGMP in GPIb-IX-mediated platelet activation.

Both VWF and low dose thrombin induce elevation of intracellular cGMP (cyclic guanosine 

monophosphate), which activates the cGMP-dependent protein kinase (PKG).88 cGMP plays 

biphasic role in platelet activation: low concentrations of cGMP generated in the early phase 

of platelet activation, via PKG, promote integrin activation and granule secretion mediated 

by GPIb-IX and other receptors.88, 90 High concentrations of cGMP and cGMP generated 

at later phases of thrombus formation inhibit platelet activation and limit the growth of 

platelet thrombi88, 91 via PKG and PKA-dependent signaling pathways.12 The biphasic role 

of cGMP provides a potential explanation as to why GPIb-IX-mediated platelet activation 

is often seen as “measured” or “weak” and platelets adherent on the surface of a thrombus 

exposed to high shear appear less activated despite of clear evidence of integrin activation.

LIM kinase (LIMK) 1 and GPIb-IX signaling

LIMK1 is a protein kinase activated by the p21-activated kinase (PAK),92 and thus a 

downstream effector of Rac1 (also named p21). LIMK1 is expressed in platelets and 

promotes both VWF- and thrombin-induced GPIb-IX signaling and platelet activation.44, 93 

This role of LIMK1 in platelet activation is selective for the GPIb-IX signaling pathway, 

and it in fact negatively regulates platelet activation induced by other platelet agonists 

such as PAR agonists and thromboxane A2.44, 93 This is in contrast to the ability of Lyn, 

Rac1, PI3K-Akt, cGMP and MAPK to stimulate the GPIb pathway as well as other agonist 

pathways. Interestingly, GPIb-IX-mediated LIMK1 activation appears to be dependent upon 

p38 and ERK MAPKs in addition to Rac1. Although it remains unclear how LIMK1 

selectively mediates GPIb-IX-mediated platelet activation, LIMK1 is important in GPIb-IX-

mediated phosphorylation of cytosolic phospholipase A2 (cPLA2), TXA2 generation and 

TXA2-dependent amplification of platelet activation.93 Thus, the LIMK1 pathway appears 

to serve as a GPIb-IX-selective mechanism for the activation of the TXA2 signaling pathway 

(Figure 2).12, 93
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Calcium elevation, phospholipase C, and secondary amplification pathways.

GPIb-IX-mediated platelet activation signaling has two phases. The early phase signal 

induced by ligand binding to GPIb-IX activates the ligand binding function of integrin 

αIIbβ3. The late phase amplification signal, is mainly mediated by the integrin outside-in 

signaling pathway and integrin-stimulated ITAM signaling. These two phases are reflected 

in the intracellular calcium elevation induced by VWF binding to GPIb-IX. Under shear 

stress, platelet adhesion to VWF is associated with two major peaks of calcium elevation; 

a small peak associated with GPIb-IX early signaling followed by a late, but more robust 

integrin-dependent peak.36 Similar to other platelet agonist signaling pathways, GPIb-IX-

mediated calcium elevation is mediated by IP3-dependent intracellular store release and 

requires phospholipase C (PLC), particularly PLCγ, which cleaves phospholipids to release 

IP3.12, 94 Whereas the exact pathway of GPIb-IX specific PLC activation is not completely 

clear, SFK are clearly required and several of the above-described pathways as well as 

secondary release of platelet agonists can lead to activation of various PLC isoforms. Also, 

phospholipase D1 reportedly promotes GPIb-IX-mediated SFK and PLCγ activation.95

The immunoreceptor tyrosine-based activation motifs (ITAMs) in the Fc receptors in human 

platelets, including Fc receptor γ chain (FcRγ) and Fcγ receptor IIA (FcγRIIA), stimulate 

Syk-dependent signaling leading to activation of PLCγ, calcium elevation and activation of 

protein kinase C, resulting in robust platelet activation.12 Because GPIb-IX can associate 

with FcγRIIA or FcRγ, it was hypothesized that GPIb-IX induces calcium elevation 

and platelet activation via the ITAM signaling pathway.9 This hypothesis is supported 

by evidence that the key enzymes of the ITAM pathway, such as Syk, are activated 

and important in promoting GPIb-IX-initiated platelet activation.96 However, FcRγ and 

FcγRIIA are not required for GPIb-IX-mediated calcium elevation and shape change.94 

GPIb-IX-dependent platelet aggregation was reduced at low but not high concentrations 

of botrocetin in FcRγ-deficient mouse platelets.97 Another study demonstrated normal 

platelet aggregation of FcRγ-deficient mouse platelets in response to botrocetin in the 

presence of extracellular integrin ligand fibrinogen, although aggregation was inhibited in 

the absence of fibrinogen.98 This study also demonstrated that FcRγ was not required for 

integrin-independent TXA2 synthesis initiated by GPIb-IX signaling nor GPIb-IX-dependent 

integrin activation.98 Since mouse platelets do not express FcγRIIA, these data suggest that 

FcRγ and FcγRIIA are not required for GPIb-IX-mediated integrin activation and primary 

platelet aggregation, but may play a secondary secretion-dependent role in amplifying GPIb-

IX-initiated platelet activation. Furthermore, the key ITAM kinase Syk is also dispensable 

for GPIb-IX-mediated integrin activation, GPIb-IX- and integrin-dependent stable platelet 

adhesion to VWF under shear and VWF/GPIb-IX-dependent platelet aggregation induced 

by ristocetin and botrocetin.28, 99 Thus, the ITAM pathway does not appear to be directly 

required for early phase GPIb-IX signaling leading to integrin activation.

It was recently shown that ligand binding to integrin αIIbβ3 transmits outside-in signaling 

to stimulate phosphorylation of p47phox, a regulatory component of NADPH oxidase 2 

(NOX2), resulting in activation of NOX2.100 NOX2 catalyzes the generation of reactive 

oxygen species (ROS), which inhibit protein tyrosine phosphatases (PTP) leading to the 

activation of Syk and thus the ITAM pathway (Figure 2).100 Considering the importance 
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of the Syk and ITAM pathway in greatly promoting platelet activation induced by integrin 

outside-in signaling, and the importance of integrin outside-in signaling in amplifying GPIb-

IX-mediated platelet activation signals, we propose that integrin/ROS-dependent activation 

of the ITAM pathway plays a major role in GPIb-IX-induced second wave calcium elevation 

and amplification of platelet activation (Figure 2). Interestingly, GPIbβ and GPVI are 

reportedly associated with TRAF4/Hic-5/p47phox, and inhibitors of reactive oxygen species 

were shown to inhibit GPVI and low dose thrombin-induced, GPIb-IX-dependent platelet 

activation.62, 101 It is thus possible that GPIb-IX may also stimulate ROS generation 

independent of integrin outside-in signaling, and facilitate the ITAM signaling (Figure 2).

Conclusions

GPIb-IX not only mediates platelet adhesion under flow shear stress, but also acts as a 

mechanical/chemical receptor that receives and transmits signals from external mechanical 

force and/or ligand binding to initiate cellular responses. The molecular bases of these 

functions of GPIb-IX include the shear force-resistant adhesion bonding (catch bond), a 

mechanosensory domain of GPIbα and the intracellular interaction of the GPIb-IX complex 

with intracellular cytoskeletal and signaling molecules. Thus VWF binding to GPIb-IX 

induces a series of intracellular signaling events without requiring other agonist receptors. 

However, GPIb-IX also cooperates with thrombin and collagen receptors to enhance platelet 

response to these agonists. Increasing evidence suggests that GPIb-IX-mediated signaling 

includes two-phases as reflected by the two waves of calcium signals. The first phase 

signals via the 14-3-3 and SFK-initiated pathways and activates integrin αIIbβ3 to an 

intermediate state for ligand binding, which is essential for stable platelet adhesion. The 

second phase is mediated by integrin outside-in signaling, which shear force-dependently 

triggers ROS-mediated Syk activation and Syk-dependent ITAM signaling, leading to 

robust platelet activation and thrombus formation. Hence, an essential role of GPIb-IX 

signaling is to facilitate stable platelet adhesion to the exposed subendothelial matrix, 

the stimulated endothelium, leukocytes and other platelets under flow shear stress. This 

role is important not only for hemostasis and thrombosis, but also in the development 

of thrombo-inflammatory conditions, tumor metastasis and, in megakaryocytes, platelet 

biogenesis. Thus, targeting GPIb-IX signaling has the potential for treating thrombosis in 

stenotic arteries associated with stroke and heart attack, microvascular thrombosis such as 

in thrombotic thrombocytopenic purpura, and in thrombo-inflammatory conditions such as 

ischemia/reperfusion injury. Targeting GPIb-IX signaling may also have the potential to 

improve platelet preservation and transfusion, and in reducing tumor metastasis.
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Figure 1. 
A schematic illustrating the shear-resistant and shear-responsive characteristics of GPIb-IX 

binding to VWF A1 domain. Left: GPIbα with folded mechanosensory domain (MSD) 

prior to VWF binding. Right: VWF binds to GPIbα via a shear force-resistant “catch 

bond”. Shear force, via GPIb-bound VWF, unfolds MSD of GPIbα, which subsequently 

changes the conformation of the transmembrane complex of GPIb-IX, resulting in cross-

membrane signal transduction and regulating the interactions with proteins important for 

GPIb-IX-initiated intracellular signaling.
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Figure 2. 
GPIb-IX-mediated early platelet activation pathways and secondary signal amplification 

mechanisms. In GPIb-IX-mediated early signaling, GPIb-IX ligation by VWF induces 

activation of Src family kinase (SFK) Lyn via a 14-3-3-dependent mechanism and a series of 

downstream signaling events as depicted in the figure, leading to activation of phospholipase 

C (PLC). A simplified schematic of the PLC-mediated common pathway leading to integrin 

αIIbβ3 activation and granule secretion is shown in the box with thin outlines: PLC cleaves 

membrane phospholipids to generate inositol 1,4,5 triphosphate (IP3) and diacylglycerol 
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(DAG), which together activate calcium release and DAG-activated guanine nucleotide 

exchange factor 1 (CalDAGGEF1). CalDAGEF1 activates RAS-related protein 1 (Rap1), 

which induces talin binding to the cytoplasmic domain of integrin αIIbβ3 and integrin 

activation. DAG and/or calcium also activate protein kinase C (PKC) isoforms to stimulate 

granule secretion. Top Right: Activated integrin αIIbβ3 mediates stable platelet adhesion 

and initiates outside-in signaling, which, via a Gα13- and c-Src-dependent mechanism, 

activates NADPH oxidase 2 (NOX2) to generate reactive oxygen species (ROS) under shear 

stress. ROS inhibits protein tyrosine phosphatases (PTP), which are negative regulators 

of Spleen tyrosine kinase (Syk), facilitating Syk activation. Syk is activated by binding 

to immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic domain of 

GPVI-associated Fc receptor γ chain (FcRγ) or Fcγ receptor IIA (FcγRIIA). Activated 

Syk stimulates the ITAM signaling pathway (see ref12 for more details), to potently activate 

platelets via PLCγ, which, as depicted in the thick-outlined box, induces a 2nd wave of Ca++ 

release and robust platelet activation and thrombus formation. GPIbβ and GPVI also bind 

to TNF receptor associated factor 4 (TRAF4) in complex with Hydrogen peroxide-inducible 

clone 5 protein (Hic-5) and p47PHOX, a regulatory unit of NOX2, which then stimulates 

GPVI-mediated ITAM signaling.

Other abbreviations: GPIb, Glycoprotein Ib; VWF, von Willebrand factor; Rac1, Ras-related 

C3 botulinum toxin substrate 1; PAK1, P21-activated kinase 1; PI3K, phosphoinositide 3-

kinase; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; MAPKs, mitogen-

activated protein kinases; LIMK1, LIM domain kinase 1; cPLA2, cytosolic phospholipases 

A2; TXA2, thromboxane A2.
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