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Integrative Analysis of Drug Response and Clinical Outcome in 
Acute Myeloid Leukemia

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic 

options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and 

clinical annotations for a large cohort of AML patients, which facilitated discovery of functional 

genomic correlates. Here, we present a dataset, which has been harmonized with our initial 

report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort 

concordance and identify features of drug response. Further, deconvoluting transcriptomic data 

shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes 

conditionally impacting other correlates of response. Finally, modeling of clinical outcome reveals 

a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for 

young patients. Collectively, this report expands a large functional genomic resource, offers 

avenues for mechanistic exploration and drug development, and reveals tools for predicting 

outcome in AML.

Graphical Abstract
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eTOC

Bottomly et al. present a functional genomic resource comprised of molecular, clinical, and drug 

response data on acute myeloid leukemia patient specimens. Through integration of all of these 

data, they identify genetic and cell differentiation state features that predict drug response, and 

they utilize modeling to identify targetable determinants of clinical outcome.

Keywords

hematologic malignancy; targeted therapy; LSC17; cell state; leukemia stem cell; monocyte; 
eigengene; JEDI; MEGF12

INTRODUCTION

Acute myeloid leukemia (AML) is characterized by neoplastic proliferation of myeloid-

lineage cells. Approximately 21,000 diagnoses and 10,000 AML-related deaths are reported 

annually in the United States (Jemal et al., 2010; SEER, 2021). Genetic features include 16 

recurrent gene rearrangements and a plethora of unique, tumor-specific aberrations (Arber 

et al., 2016). In addition, ~60 genes exhibit recurrent point mutations with many thousand 

additional rarely mutated genes (Cancer Genome Atlas Research et al., 2013; Papaemmanuil 

et al., 2016; Tyner et al., 2018). Conventional chemotherapies combine anthracyclines with 

nucleoside analogs and a subsequent bone marrow transplant for ~20% of patients. This 

results in durable remission for only ~20% of patients (Pulte et al., 2016).

AML tumors also exhibit a diversity of cell phenotypes that can be aligned with 

differentiation states in healthy hematopoiesis. These phenotypes have been captured in 

classification schemes such as the French-American-British (FAB) system (Bennett et al., 

1976) and from the World Health Organization (Arber et al., 2016). Gene expression 

signatures from the most primitive AML cell state, leukemic stem cells (LSC), have been 

shown to carry prognostic significance in AML and myelodysplastic syndromes (MDS) 

(Elsayed et al., 2020; Gal et al., 2006; Gentles et al., 2010; Horibata et al., 2019; Ng et 

al., 2016; Wang et al., 2020). Most recently, single-cell sequencing has been employed to 

describe gene expression signatures that define six distinct AML tumor maturation states 

(Van Galen et al., 2019).

Rationally targeted therapeutics for AML include all-trans retinoic acid combined with 

arsenic trioxide (Huang et al., 1988; Shen et al., 1997), small-molecules targeting mutated 

enzymes such as FLT3 (gilteritinib (Perl et al., 2019) and midostaurin (Stone et al., 2017)) 

or IDH1/2 (ivosidenib (DiNardo et al., 2018) and enasidenib (Stein et al., 2017)), an 

antibody drug conjugate targeting CD33 (gemtuzumab (Petersdorf et al., 2013)), a liposomal 

formulation of cytarabine and daunorubicin (CPX-351 (Lancet et al., 2018)), and the BCL2 

inhibitor, venetoclax, used in combination with hypomethylating agents (azacitidine or 

decitabine) (DiNardo et al., 2019). Despite these tools, drug resistance and disease relapse 

remain a persistent problem necessitating a more complete understanding of the biological 

factors driving drug response.
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RESULTS

To better understand the factors governing AML drug response and clinical outcome, we 

developed a comprehensive platform to combine clinical, cellular, and molecular features 

of disease. Our complete OHSU Beat AML cohort represents sample collection and 

characterization over a span of 10 years with integration of ex vivo drug sensitivity 

testing, curation of clinical annotations, and DNA- and RNA-sequencing (summarized in 

the Graphical Abstract). The data in Tyner et al (2018) represent the first tranche of patient 

sample data (denoted as “Waves 1+2”). Here we provide additional longitudinal samples 

for Waves 1+2, updated clinical information, as well as additional patient accrual, which 

represents the final two waves (“Waves 3+4”). Waves 3+4, collected over a 2.5-year period, 

is comprised of a total of 293 specimens from 279 patients (243 patients unique to Waves 

3+4). We also provide the harmonization of these data sets together, for a cumulative 

cohort of 942 specimens from 805 patients, which reflects a real-world cohort of AML 

cases, inclusive of de novo, transformed, and therapy-related AML as well as cases at the 

point of initial diagnosis (70% of cases) and smaller numbers with relapsed or residual 

disease. A full listing of samples, available data, and clinical annotations are in Table S1. 

All somatic variant calls, gene expression counts, and drug response data can be explored 

and visualized through our interactive browser, Vizome (www.vizome.org/aml2). For all 

cohort-level analyses, only specimens from the first timepoint of each patient were used 

(defined in Table S1), with all remission samples excluded. A broad overview of clinical 

data showed comparable features between the two datasets with only a slightly lower 

percentage of cases with de novo AML in the first dataset (49% in Waves 1+2 vs. 58% 

in Waves 3+4). Frequencies of the most commonly mutated genes were also equivalent 

between cohorts (Figure 1A). Clinical outcomes, as measured by overall survival, of patients 

whose specimens were collected during the first cohort were indistinguishable from those 

collected during the second cohort (Figure 1B). The ex vivo drug sensitivity data were 

compared in de novo samples for each dataset, due to our prior observation that general 

drug sensitivity is reduced in secondary AML cases (Tyner et al., 2018), and showed high 

concordance (Figure 1C). We harmonized the RNA-Seq data across the waves (Figure 

S1A) by re-using the parameters and reference distribution of the conditional quantile 

normalization (CQN; (Hansen et al., 2012)) procedure applied previously. We highlight 

this with our prior weighted gene co-expression network analysis (WGCNA; (Zhang and 

Horvath, 2005)) that identified 13 gene expression modules across Waves 1+2 (Tyner et 

al., 2018). Part of the WGCNA methodology involves the summarization of each module 

by its first principal component (PC) score (termed an eigengene; (Horvath and Dong, 

2008)). Using the parameters (e.g. means, standard deviations and rotations) learned from 

Waves 1+2, we predicted the PC scores of the Waves 3+4 samples for each module 

and revealed near complete overlap in every module with respect to range, distributions, 

and clustering (Figure S1B). Finally, our prior analysis included integration of ex vivo 
drug sensitivity with both mutational/cytogenetic status and gene expression to identify 

genomic or transcriptomic predictors of drug response. We observed strong concordance 

of associations between drug sensitivity and mutational status (89% concordance of Waves 

1+2 and Waves 3+4), with nearly all associations showing a similar effect size in both the 

positive and negative direction (Figure 1D). In addition, we assessed correlation between 
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gene expression (13 WGCNA module eigengenes) and drug response, revealing 98% 

concordance for these associations in Waves 1+2 vs. Waves 3+4 (Figure S1C).

Deconvoluting AML Cell Maturation State

We and others have observed that drug response patterns in AML are sometimes correlated 

with maturation state of AML tumor cells, with certain drugs exhibiting stronger efficacy 

against tumors with less differentiated cell state (e.g. BCL2i, CDK4/6i; (Kuusanmaki et 

al., 2020; Majumder et al., 2020; Pei et al., 2020; Romine et al., 2021; Zhang et al., 

2020)) and others showing better efficacy against tumors with more differentiated state 

(e.g. BETi, MEKi; (Romine et al., 2021; White et al., 2021)). Analytical approaches can 

facilitate the deconvolution of deep sequencing data to infer proportions of distinct cell 

types (Avila Cobos et al., 2018), and single-cell sequencing technology has recently defined 

gene expression patterns for six distinct cell-types in AML (Hematopoietic Stem Cell 

(HSC)-like, Progenitor-like, Granulocyte-Monocyte Progenitor (GMP)-like, Promonocyte-

like, Monocyte-like, conventional Dendritic Cell (cDC)-like); (Van Galen et al., 2019)). 

We summarized each of these six signatures by their PC1 scores (similar to the WGCNA 

eigengene). An example of the formation of the Monocyte-like score is shown in Figure 

S2A. Comparison of the HSC-like or Monocyte-like scores against FAB subtypes showed 

higher overall scores for HSC-like in the less differentiated M0-M2 samples and higher 

Monocyte-like scores in the myelomonocytic and monocytic M4-M5 groups (Figure S2B). 

To understand the relationship between our WGCNA modules and differences in cell-

type, we compared eigengene scores of each signature. We found WGCNA modules that 

correlate strongly with the more differentiated cell-types (N=5), less differentiated cell-types 

(N=3), as well as those that exhibit correlation with early- and late-stage cell-types (N=5) 

(Figure 2A). Finally, we wanted to understand whether mutational or cytogenetic features 

showed enrichment for AML cell-type signatures. Indeed, we observed numerous significant 

correlations, including TP53, BCOR, and SF3B1 enriched for HSC-like state, NPM1 

enriched for Promonocyte-like, RAS correlating with Monocyte-like, and numerous other 

associations. Interestingly, the associations were not always compartmentalized or linear, for 

instance RUNX1 showed strong correlation with both HSC-like (the most primitive) and 

cDC-like (the most differentiated), suggesting that RUNX1-mutant AML tumors may co-opt 

features of multiple, disparate cell maturations states (Figure 2B; for all associations see 

Table S2).

We next wanted to determine the breadth of drugs with response that is correlated with 

AML cell differentiation state and, accordingly, compared the six cell-type scores with 

drug response across our full panel. Overall, 73 drugs showed response that significantly 

correlated with at least one cell-type. Hierarchical clustering of these 73 drugs revealed three 

main groups. One cluster contained a series of inhibitors with greater activity against HSC- 

and Progenitor-like states and with less efficacy against the more differentiated cell-types. 

Another cluster displayed the inverse pattern with greatest activity against the cDC- and 

Monocyte-like states. The third cluster showed some, albeit muted, activity against both 

HSC-/Progenitor-like and cDC-/Monocyte-like states with the most resistance conferred 

by GMP- and Promonocyte-like states (Figure 3A; for all associations see Table S3). 

Finally, there were two drugs, venetoclax and the HDAC inhibitor, panobinostat, that were 
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extreme outliers and exhibited inverse patterns of response (Figure S3A). We next wanted 

to understand whether any of the associations between drug response and cell-type score 

might be conditional on mutational or cytogenetic events. Numerous instances of significant 

interactions between cell-type score and mutational/cytogenetic events were identified, 

mostly involving the Monocyte-like score (Figure 3B). For example, sorafenib is a potent 

inhibitor of the FLT3 receptor tyrosine kinase and exhibits significantly greater efficacy in 

FLT3-ITD mutant samples. However, inclusion of cell-type scores reveals that sorafenib 

shows stronger efficacy in cases with both FLT3-ITD and a high Progenitor-like score, while 

the existence of a prominent Monocyte-like signal confers resistance of FLT3-ITD-positive 

AML cases to sorafenib (Figure S3B).

Drug Family Responses

The increased sample size of the harmonized dataset yields numerous correlations of 

drug response with mutational status that achieve statistical significance compared with 

Waves 1+2 alone (65 added associations, 27% increase). However, we next wanted to 

extract additional signal by organizing drug response data into groups of inhibitors based 

on shared targets or pathways. Accordingly, we aggregated drug-target relationship data 

from the Cancer Targetome (Blucher et al., 2017; Blucher et al., 2019; Choonoo et al., 

2019) and other sources (Davis et al., 2011) to yield 25 drug families with some overlap 

of drugs between families based on known polypharmacology (Table S4). We observed 

variable overall response of drug families across all samples tested, with some families 

(e.g. Phosphatidyl inositol 3’ kinase-related kinases (PIKK)) showing greater overall activity 

and others (e.g. Aurora Kinase (AurK)) showing generally less sensitivity (Figure 4A). 

By examining response of each drug family in specimens with wild type versus mutated 

status, we were able to identify numerous instances where mutational events exhibit 

significantly greater sensitivity or resistance to drug family classes (Figure 4B; for all 

associations see Table S5). In addition to expected associations such as FLT3-ITD with 

Type III receptor tyrosine kinase (RTK) inhibitors and RAS mutations with STE7 (MEK) 

inhibitors, we identified numerous unexpected associations, including several treatment-

refractory genetic subtypes (mutation of TP53, STAG2, RUNX1) showing greater sensitivity 

to phosphatidylinositol kinase family (PIK) inhibitors and N/KRAS mutation conferring 

greater sensitivity to cyclin-dependent kinase inhibitors. We also assessed correlations 

between drug family activity and tumor cell-type scores and found strong correlations with 

one or more tumor cell-type signature for 18 out of the 25 drug families (Figure 5A; for all 

associations see Table S6). Finally, we also observed a number of drug family correlations 

with cell-type scores that were conditional on mutational/cytogenetic events, such as for 

PIK family inhibitors showing strong activity against NPM1-mutated cases that also exhibit 

a high cDC-like score, but PIK inhibitor resistance for NPM1-mutated cases with high 

HSC-like scores (Figure 5B).

Determinants of Clinical Outcome

Finally, we wanted to explore correlations between the WGCNA expression modules and 

cell-type scores with clinical variables in our dataset, including overall survival, tumor 

burden and cell composition, age, transformed or therapy-related status, and prognostic 

categories. To ensure robust associations with overall survival, we limited this analysis 
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to samples collected at initial acute leukemia diagnosis and with RNASeq data (n=435). 

Clustering of these features revealed one branch that contained three WGCNA modules (3, 

9, and 12) as well the HSC-like cell-type score that associated with shorter overall survival 

(Figure 6A). Of these, modules 3 and 9 showed the strongest associations with survival. 

We prioritized the genes in module 3 (n=203) and module 9 (n=119) by computing the 

correlation with the eigengene (termed kME; (Fuller et al., 2007)) to quantify each gene’s 

degree of hub status. This revealed a single gene, platelet endothelial aggregation receptor 

1 (PEAR1), that correlated far more strongly with the module 3 eigengene than did any 

other module gene member (Figure 6B). No similar singular driver gene was identified for 

module 9. Additionally, both module 3 and PEAR1 expression were positively correlated 

with HSC-like score (Figure 6B; a full list of module component genes is in Table S7). We 

next applied conditional inference forest methodology (cforest; (Hothorn et al., 2006)) to 

understand the relative importance of patient age, WGCNA module eigengenes, cell-type 

scores, and mutational/cytogenetic status on overall survival. For this analysis, we placed a 

further restriction to only evaluate cases of de novo AML (n=298) because of the observed 

association between AML type and other variables. Validating known risk factors, this 

methodology identified age and mutated TP53 (Papaemmanuil et al., 2016) being among 

the strongest predictors of survival. However, the WGCNA module 3 was also included as 

one of the strongest predictors of poor outcome. For young (<45 years) and TP53-wild type 

middle (45–60 years) age group patients, our analysis revealed module 3 expression to be 

the strongest determinant of outcome (Figure 6C).

We next explored association of individual PEAR1 gene expression with clinical parameters, 

since PEAR1 was so strongly associated with the overall module 3 score. Assessment of 

PEAR1 expression as it relates to European LeukemiaNet (ELN) prognostic categories 

indicated a significant difference in PEAR1 expression between Adverse and Favorable risk 

categories in patients 60 and older (3.765 mean increase in Adverse; Pvalue=3.276e-25; 

N=172). PEAR1 expression, however, shows a smaller but significant difference in the 

middle age group (1.497 mean increase; Pvalue=0.006; N=72) and is not significantly 

associated with Adverse vs. Favorable ELN risk in young patients (Pvalue=0.170; N=79) 

despite its strong association with outcome in this group (Figure 7A). We compared 

PEAR1 expression to the leukemic stem cell 17-gene signature (LSC17) (Ng et al., 2016) 

in this young subset of patients and found that expression of the single PEAR1 gene 

could distinguish outcomes in young patients to a similar degree as the 17-gene LSC17 

signature (Figure 7B). To further compare PEAR1 with LSC17, we assessed the hazard 

ratio for PEAR1 and LSC17 in all age groups and in the young subset. Additionally, 

we further stratified cases where the specimen obtained was a bone marrow aspirate, due 

to improved splitting of outcomes observed with bone marrow compared with peripheral 

blood specimens (Figure S4). The hazard ratios reveal similar performance of PEAR1 with 

LSC17 (Figure 7C), noting predictive range is influenced by subset and split type. Since 

PEAR1 shows strong upregulation in transformed AML, which is known to exhibit inferior 

outcome (Figure 6A, S5A,B), and since a similar association was observed with LSC17 

and transformed AML (Pvalue=2.18e-07), we wanted to compare PEAR1 and LSC17 in all 

cases with specimens obtained at initial acute leukemia diagnosis, inclusive of transformed 

and therapy-related AML cases. This analysis revealed PEAR1 to perform equivalently to 
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LSC17 both in the young subset and across all age groups (Figure S6). Finally, to validate 

the prognostic significance of PEAR1 using independent patient cohorts, we examined the 

capacity of PEAR1 expression to stratify overall survival using a dataset from Malani and 

colleagues as well as from The Cancer Genome Atlas (Cancer Genome Atlas Research 

et al., 2013; Malani et al., 2022). We found that elevated PEAR1 expression conferred 

shortened overall survival in a strongly significant manner in both datasets (Figure S7A, B).

DISCUSSION

The impact of AML LSCs on tumor biology and therapeutics has been explored and 

suggested to prime disease pathogenesis and seed relapse. However, a broader and more 

nuanced understanding of the full range of AML tumor cell maturation states, and the 

way in which these different cell states are tied to other disease features such as genetics 

and drug response, has been lacking. While some of these maturation states were roughly 

captured in the historical FAB classification system for AML, this system has been all but 

abandoned in current classification schemes that utilize primarily (or only) genetics and 

prior clinical history (Arber et al., 2016; Dohner et al., 2017). In addition, while targeting 

of LSCs has been a major goal for AML research with the notion that eliminating LSCs 

would induce tumor collapse, this result has proved elusive with the observation that relapse 

can be seeded by more mature cells, depending on the administered therapy. Through broad 

mapping of distinct AML cell maturation states with both genetic features and response 

to broad families of drugs, we find that tumors can display features of multiple, disparate 

cell maturation states and that a majority of drugs and drug families exhibit cell maturation 

state-biased response. Our expansive modeling of clinical outcome has also led to a single, 

targetable gene that is a strong determinant of overall survival in AML, PEAR1.

PEAR1, also known as JEDI or MEGF12, was originally identified to signal during platelet 

aggregation (Nanda et al., 2005) and is a homolog of Draper (D. melanogaster) and ced-1 

(C. elegans). It is a type I transmembrane protein with 15 extracellular epidermal growth 

factor-like repeats, a domain sharing homology with NOTCH ligands, and it contains 

tyrosine and serine residues that can become phosphorylated (Krivtsov et al., 2007; Nanda 

et al., 2005). Genetic polymorphisms in the PEAR1 locus associate with with cardiovascular 

events, response to anti-platelet aggregation therapies (Eicher et al., 2016; Faraday et al., 

2011; Herrera-Galeano et al., 2008; Johnson et al., 2010; Jones et al., 2009; Lewis et 

al., 2013), and endothelial cell biology (Fisch et al., 2015; Vandenbriele et al., 2015; 

Zhan et al., 2020). Methylation of the PEAR1 locus correlates with megakaryopoiesis and 

platelet function (Izzi et al., 2019; Izzi et al., 2018; Izzi et al., 2016). On glial precursor 

cells, PEAR1 triggers clathrin-dependent engulfment of apoptotic neurons generated during 

development of peripheral ganglia (Sullivan et al., 2014; Wu et al., 2009). This phagocytic 

process signaling involves SYK, SRC-family kinases, and MAPK8 (JNK; JUN N-terminal 

kinase) and/or their D. melanogaster homologs (Hilu-Dadia et al., 2018; Scheib et al., 

2012). PEAR1 ligands include Fc Epsilon Receptor Ia (Sun et al., 2015), dextran sulfate 

(Vandenbriele et al., 2016), and sulfated fucose-based polysaccharides (fucoidans) (Kardeby 

et al., 2019), and signaling in platelets involves SRC-family kinases and PIK3C/AKT 

(Kauskot et al., 2012; Kauskot et al., 2013). In healthy hematopoietic cells, PEAR1 

expression is highest in HSC and in megakaryocyte-erythroid progenitor cells. Forced 
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expression of PEAR1 in bone marrow cells or in fibroblast stromal cells was shown to 

reduce clonogenic myeloid colony formation (Krivtsov et al., 2007). This effect seems 

counterintuitive given the clear association of elevated PEAR1 expression with worse 

outcome in AML and warrants further investigation.

A recent study examined AML TCGA (Cancer Genome Atlas Research et al., 2013) to 

identify an immune prognostic signature for AML, which included PEAR1 as well as 

another gene, PYCARD (Dao et al., 2021). This model showed correlation with T-cell 

enrichment and expression of immune checkpoints. It was also shown to correlate with poor 

clinical outcome in several AML datasets; however, a role for PEAR1 in shaping leukemic 

cell biology or cell-type was not considered.

Here, we show that PEAR1 expression predicts outcome in young AML patients 

independently of ELN category, performs equivalently to the LSC17 gene signature, and 

correlates strongly with an HSC-like signature. Increased PEAR1 was confirmed in cases 

with mutation of TP53, RUNX1, and ASXL1 (as shown in (Dao et al., 2021)), and we also 

observe elevation in other genetic subsets with poor prognostic markers (SRSF2 mutation, 

GATA2-MECOM) and lower expression with certain good prognostic features (NPM1, 

CEBPA) (Figure S5C). Finally, while there was an increasing trend in expression of initial 

diagnosis PEAR1 across ethnicities (Non-Hispanic white: mean 1.395, N=359; African 

Heritage: mean 2.205, N=13), the smaller sample size in the non-Caucasian groups warrants 

further investigation in a validation cohort. This is potentially important due to recent 

findings of outcome disparities among Black AML patients (Bhatnagar et al., 2021) as well 

as several studies reporting racially-skewed representation of PEAR1 polymorphisms that 

impact on PEAR1 expression/function (Herrera-Galeano et al., 2008; Keramati et al., 2019; 

Qayyum et al., 2015).

Elevation of PEAR1 expression in ASXL1-mutated AML is notable, since ASXL1 

is commonly mutated in clonal hematopoiesis, which is also associated with elevated 

cardiovascular events (Genovese et al., 2014; Jaiswal et al., 2014). As noted above, PEAR1 

genetics and function have been tied to the biology of cardiovascular events, raising the 

intriguing possibility that these findings could be connected. Platelet levels have been shown 

to decline with age (Biino et al., 2013), and a leukocyte pool with enhanced platelet 

aggregation potential – possibly facilitated by increased PEAR1 downstream of somatic 

mutational events such as ASXL1 – could represent a selective advantage within an aging 

hematopoietic microenvironment.

All of these data raise the possibility of PEAR1 as a therapeutic target. Since PEAR1 may 

function as an active signaling protein, small-molecules could mitigate PEAR1 signaling. 

Antibodies to PEAR1 have been developed, so a large-molecule approach may also be 

feasible. Indeed, we have performed preliminary validation of this concept by showing 

PEAR1 surface expression on tumor cells from AML patient samples (Figure S7C) with 

the degree of surface expression strongly correlated with PEAR1 transcript levels (Figure 

S7D). Interruption of normal PEAR1 function must be considered for any targeting strategy; 

however, platelet function was not compromised in a PEAR1-null mouse (Criel et al., 2016).
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There are other important limitations to consider. First, the prognostic significance of 

PEAR1 has, thus far, been demonstrated in datasets where therapies employed were 

almost entirely anthracycline-based. As drug regimens are now more diversified, it will 

be important to study the prognostic significance of PEAR1 in patients receiving alternative 

treatments. In this sense, and in general, the clinical utility of measuring PEAR1 expression 

for prognostication and/or of therapeutically targeting PEAR1 must be confirmed in future 

clinical studies.

Collectively, this study exemplifies the utility of integrative analysis that incorporates 

functional testing of large cohorts of patient specimens. This includes broad association 

of drug sensitivity with tumor cell differentiation state and drug/mutation correlations that 

are sometimes conditional on cell-type. Given the strong associations that can be seen 

between cell-type score and drug response, the distribution of these cell phenotypes should 

be assessed when evaluating clinical differences in drug sensitivity. Testing interactions 

between cell-type and other disease or patient features can help identify potential 

confounders or modifiers of drug response. For key comparisons, cell-type consideration 

should be done as routine as population substructure adjustment. Finally, our analysis of 

clinical outcome has yielded a prognostic and potentially targetable feature of AML that 

merits further testing and exploration.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contacts, Dr. Shannon McWeeney 

(mcweeney@ohsu.edu) and Dr. Jeffrey Tyner (tynerj@ohsu.edu).

Materials Availability—This study did not generate unique reagents.

Data and Code Availability—All raw and processed sequencing data, along 

with relevant clinical annotations have been submitted to dbGaP and Genomic 

Data Commons and are publicly available. The dbGaP study ID is 30641 

and accession ID is phs001657.v2.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs001657.v2.p1). The clinical annotations and data availability are 

found in Table S1. In addition, all data can be accessed and queried through our online, 

interactive user interface, Vizome, at www.vizome.org/aml2. Original code for replicating 

the paper analyses based on publicly available data has been deposited at https://github.com/

biodev/beataml2_manuscript. The DOI is listed in the key resources table. A frequently 

asked questions page for the dataset is found at https://biodev.github.io/BeatAML2/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient Sample Collection and Cohort Organization—The complete OHSU Beat 

AML cohort represents sample collection and characterization over a span of 10 years. 

The initial cohort, first reported in (Tyner et al., 2018) represent the first two waves of 

patient accrual and sample data (denoted “Waves 1+2”). Additional longitudinal samples for 
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Waves 1+2, in addition to patient accrual represents the final two waves (“Waves 3+4”). 

Harmonization of these datasets together for specific analyses is denoted as the “harmonized 

data”. For this manuscript we only utilized specimens from the first available timepoint 

(defined by a 5-day interval) for each patient such that each patient was represented by a 

single sample for a given datatype. Additionally, we removed samples taken while a patient 

was in remission from consideration.

All patients gave informed consent to participate in this study, which had the approval and 

guidance of the institutional review boards at Oregon Health & Science University (OHSU), 

University of Utah, University of Texas Medical Center (UT Southwestern), University of 

Miami, University of Colorado, University of Florida, National Institutes of Health (NIH), 

and University of Kansas (KUMC). Samples were sent to the coordinating center (OHSU; 

IRB#9570; #4422; NCT01728402) where they were coded and processed. Specific names 

of centers associated with each specimen were coded and centers providing less than 5 

samples were aggregated together and given one center identifier. Clinical, prognostic, 

genetic, cytogenetic, and pathologic lab values as well as treatment and outcome data were 

manually curated from patient electronic medical records. Patients were assigned a specific 

diagnosis based on the prioritization of genetic and clinical factors as determined by WHO 

guidelines (Arber et al., 2016). To prevent re-identification, any patient over the age of 90 

was placed into a >90 aggregated age bracket. Genetic characterization of the leukemia 

samples included results of clinical deep-sequencing panels of genes commonly mutated 

in hematologic malignancies (Sequenom and GeneTrails (OHSU); Foundation Medicine 

(UTSW); Genoptix; and Illumina).

METHOD DETAILS

Patient Specimen Processing—Processing of patient specimens, isolation of nucleic 

acids, DNA- and RNA-sequencing, detection of FLT3-ITD and 4-base pair NPM1 insertion, 

performance of ex vivo drug sensitivity assays, and initial analytical workflows were 

performed in identical fashion as in our prior study (Tyner et al., 2018). Any changes that 

were made to analytical approaches and techniques employed in this study are described 

below.

DNA Sequencing—For DNA sequencing, we used the 11.9 megabase custom capture 

library that was developed to provide coverage of all variants previously reported in AML 

(including all variants that were detected from exome sequencing in our prior study). 

The genes, variants, and capture regions for this custom library were reported in the 

Supplementary Information of our prior study (Table S14 in (Tyner et al., 2018)), as well as 

detailed methods for pre-processing and analysis (Supplemental Methods).

European Leukemia Network Prognostic Categorization—Some updates were 

implemented to our pipeline for calling ELN categories. First, we confined calls in this 

study to specimens taken at initial acute leukemia diagnosis, and did not place specimens 

that were taken in remission, at relapse, or from cases with a non-AML diagnosis (e.g. 

MDS) into ELN categories. Second, for consideration of mutation of ASXL1, RUNX1, or 

TP53, we used our internal deep sequencing data as the primary source of information, 

Bottomly et al. Page 11

Cancer Cell. Author manuscript; available in PMC 2023 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01728402


rather than clinical sequencing results curated from the electronic medical record. This 

was due to a higher percentage of samples with available sequencing data for these three 

genes from our internal versus curated clinical data. We compared our internal results 

with available clinical sequencing results for these genes, and we manually adjudicated the 

minority of instances where discrepancies existed. We also manually adjudicated calls for 

bi-allelic CEBPA, using both our internal sequencing and results from clinical sequencing. 

Relevant cytogenetic events were parsed from clinical karyotype and cytogenetic results, 

and we used our consensus FLT3-ITD and NPM1 calls as described in our prior study 

(Tyner et al., 2018), including data from internal PCR amplicon size-based evaluation using 

published primers (Falini et al., 2007; Kottaridis et al., 2001). All of these results were 

used to call Favorable, Intermediate, or Adverse categories according to the ELN 2017 

criteria established in (Dohner et al., 2017) with a minority of cases requiring indication 

of uncertainty due to lack of knowledge regarding FLT3-ITD allelic ratio. Finally, we 

discontinued usage of calls based on the 2008 ELN guidelines.

Ex vivo Functional Drug Screen Data Processing—Dose response curves for all 

the drugs were fit using probit models (Kurtz et al., 2017) similar to the flagship Beat 

AML manuscript (Tyner et al., 2018). However, the QC and summarization approach was 

modified for the situations where multiple replicates were available. In the description 

below, a profile indicates a sample - inhibitor pair. Profiles with no replicates were subject to 

probit curve fit thresholds. Specifically, profiles with both Deviance > 2 and AIC > 12 were 

removed. Profiles with replicates were first assessed based on the variability of the readouts 

(normalized viability capped at 100%). For each plate, the standard deviation (SD) across 

replicates for each of the 7 concentration points was assessed and the plate was removed if 4 

or more of the concentrations were considered highly variable (SD > 25). If replicates were 

available across multiple plates, the viability at each concentration point was first averaged 

per plate. The SD across plates was computed per concentration point similar to above and 

an AUC was computed from probit fits to each plate. Similar to the initial replicate filter, 

profiles were removed if both 4 or more concentrations had highly variable SD and the 

SD(AUC) > 50. Finally, a single probit curve was used to determine the AUC and IC values 

for each profile. As with (Tyner et al., 2018), drug response is indicated by color coding 

scheme (i.e., Red – sensitivity, white - intermediate, Blue - resistance).

Organization of Drugs into Families Based on Targets and Pathways—We 

utilized two primary data sources for information regarding drug/target relationships, 

Targetome (Blucher et al., 2017; Blucher et al., 2019; Choonoo et al., 2019) and 

KINOMEscan (Davis et al., 2011). For determination of top tier targets of each drug 

from KINOMEscan and Targetome V2 data, we used a threshold that was 10-fold higher 

than the second lowest Kd for each drug (termed Tier1 hits). We defined a set of high 

confidence drug/target relationships requiring either a Tier1 with at most a Kd of 25 in 

KINOMEscan and/or Targetome. Additionally, we required Targetome to have at least two 

references with at least two unique supporting assay values. This high confidence set was 

combined with a small number of additional interactions annotated manually (see Table S4 

for full annotations of drug family targets). We utilized the IUPHAR family classifications 

for targets (Armstrong et al., 2020). Targets were assigned to the lowest level of the family 
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hierarchy as well as up to two higher levels. The resulting inhibitor/family relationships 

were additionally manually curated.

Inhibitor family response—To generate gene family scores, we first rescaled the 

inhibitor AUC responses to be between 0 and 1 in order to ensure comparability between 

inhibitors with different concentration ranges. We then used the single sample GSEA 

(ssGSEA; (Barbie et al., 2009)) approach as implemented in GSVA package (Hanzelmann 

et al., 2013) to generate a score per family. We required at least 5 inhibitors per family and 

did not implement the cohort range normalization as only a single patient was provided at a 

time. Note that the use of ssGSEA as opposed to a principal component-based scoring was 

driven by the need to account for differences in drug coverage amongst patients.

RNA Sequencing—Gene-level RNASeq counts were generated as in the previous Beat 

AML manuscript (Tyner et al., 2018). Again, we used conditional quantile normalization 

(CQN; (Hansen et al., 2012)). In order to facilitate comparison with previous results we used 

the CQN reference distribution parameters learned from the Waves 1+2 samples to apply the 

normalization to the Waves 3+4 samples.

Weighted Gene Co-expression Network Analysis

Module Formation and Summarization: We started with the original set of 14 gene 

expression modules (13 + Mod0 (grey) ‘outlier’ module) from the Beat AML manuscript 

derived using the weighted gene co-expression network analysis (WGCNA) (Zhang and 

Horvath, 2005) methodology. With the exception of Mod0 (grey), these gene sets are 

typically summarized by their ‘eigengene’ which is their first principal component (PC) 

score (Horvath and Dong, 2008). As the mod0 (grey) gene-set was more heterogenous, we 

kept the first 5 PC scores for the eigengene. Since the CQN normalization approach above 

did not change the original data, we were able to directly ‘predict’ the PC scores of the 

Waves 3+4 cohort for each module. First, we centered and scaled (C/S) the Waves 3+4 

cohort expression matrix using the mean and standard deviations estimated from the original 

cohort. We then formed scores per Waves 3+4 cohort patient as the linear combination 

of their C/S expression values and the corresponding column of the original matrix of 

eigenvectors/rotations.

Module Membership: A standard WGCNA methodology is the formation of kME values 

which are defined as the correlation of gene expression with the module eigengene (PC1 

score as described above) (Langfelder et al., 2008). Genes with high kME are considered 

to have higher (fuzzy) membership in each module or alternatively can be seen as more 

‘hub-like’ in a network context (Horvath and Dong, 2008). In this instance the correlation 

used was the robust biweight midcorrelation (Langfelder and Horvath, 2012).

Module Associations: To relate WGCNA modules to external continuous variables, we 

assessed direct correlation of a variable with a module eigengene which indicates whether 

the pattern of a module covaries with the variable (Horvath et al., 2006).
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Cell-type Scores—We first divided the Waves 1+2 cohort with RNASeq samples by 

whether they were bone marrow derived or from peripheral blood/leukapheresis and 

centered and scaled them separately. Using the top 30 genes for each of six single-cell 

AML tumor-derived signatures (Van Galen et al., 2019), we computed gene set scores. 

Similar to the WGCNA eigengenes, our scores were based on the first principal component 

and aligned with the average expression. This is similar to the approach used in the context 

of pathway-based geneset analysis (PLAGE; (Tomfohr et al., 2005)). Waves 3+4 cell-type 

scores were ‘predicted’ from ‘Waves 1+2’ using the same approach described for the 

WGCNA eigengenes but this time using separate centering and scaling for the specimen 

types.

Formation of Genomic Features—We first combined the set of expression module and 

cell-type scores from the RNASeq samples. The two continuous datatypes were correlated, 

often with modules having opposing correlations with cell-types associated with low and 

high differentiation. To address this, we removed the expression modules seen as being both 

positively and negatively correlated (abs ( r )>=.6) with a cell-type. The consensus AML 

fusions and mutation calls were then added in as binary features.

Random Survival Forest—Using the combined set of genomic features, we fit a 

conditional random forest (cforest) model using the `partykit` package with post-diagnosis 

survival, measured in days, as the outcome (Hothorn et al., 2006). Our model utilized 1,000 

trees and 63.2% subsampling as opposed to the bootstrap as previously suggested (Strobl 

et al., 2007). We used the predictions (i.e. log10 median survival) from this ‘model to fit 

a single surrogate conditional inference tree model to facilitate interpretation (Pearson’s 

correlation between model predictions: .877).

Where indicated, high vs low group categorizations were also performed using ctree but 

limiting depth to a single split and requiring minimum group size of 20.

LSC17—For comparisons with the LSC17 signature (Ng et al 2017), we replicated the 

signature using the coefficients in the manuscript, which was reported as the optimized 

signature by the authors (which was also patented WO2017132749A1). Categorization of 

expression for Hazard Ratio and other analyses was done using two different “split types”: 

median as described in (Ng et al., 2016) or ctree to facilitate comparison with PEAR1.

Clinical curation via Natural Language Processing (NLP)—An NLP workflow was 

developed to automatically extract key clinical data elements that were only available in 

the Electronic Health Records (EHR) in unstructured clinical notes. The NLP pipeline was 

written in Python which incorporated a commercially available text miner - Linguamatics’ 

Interactive Information Extraction (I2E) platform, as a major component, along with Python-

based document preprocessing, results output logic, and evaluation components. Data from 

the manually curated Gold Standard Data Set (GSDS) from Waves 1+2 were used to 

evaluate the performance of the NLP system. An NLP Data Set (NLPDS) was assembled 

that contained as far as possible the source pathology documents set from which the 

GSDS was originally obtained by manual review supervised by the data manager. This was 

subdivided into 5 partitions, and used in an iterative training-development-validation cycle to 
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optimize the NLP and Python code. For evaluation purposes, we treated partitions 1 and 2 

as a single training set and partitions 3, 4, and 5 as a single test set. Overall, the training set 

consisted of 108 patients with 134 specimens and 241 documents, and the test set consisted 

of 252 patients with 289 specimens and 532 documents. Evaluation of NLP results led in 

some cases to discovery of missing or incorrect data in the GSDS (which was estimated to 

have an overall error rate of 9%), further improving data quality. For the NLP data by data 

element, Accuracy ranged from 79% to 93%, Precision 85% to 96%, Recall from 76% to 

93% and F1-score (the harmonic mean of the precision and recall) 81% to 94%.

PEAR1 Flow Cytometry Analysis—AML patient samples were thawed, washed in 

pre-warmed media, and resuspended in phosphate-buffered saline (PBS). Cells were then 

stained for viability via zombie aqua dye (Biolegend, #423101) for 15 minutes. Cells 

were washed in FACS buffer (PBS, 2% fetal bovine serum, sodium azide, EDTA) and 

then Fc receptors were blocked for 5 minutes (Biolegend, #422301) prior to staining with 

anti-PEAR1 antibody conjugated to brilliant violet 650 (clone 492621; BD Biosciences 

Catalog #748063) at a dilution of 1:40 for 30 minutes covered on ice. Cells were then 

fixed with 2% paraformaldehyde for 20 minutes and analyzed with a Cytek Aurora flow 

cytometer. Analysis and figure generation was performed with FlowJo Software. PEAR1 

positive cells were identified by first gating single cells using forward and side scatter, then 

gating only live cells (zombie aqua dye negative), then gating for PEAR1+ cells as compared 

to a fluorescence minus one (FMO) control.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all cases, statistical analyses of data, including tests used, exact value of n (where 

n indicates the number of patient specimens that were available for a given analysis), 

definition of center, dispersion, and precision measures, and correction for false discovery 

rate (FDR) are reported in the descriptive sections of the results, Method Details section 

of STAR Methods, in corresponding figure legends, and in figures, themselves, where 

possible. Measures of significance or correlation are reported as p- or r-values, with p-values 

corrected for FDR, where appropriate. All patient specimens with material sufficient for 

analysis and with data passing quality control thresholds (described above in Method Details 

section of STAR Methods and in (Tyner et al., 2018)) were included in the cohort and 

dataset.

ADDITIONAL RESOURCES

All data can be accessed and queried through our online, interactive user interface, Vizome, 

at www.vizome.org/aml2. Original code for replicating the paper analyses based on publicly 

available data has been deposited at https://github.com/biodev/beataml2_manuscript. The 

DOI is listed in the key resources table. A frequently asked questions page for the dataset is 

found at https://biodev.github.io/BeatAML2/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Acute myeloid leukemia patient cohort with clinical, molecular, drug 

response data

• Validation and discovery of diverse biological features of drug response

• Broad mapping of tumor cell differentiation state impacting response to drugs

• Modeling reveals a strong and targetable determinant of clinical outcome
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Figure 1. Genomic features and outcomes for the Beat AML cohorts are concordant.
(A) The percentage of patients with a somatic mutation or gene fusion is shown for Waves 

1+2 and Waves 3+4 cohorts and percentage difference is shown (average difference is 

1.037%). (B) Overall survival is shown for Waves 1+2 and Waves 3+4 cohorts (p-value 0.2 

log-rank test). (C). Ex vivo drug response values are shown comparing the average AUC 

for each drug (points) within de novo AML patients comparing Waves 1+2 to Waves 3+4 

(Pearson’s correlation r=0.965). (D) Waves 3+4 can serve as validation cohort to assess 

prior mutation-inhibitor associations (Tyner et al., 2018). The difference in average response 

of specimens that are mutated versus wild type for a given gene (effect size) are plotted 

for Waves 1+2 on the x-axis and Waves 3+4 on the y-axis. Effect sizes were expressed as 

Glass’s delta with respect to the wild type group. Significance was based on the Welch’s 

t-test comparing mutated vs wild type and requiring a minimum of five mutations in Waves 
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1+2 and three mutations in Waves 3+4. Adjusted significance in Waves 1+2, Waves 3+4, or 

both are also annotated (qvalue < 0.05; (Storey and Tibshirani, 2003)).
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Figure 2. Differentiation scoring to characterize expression and mutational patterns.
We generated malignant cell-type gene expression scores for each of our patients relative 

to 6 sets of 30 genes derived from expression signatures from single-cell sequencing (Van 

Galen et al., 2019). (A) By examining the correlation of expression module eigengenes and 

the cell-type scores we can see that WGCNA expression modules (X-axis) show correlation 

with differentiation cell-type scores (y-axis). Pearson’s correlation r-values are annotated. 

(B) Similarly, we can determine the mutational events significantly associated with each of 

the cell-type scores. Shown are the signed –log10(Welch’s t-test p-values) for the differences 

in cell-type score with respect to mutational status. Up to the top 5 most significant (qvalue 

< 0.05; (Storey and Tibshirani, 2003)) mutational events associated with enrichment of each 

cell-type score are highlighted. Full data are available in Table S2.

Bottomly et al. Page 27

Cancer Cell. Author manuscript; available in PMC 2023 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Influence of cell-type on inhibitor response.
(A) We compared the cell-type gene expression scores, developed in Figure 2, with ex vivo 

drug response. Pearson’s correlation of ex vivo inhibitor response (measured by AUC) with 

each of the six cell-type scores reveals relationship between differentiation and resistance 

(blue) or sensitivity (red). Note, all drugs displayed in the heatmap showed a significant 

correlation with at least one cell-type (BY FDR < 0.05; (Benjamini and Yekutieli, 2001)). 

Panobinostat and Venetoclax are shown correlated with Monocyte-like score in Figure S3A. 

Asterisks indicate those inhibitors in which there is an interaction between mutation and 

cell-type, shown below in panel B (single asterisk, qvalue < 0.1; double asterisk, qvalue < 

0.05; (Storey and Tibshirani, 2003)). Full data are available in Table S3. (B) We examined 

whether correlations between drug response and cell-type score changed due to mutational 

status. Drug response modification was quantified by examining the significance (Y-axis) 

of the interaction between each mutational event and cell-type (x-axis) for each inhibitor, 

requiring a minimum of 10 mutations. Interactions with qvalue at two thresholds (q < 0.1; 
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q < 0.05) are called out by text and shape and distinguished by a dashed and solid line, 

respectively. As an example, the conditional relationships between sorafenib, FLT3-ITD, and 

cell-type scores are shown in Figure S3B, where sorafenib activity is robust in FLT3-ITD 

cases with a high progenitor-like score, but activity is lost in FLT3-ITD cases with a high 

monocyte-like score.
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Figure 4. Genomic associations of drug family response.
As in Figure 3A, we define sensitivity by red and resistant with blue and with white 

indicating intermediate. (A) Drug target information, where available, was annotated for all 

drugs on the panel, and these targets were mapped onto pathways to create drug families that 

share common targets and pathways. Full mapping of drug families is available in Table S4. 

Family-level drug response summaries allow us to identify cohort-level responses. Some like 

the Aurora Kinase family (Aurk) show overall resistance and others like Type XIII RTKs 

(Eph) or PIKK are overall sensitive. (B). We examined correlations between mutational 

status and drug family response. Mutational status associates with drug family response 

either in terms of significant (qvalue < 0.05; (Storey and Tibshirani, 2003)) sensitivity 

(red) or resistance (blue). Association tests were performed using Welch’s T-test comparing 

mutated vs wild type and requiring at least 5 mutations for a given mutational event. Effect 

size was based off of Glass’s delta using wild type as the reference. Full data are available in 

Table S5.
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Figure 5. Drug family response is influenced by and conditional on cell-type.
(A) Similar to the analysis of single-inhibitor responses and their correlation with cell-type 

score, shown in Figure 3A, we can group the drug families from Figure 4 by their 

association with cell-type differentiation scores based on their Pearson’s correlation (BY 

FDR < 0.05; (Benjamini and Yekutieli, 2001)). (B) We can also determine instances 

where drug family correlation with mutational state is conditional on cell-type (as we did 

for individual drugs in Figure 3B). The mutations that play a significant drug response 

modification role based on the statistical interaction between cell-type score and mutation, 

requiring at least 10 mutations per event is shown. The Y-axis indicates the signed -log10 

(Pvalue), the X-axis indicates cell-type. The interactions are listed by text (qvalue < 0.1 and 

qvalue < 0.05; (Storey and Tibshirani, 2003)) and distinguished by a dashed and solid line 

respectively. Full data are available in Table S6.
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Figure 6. Comprehensive analysis of clinical variables identifies PEAR1 expression as a 
prognostic factor in AML.
(A) We analyzed univariate associations between the 6 cell-type scores and the set of 9 

non-redundant WGCNA eigengenes with categorical and continuous clinical variables as 

well as overall survival across and within age subsets. Each variable type was grouped 

on the Y-axis and the displayed association values were derived from the corresponding 

test statistics. These include the Z statistic for categorical (logistic regression) and survival 

outcomes (Cox Proportional Hazards) and T-statistic for the continuous outcomes (general 

linear model). Average linkage hierarchical clustering was applied to rows (within groups) 

and columns (B; top) To understand which gene(s) among the module 3 WGCNA signature 

are the strongest drivers of the overall signature, we calculated the correlation of each gene 

with the module eigengene (kME). Of all the 203 genes in module 3, PEAR1 has the 

highest correlation. (B; bottom) The patient expression values (dots) of PEAR1 (x-axis) 

correlated highly with the Mod3 module eigengene (y-axis) and both are also correlated with 
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the ‘HSC-like’ malignant cell-type as indicated by the cell-type purple(low)-yellow(high) 

gradient as defined in Figure S2A. Full module gene components are available in Table 

S7. (C) A strategy based on a forest of conditional inference trees (cforest) was used 

to determine variables that differentiate overall survival. Age groups, expression modules 

(denoted with Mod*), gene mutation, AML gene fusions, and cell-type scores from in 

the harmonized dataset were all included in the model. The age groups are young (<45), 

middle (45–60), older (60–75), oldest (>75). Depiction of the resulting tree where oval 

splits indicate variables that most significantly split overall survival. Lines indicate values 

that were split on, for instance, “TRUE” for the ‘young’ variable, which indicates that 

the subgroup is <45 years old. The resulting subgroups of patients, rectangles that denote 

‘terminal nodes’, are listed with the subgroup size (denoted as n) and are colored to match 

corresponding survival curves.
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Figure 7. Integrative modeling shows PEAR1 expression is a single, independent predictor of 
poor prognosis.
(A) PEAR1 expression (y-axis) is significantly higher in Adverse compared to Favorable 

ELN 2017 risk categorization (x-axis) for patients 60 and over (dots; older + oldest group), 

but the pattern is less pronounced in patients < 60. Significance determined using a using a 

Welch’s T-test. (B) PEAR1 expression differentiates survival for young patients equivalently 

to the LSC17 signature. Categorization of samples into high and low expression groups for 

PEAR1 and LSC17 was determined using the ctree methodology to facilitate comparison 

with PEAR1. (C) We compared performance of PEAR1 and LSC17 using both ctree and the 

median expression values for each. Shown are the hazard ratios (HRs) and 95% confidence 

intervals (CIs) for PEAR1 and LSC17 in the entire cohort or in the younger patients as well 

as in all sample types or only in bone marrow samples. The categories were high vs low 

expression as determined by either median threshold or significant splits using ctree (i.e., 
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split type). In two instances, the ctree method failed to identify a split, and these are denoted 

with “N/A”.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BV650 Mouse Anti-Human PEAR1, clone 
492621

BD Biosciences Catalog # 748063

Human TruStain FcX (Fc Receptor Blocking 
Solution)

Biolegend Catalog # 422301

 

Bacterial and virus strains

n/a

 

Biological samples

AML Patient Samples Oregon Health & Science University (OHSU), 
University of Utah, University of Texas Medical 
Center (UT Southwestern), Stanford University, 
University of Miami, University of Colorado, 
University of Florida, National Institutes of 
Health (NIH), Fox Chase Cancer Center and 
University of Kansas (KUMC)

OHSU; IRB#9570; #4422; NCT01728402

Healthy Bone Marrow CD34+ Cells AllCells Custom Order

 

Chemicals, peptides, and recombinant proteins

Drug Source Catalog # | CAS #

17-AAG (Tanespimycin) LC Labs A-6880 | 75747–14-7

A-674563 Selleck S2670 | 552325–73-2

ABT-737 Selleck S1002 | 852808–04-9

Afatinib (BIBW-2992) LC Labs A-8644 | 850140–72-6

AGI-5198 Selleck S7185 | 1355326–35-0

AGI-6780 Selleck S7241 | 1432660–47-3

AKT Inhibitor IV Millipore Sigma (EMD Biosciences; 
Calbiochem) 124011 | 681281–88-9

AKT Inhibitor X Millipore Sigma (EMD Biosciences; 
Calbiochem) 124020 | 925681–41-0

Alisertib (MLN8237) Selleck S1133 | 1028486–01-2

AMPK Inhibitor Millipore Sigma (EMD Biosciences; 
Calbiochem) 171260 | 866405–64-3

Arsenic trioxide Fisher NC0244675 | 1327–53-3

Artemisinin Selleck S1282 | 63968–64-9

AST487 Selleck S6662 | 630124–46-8

AT-101 Selleck S2812 | 866541–93-7

AT7519 Selleck S1524 | 844442–38-2

Axitinib (AG-013736) LC Labs A-1107 | 319460–85-0

Azacytidine Selleck S1782 | 320–67-2

AZD1480 Selleck S2162 | 935666–88-9
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REAGENT or RESOURCE SOURCE IDENTIFIER

Baicalein Selleck S2268 | 491–67-8

Barasertib (AZD1152-HQPA) Selleck S1147 | 722544–51-6

Bay 11–7085 Selleck S7352 | 196309–76-9

BEZ235 LC Labs N-4288 | 915019–65-7

BI-2536 Selleck S1109 | 755038–02-9

Birinapant Selleck S7015 | 1260251–31-7

BLZ945 Selleck S7725 | 953769–46-5

BMS-345541 Selleck S8044 | 445430–58-0

BMS-754807 Selleck S1124 | 1001350–96-4

Bortezomib (Velcade) LC Labs B-1408 | 179324–69-7

Bosutinib (SKI-606) LC Labs B-1788 | 380843–75-4

Cabozantinib (XL184) Selleck S1119 | 849217–68-1

Canertinib (CI-1033) LC Labs C-1201 | 289499–45-2

Cediranib (AZD2171) LC Labs C-4300 | 288383–20-0

CHIR-99021 LC Labs C-6556 | 252917–06-9

CI-1040 (PD184352) LC Labs P-8499 | 212631–79-3

Crenolanib Selleck S2730 | 670220–88-9

Crizotinib (PF-2341066) LC Labs C-7900 | 877399–52-5

CYT387 Selleck S2219 | 1056634–68-4

Cytarabine Selleck S1648 | 147–94-4

Dasatinib LC Labs D-3307 | 302962–49-8

DBZ Tocris 4489 | 209984–56-5

Doramapimod (BIRB 796) LC Labs D-2744 | 285983–48-4

Dovitinib (CHIR-258) LC Labs D-3608 | 405169–16-6

Elesclomol Selleck S1052 | 488832–69-5

Entospletinib (GS-9973) Selleck S7523 | 1229208–44-9

Entrectinib Selleck S7998 | 1108743–60-7

Erlotinib LC Labs E-4007 | 183319–69-9

Etomoxir Selleck S8244 | 828934–41-4

Everolimus Selleck S1120 | 159351–69-6

Flavopiridol Selleck S1230 | 131740–09-5

Foretinib (XL880) LC Labs F-4185 | 849217–64-7

GDC-0879 Selleck S1104 | 905281–76-7

GDC-0941 LC Labs G-9252 | 957054–30-7

Gefitinib LC Labs G-4408 | 84475–35-2

Gilteritinib Selleck S7754 | 1254053–43-4

Go6976 LC Labs G-6203 | 136194–77-9

GSK-2879552 Selleck S7796 | 1902123–72-1

GSK690693 Selleck S1113 | 937174–76-0
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REAGENT or RESOURCE SOURCE IDENTIFIER

GW-2580 LC Labs G-5903 | 870483–87-7

H-89 LC Labs H5239 | 127243–85-0

Ibrutinib (PCI-32765) LC Labs I-3311 | 936563–96-1]

Idelalisib (GS-1101) Selleck S2226 | 870281–82-6

Imatinib LC Labs I5577 | 152459–95-5

Indisulam Selleck S9742 | 165668–41-7

INK-128 Selleck S2811 | 1224844–38-5

JAK Inhibitor I Millipore Sigma (EMD Biosciences; 
Calbiochem) 420099 | 457081–03-7

JNJ-28312141 SYN Kinase SYN-1154 | 885692–52-4

JNJ-38877605 Selleck S1114 | 943540–75-8

JNJ-7706621 Selleck S1249 | 443797–96-4

JNK Inhibitor II (SP600126) LC Labs S-7979 | 129–56-6

JQ1 Selleck S7110 | 1268524–70-4

KI20227 Tocris 4481 | 623142–96-1

KN92 Tocris 4130 | 1135280–28-2

KN93 Tocris 1278 | 139298–40-1

KU-55933 Selleck S1092 | 587871–26-9

KW-2449 Selleck S2158 | 1000669–72-6

Lapatinib Selleck S2111 | 231277–92-2

Lenalidomide Selleck S1029 | 191732–72-6

Lenvatinib Selleck S1164 | 857890–39-2

Lestaurtinib (CEP-701) LC Labs L-6307 | 111358–88-4

Linifanib (ABT-869) Selleck S1003 | 796967–16-3

Lovastatin Selleck S2061 | 75330–75-5

LY-333531 Tocris 4738 | 169939–93-9

LY294002 LC Labs L-7962 | 154447–36-6

Masitinib (AB-1010) LC Labs M-7007 | 790299–79-5

MEK Inhibitor VII Millipore Sigma (EMD Biosciences; 
Calbiochem) 444939 | 305350–87-2

Metformin Selleck S5958 | 657–24-9

MGCD-265 Selleck S1361 | 875337–44-3

Midostaurin LC Labs P-7600 | 120685–11-2

MK-2206 Selleck S1078 | 1032350–13-2

MLN120B MedChem Express HY-15473 | 783348–36-7

MLN8054 Selleck S1100 | 869363–13-3

Motesanib (AMG-706) LC Labs M-2900 | 857876–30-3

Neratinib (HKI-272) Selleck S2150 | 698387–09-6

NF-kB Activation Inhibitor Selleck S4902 | 545380–34-5

Nilotinib Selleck S1033 | 641571–10-0
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REAGENT or RESOURCE SOURCE IDENTIFIER

Nutlin 3a Selleck S8059 | 675576–98-4

NVP-ADW742 Selleck S1088 | 475488–23-4

NVP-AEW541 Selleck S1034 | 475489–16-8

NVP-TAE684 Selleck S1108 | 761439–42-3

Olaparib Selleck S1060 | 763113–22-0

OTX-015 Selleck S7360 | 202590–98-5

p38 MAP Kinase Inhibitor Millipore Sigma (EMD Biosciences; 
Calbiochem) 506126 | 219138–24-6

Palbociclib Selleck S4482 | 571190–30-2

Panobinostat Selleck S1030 | 404950–80-7

Pazopanib (GW786034) LC Labs P6706 | 444731–52-6

PD153035 Millipore Sigma (EMD Biosciences; 
Calbiochem) SML0564 | 183322–45-4

PD173955 Symansis SY-PD173955 | 260415–63-2

PD98059 LC Labs P-4313 | 167869–21-8

Pelitinib (EKB-569) Selleck S1392 | 257933–82-7

Perhexiline maleate Selleck S6959 | 6724–53-4

PH-797804 Selleck S2726 | 586379–66-0

PHA-665752 Selleck S1070 | 477575–56-7

PHT-427 Selleck S1556 | 1191951–57-1

PI-103 Selleck S1038 | 371935–74-9

PLX-4720 Selleck S1152 | 918505–84-7

Ponatinib (AP24534) LC Labs P-7022 | 943319–70-8

PP2 Millipore Sigma (EMD Biosciences; 
Calbiochem) 529573 | 172889–27-9

PP242 LC Labs P-6666 | 1092351–67-1

PRT062070 HCL Selleck S7634 | 1369761–01-2

PRT062607 Selleck S8032 | 1370261–97-4

Quizartinib (AC220) LC Labs Q-4747 | 950769–58-1

R406 Selleck S2194 | 841290–81-1

R547 Selleck S2688 | 741713–40-6

RAF265 (CHIR-265) Selleck S2161 | 927880–90-8

Ralimetinib (LY2228820) Selleck S1494 | 862507–23-1

Ranolazine (free base) Selleck S1799 | 95635–55-5

Rapamycin LC Labs R-5000 | 53123–88-9

Regorafenib (BAY 73–4506) Selleck S1178 | 755037–03-7

Roscovitine (CYC-202) LC Labs R-1234 | 186692–46-6

Ruxolitinib, free base LC Labs R-6600 | 120685–11-2

S31–201 Santa Cruz Biotech sc-204304 | 501919–59-1

Saracatinib (AZD0530) LC Labs S-8906 | 379231–04-6

SB-202190 LC Labs S-1700 | 152121–30-7
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REAGENT or RESOURCE SOURCE IDENTIFIER

SB-203580 LC Labs S-3400 | 152121–47-6

SB-431542 Selleck S1067 | 301836–41-9

Selinexor Selleck S7252 | 1393477–72-9

Selumetinib (AZD6244) LC Labs S-4490 | 606143–52-6

SGX-523 Selleck S1112 | 1022150–57-7

SNS-032 (BMS-387032) Selleck S1145 | 345627–80-7

Sorafenib tosylate LC Labs S-8502 | 475207–59-1

SR9011-HCL MedChem Express HY-16988A | 2070014–94-5

Staurosporine, free base LC Labs S-9300 | 62996–74-1]

STO609 Millipore Sigma (EMD Biosciences; 
Calbiochem) 570250 | 52029–86-4

SU11274 Selleck S1080 | 658084–23-2

SU14813 Selleck S0504 | 627908–92-3

Sunitinib malate LC Labs S-8803 | 341031–54-7

SYK Inhibitor Millipore Sigma (EMD Biosciences; 
Calbiochem) 574711 | 622387–85-3

Tandutinib (MLN518) LC Labs T-7802 | 387867–13-2

TG100–115 Selleck S1358 | 677297–51-7

TG101348 Active Biochem A-1140 | 936091–26-8

Tivozanib (AV-951) LC Labs T-6466 | 475108–18-0

Tofacitinib (CP-690550) LC Labs T-1377 | 477600–75-2

Tozasertib (VX-680) LC Labs T-2304 | 639089–54-6

Trametinib (GSK1120212) LC Labs T-8132 | 871700–17-3

Vandetanib (ZD6474) LC Labs V-9402 | 443913–73-3

Vargetef (Nintedanib) LC Labs N-9077 | 656247–17-5

Vatalanib (PTK787) LC Labs V-8303 | 212141–51-0

Vemurafenib (PLX4032) LC Labs V-2800 | 918504–65-1

Venetoclax LC Labs V-3579 | 1257044–40-8

Vismodegib (GDC-0449) LC Labs V-4050 | 879085–55-9

Volasertib (BI-6727) Selleck S2235 | 755038–65-4

VX-745 Tocris 3915 | 209410–46-8

XAV-939 Selleck S1180 | 284028–89-3

XMD 8–87 Selleck S8272 | 1234480–46-6

YM-155 Selleck S1130 | 781661–94-7

 

Other Chemical Source Catalog #

Zombie Aqua Fixable Viability Dye Biolegend Catalog # 423101

 

Critical commercial assays

Nextera RapidCapture Exome Illumina
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REAGENT or RESOURCE SOURCE IDENTIFIER

SureSelect Strand-Specific RNA Library 
Preparation Kit

Agilent

DNeasy Blood & Tissue Kit Qiagen

RNeasy Mini Kit Qiagen

 

Deposited data

DNA Sequencing Data This paper http://vizome.org/aml2/, dbGaP study 
ID is 30641 and accession ID is 
phs001657.v2.p1

RNA Sequencing Data This paper http://vizome.org/aml2/, dbGaP study 
ID is 30641 and accession ID is 
phs001657.v2.p1

 

Experimental models: Cell lines

n/a

 

Experimental models: Organisms/strains

n/a

 

Oligonucleotides

Custom capture probes for DNA sequencing 
(11.9 MB)

Roche-Nimblegen Sequencing coordinates listed Table S14 
of (Tyner et al., 2018)

Forward Primer FLT3: 5′- AGCA ATT TAG 
GTA TGA AAG CCA GCTA - 3′

Eurofins (Kottaridis et al., 2001)

Reverse Primer FLT3: 5′ - CTT TCA GCA 
TTT TGA CGG CAA CC - 3′

Eurofins (Kottaridis et al., 2001)

Forward Primer NPM1: 5′ - GTT TCT TTT 
TTT TTT TTT CCA GGC TAT TCA AG - 
3′

Eurofins (Falini et al., 2007)

Reverse Primer NPM1: 5′ - CAC GGT AGG 
GAA AGT TCT CAC TCT GC - 3′

Eurofins (Falini et al., 2007)

 

Recombinant DNA

n/a

 

Software and algorithms

R version 4.03 R Core Team https://www.r-project.org

R package GSVA v1.38 Bioconductor DOI: 10.18129/B9.bioc.GSVA

R package cqn v1.36 Bioconductor DOI: 10.18129/B9.bioc.cqn

R package qvalue v2.22.0 Bioconductor DOI: 10.18129/B9.bioc.qvalue

R package partykit v1.2–15 CRAN https://CRAN.R-project.org/
package=partykit

R package survival v3.2–7 CRAN https://CRAN.R-project.org/
package=survival

R package WGCNA v1.69 CRAN https://CRAN.R-project.org/
package=WGCNA
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REAGENT or RESOURCE SOURCE IDENTIFIER

R package data.table v1.13.6 CRAN https://CRAN.R-project.org/
package=data.table

Manuscript analysis workflow This paper DOI: 10.5281/zenodo.6773715

Other

Ex Vivo Drug Sensitivity Data This paper http://vizome.org/aml2/ and https://
biodev.github.io/BeatAML2/

Clinical Annotations This paper Table S1
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