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Abstract

Accurate identification of the presence, absence or possibility of relevant entities in clinical 

notes is important for healthcare professionals to quickly understand crucial clinical information. 

This introduces the task of assertion classification - to correctly identify the assertion status of 

an entity in the unstructured clinical notes. Recent rule-based and machine-learning approaches 

suffer from labor-intensive pattern engineering and severe class bias toward majority classes. To 

solve this problem, in this study, we propose a prompt-based learning approach, which treats 

the assertion classification task as a masked language auto-completion problem. We evaluated 

the model on six datasets. Our prompt-based method achieved a micro-averaged F-1 of 0.954 

on the i2b2 2010 assertion dataset, with ~1.8% improvements over previous works. In particular, 

our model showed excellence in detecting classes with few instances (few-shot). Evaluations 

on five external datasets showcase the outstanding generalizability of the prompt-based method 

to unseen data. To examine the rationality of our model, we further introduced two rationale 

faithfulness metrics: comprehensiveness and sufficiency. The results reveal that compared to the 

“pre-train, fine-tune” procedure, our prompt-based model has a stronger capability of identifying 

the comprehensive (~63.93%) and sufficient (~11.75%) linguistic features from free text. We 

further evaluated the model-agnostic explanations using LIME. The results imply a better rationale 

agreement between our model and human beings (~71.93% in average F-1), which demonstrates 

the superior trustworthiness of our model.
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1. Introduction

Assertion classification is the task of classifying the assertion status of clinical concepts 

expressed in natural languages, such as a diagnosis or condition being present, absent, 

or possible [1]. It is of substantial importance to the understanding of Electronic Health 

Records (EHRs) and has shown the great potential to benefit various clinical applications 

since the assertion status is a critical contextual property to automated clinical reasoning 

[2]. However, assertion classification has long been a challenging task due to the imbalance 

in the class distribution and the unstructured nature of clinical notes [3]. For example, 

classifying Possible assertions is particularly difficult because they have a much smaller 

occurring frequency than the Present and Absent assertions, and they are often expressed 

vaguely [2,4].

Various approaches have been explored for assertion classification. Some earliest attempts 

handled this task via hand-crafted rules and carefully designed heuristics [5,6]. For example, 

Chapman et al. [5] posited that medical language is lexically less ambiguous, and hence 

their model used a simple regular expression algorithm to detect negation cues (NegEx). 

Peng et al. [6] enhanced NegEx and utilized Universal Dependency patterns to design the 

rules. Rule-based approaches usually achieve a high precision but are often cited for a 

low recall due to the rigid hand-crafted patterns. While it is feasible to manually identify 

and implement high-quality patterns to achieve good precision, it is often impractical to 

exhaustively design all patterns necessary for a high recall. To overcome this limitation, 

machine learning approaches were explored, such as Conditional Random Fields [7] and 

Support Vector Machines [8–11].

More recently, several deep learning methods were introduced for assertion classification in 

the biomedical domain. Qian et al. [12] considered bringing the advantage of Convolutional 

Neural Networks to identifying the scopes of negations in clinical texts. Many others 

explored bidirectional Long-Short Term Memory for negation recognition [3,13–15]. 

Nowadays, transformer-based methods have become dominant [1,4]. While conventional 

deep learning methods demonstrated excellent performances, they typically rely on large 

amounts of labeled data to learn the distinguishing class features and are often hampered 

when the dataset is small or imbalanced.

To relieve these limitations, we introduce a powerful prompt-based learning approach for 

its proven capability of performing few-shot learning and rapid adaptation to new tasks 

with only a limited number of labeled examples. Prompting methods have shown success 

in various natural language tasks [16,17], such as knowledge probing [18,19], question 

answering [20], and textual entailment [21]. However, to the best of our knowledge, no 

previous work introduces prompt-based approaches to assertion classification. Our prompt-

based learning method treats the assertion classification task as a masked language auto-

completion problem. The model probabilistically generates a textual response to a given 

prompt defined by a task-specific template [22]. In this way, we can manipulate the 

model behaviors so that the pre-trained language model (LM) can learn to classify the 

assertion types. Prompting framework allows us to utilize the LMs pre-trained on massive 
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amounts of raw text, and to perform few-shot or even zero-shot learning by defining a new 

prompting function, which enables us to adapt to new tasks with few or no supervised 

data [22,23], reducing or obviating the need for large, supervised datasets. We trained a 

prompt-based model on the i2b2 2010 assertion dataset [24], and evaluated its performances 

on six datasets, including the i2b2 2010 assertion dataset, i2b2 2012 assertion dataset 

[25], MIMIC-III assertion dataset [4,26], BioScope [27], NegEx [28] and Chia [29]. The 

observed results demonstrated our prompt model’s superior classification capability and 

generalizability over the state-of-the-art approaches.

Beyond evaluating the performances of the NLP models, research interest has recently 

grown in revealing why models make specific predictions [30]. Model’s rationality measures 

how well the rationales (i.e., a snippet that supports outputs) provided by models align 

with human rationales, and the degree to which the provided rationales influence the 

corresponding predictions [30] Metrics such as precision, recall, and F-1 score can only 

measure partial quality and quantity aspects of model predictions, but cannot evaluate 

properties of the model’s rationality. Hence, the effectiveness of these NLP systems is 

limited by their current inability to explain their decisions to human beings, especially in 

clinical practices. To quantify the model’s rationality for model comparisons and progress 

tracking, we introduced two rationale faithfulness evaluation metrics, comprehensiveness 
and sufficiency, which measure to what extent the model adheres to human rationales. We 

further evaluated the alignments between the model explanations and the human rationales, 

and the results show the superior trustworthiness of our prompt-based method in terms of its 

better alignment with human rationales, compared to the state-of-the-art models. We believe 

that our prompt-based method provides a reasonable start featuring human rationales for 

assertion classification.

We will make our code and model publicly available to facilitate future research.1

2. Material and methods

2.1. Task of assertion classification

Assertion classification is the task of classifying if the patient has or had a given condition. 

Following the definition in the work of Uzuner et al. [24], the outcomes are Present, Absent, 
Possible, Conditional, Hypothetical, and Not Associated (Table 1).

In this work, we take an input sentence x with a given concept mention e and predict a label 

l from a fixed label set ℒ, based on a model P(l|x, e;θ). For example, given an input x = 

“This is very likely to be an asthma exacerbation” and e = “an asthma exacerbation”, we aim 

to predict a label l = “Possible” out of a 6-class label set.

2.2. Datasets

In this study, we included six independent datasets (Table 2).

1https://github.com/bionlplab/assertion_classification.
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i2b2 2010 assertion dataset. annotates a corpus of assertions in discharge summaries and 

progress reports from three institutions [24]. Six assertion types of medical concepts in 

clinical notes were manually annotated, including Present, Absent, Possible, Hypothetical, 
Conditional and Not Associated with the Patient. In the released version, there are 170 

annotated clinical notes in the training set and 256 notes in the test set. Table 2 reveals that 

the class distribution is highly imbalanced. For example, the number of training instances 

for Present is about 50 times more than the number of instances for Conditional and Not 
Associated with the Patient.

i2b2 2012 assertion dataset. contains 189 annotated notes in the training set and 119 notes in 

the test set from de-identified discharge summaries [25]. In the i2b2 2012 assertion dataset, 

clinical concepts were annotated with polarity attributes (whether an event was positive 

or negative) and modality attributes (whether an event occurred or not). We defined three 

assertion types. A concept is Present if its polarity is “positive” and its modality is “factual”, 

Absent if its polarity is “negative”, and Possible if its polarity is “positive” and its modality 

is “possible”. In this study, we only used the test set to assess the generalizability of the 

proposed model.

BioScope. provides a corpus of 3 assertion types (i.e., Present, Absent, Possible) annotated 

by two independent linguist annotators following the guidelines set up by a chief linguist 

[27]. The corpus consists of medical free texts, biological full papers and biological 

scientific abstracts, resulting in 1,954 notes.

MIMIC-III assertion dataset. annotates 3 assertion types (i.e., Present, Absent, Possible) in 

239 clinical notes, including 92 discharge summaries, 49 nursing notes, 23 physician notes, 

and 75 radiology reports [4]. The dataset follows the same annotation guidelines as the i2b2 

2010/VA challenge [24]. The detailed statistics of MIMIC-III subsets can be found in Table 

B.1 in Appendix A.

NegEx. annotates the Present and Absent assertion types in 116 de-identified discharge 

summaries dictated at two medical ICU’s at the University of Pittsburgh Medical Center. 

Assertions of medical concepts were first identified by a regular expression algorithm and 

then verified by three physicians.

Chia. is a large-scale corpus of patient eligibility criteria extracted from 1,000 interventional, 

Phase IV clinical trials registered on ClinicalTrials.gov [29]. From this dataset, a concept is 

Absent if there is a “has_negation” relation between this concept and a trigger word (e.g., 

“cannot”). In this study, we obtained 1,057 Absent concepts, and sampled the same number 

of Present concepts.

2.3. Prompt-based assertion classification

Given an input sentence x = {w0, …, wn} with a given concept mention e = {wi, …, wj}, 

the prompt function fprompt(x, e) will convert the input to a prompt xprompt, which is a textual 

string that includes a one-token answer slot [MASK]. The LM takes xprompt as the input, 

maps it to a sequence of token embeddings, and learns to select one answer z for the [MASK] 

token that can be mapped to the label space ℒ (Fig. 1).
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Prompt function.—The most natural way to create prompts is to manually create intuitive 

templates based on human introspection. In this work, we designed the prompt function 

fprompt(x, e) = “[CLS] w0… [E] e [/E]… wn [SEP] [E] e [/E] is [MASK] [SEP]” 

to generate a prompt xprompt for a sentence x. Specifically, we surrounded the concept-of-

interest tokens e in the input sentence with special indicator tokens [E] and [/E], whose 

embeddings were randomly initialized. We then concatenated the sentence with a prompting 

snippet “[E] e [/E] is [MASK]”, where the concept tokens were also surrounded by [E] 

and [/E]. The [SEP] token in the middle helps the model understand which part of xprompt 

belongs to the input sentence and which part belongs to the prompting question.

One sample input sequence looks like this: “[CLS] It is possible that she has [E] 

pneumonia [/E]. [SEP] [E] pneumonia [/E] is [MASK]. [SEP]”, where “pneumonia” is 

the concept we focus on in this case.

Answer search and label mapping.—LMs learned to search for the highest-scored 

word z ∈ Z to fill in the answer slot [MASK] in xprompt. For each specific prompt function, 

we defined Z as a set of permissible values for z, such as “positive” and “negative”. The 

highest-scored answer z can be further mapped to l ∈ ℒ in the label space.

Training details.—We trained a task-specific head by maximizing the log-probability of 

the correct label at the masked token, given the hidden vector of [MASK]. Taking xprompt as 

the input, LM’s probability of predicting assertion label l is:

p l ∣ xprompt, θ = p [MASK] = ℳ(l) ∣ xprompt

=
exp W zℎ[MASK]

∑zi ∈ Zexp W ziℎ[MASK]

where l ∈ ℒ is the correct label, ℳ(l) maps the label l to the word z in the answer 

vocabulary, h[MASK] is the hidden vector of the [MASK] token, and W represents the 

trainable weights. We fine-tuned the LM to minimize the cross-entropy loss.

2.4. Measuring rationality

Inspired by DeYoung et al. [30], we introduced two rationale faithfulness evaluation metrics 

comprehensiveness (do we need every sentence token to make a correct prediction?), 

and sufficiency (do the linguistic scopes contain enough information to make a correct 

prediction?) to provide reasonable comparisons of specific aspects of model’s rationality 

(Fig. 2). To better understand on what grounds our model took the decision, we adopted 

Local Interpretable Model-agnostic Explanations (LIME) [31] to explain the model 

predictions and further compared how the identified model explanations aligned with the 

human rationales.

Comprehensiveness.—Cue phrases are often used in natural language to provide key 

semantic information about a target [32]. For example, in the sentence “This is very likely 

to be an asthma exacerbation”, the phrase “very likely” can be semantically perceived as 

cue words of a Possible assertion to “an asthma exacerbation” by human beings. To measure 
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the rationale’s comprehensiveness, we constructed a counterexample for the input sentence 

x with a concept mention e, by removing the assertion cues c from the text, resulting in x/c. 

In our setting, let p l ∣ fprompt(x, e)  be the original prediction probability of our model for the 

class l. comprehensiveness is defined as the changes in the model’s predicted probabilities 

for the same class:

compreℎensiveness = p l ∣ fprompt(x, e) − p l ∣ fprompt(x/c, e) (1)

A higher comprehensiveness score reflects a more severe confidence drop in the model when 

removing the linguistic cues, which implies that the removed rationales are more influential 

in making the prediction. Therefore, the model with a higher comprehensiveness score tends 

to focus on the linguistic cues more heavily when making the prediction, indicating better 

adherence to human rationales.

Sufficiency.—A linguistic scope contains the semantic operator (i.e., cue phrase) and the 

objects it applies to [27]. For example, in the sentence “Right middle lobe abnormalities 

suggest airways disease rather than bacterial pneumonia”, the preposition “rather than” 

affects the interpretation of “bacterial pneumonia” instead of “airways disease”, since 

“airways disease” is not within its semantic scope. sufficiency is defined to evaluate to what 

degree the linguistic scopes are sufficient for our model to make a correct prediction. Denote 

s as the linguistic scope of the assertion in sentence x, and sufficiency can be formulated as:

sufficiency = p l ∣ fprompt(x, e) − p l ∣ fprompt(s, e) (2)

The sufficiency score can be used to imply a model’s capability of grasping the sufficient 

rationales from the text: a lower sufficiency score suggests that the model is more capable of 

making correct predictions by solely using the assertion scopes, hence a better capability of 

capturing sufficient features from the unstructured text.

LIME-based explanations.—LIME is a local interpretability model that can explain 

the predictions of any classifier. To obtain the explanations of a black-box model which 

has a complex decision function f, LIME samples instances, acquires predictions using f, 
and assigns continuous importance scores to tokens by the proximity to the instance being 

explained [31]. For example, in the sentence “Findings suggesting viral or reactive airway 

disease”, LIME assigns an importance score 0.52 to the token “suggesting” and 0.24 to the 

token “or” to explain the Possible assertion of “airway disease”. In this study, we converted 

the soft importance scores into discrete rationales by taking the top–n values. We set n to 1 

and 5, given the fact that the ground truth human rationales are short in length. We counted 

a token as a true positive if it overlaps with any ground truth cue words; otherwise, a false 

positive. We used these definitions to measure the token-level precision, recall, and F-1 

score. A higher F-1 score implies a better agreement of the model rationales with the human 

rationales, hence a more trustworthy model.

2.5. Experimental settings

There are various pre-trained LMs available for prompt-based learning, and we selected 

the BioBERT [33] which was additionally pre-trained on discharge summaries and further 
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fine-tuned on the i2b2 2010 training data [4]. AdamW optimizer [34] and weighted Cross-

Entropy loss were adopted. We used a learning rate of 10−6, batch size of 8, and 10 epochs 

of training with Early-Stopping enabled to prevent overfitting. Intel Core i9-9960X 16 cores 

processor, NVIDIA Quadro RTX 5000 GPU and a memory size of 128G were used in this 

work. Following the i2b2 2020 challenge task, we used the precision, recall, F-1, and micro 

F-1 (for multi-class) to evaluate the model performance.

3. Results and discussions

3.1. Assertion classification

3.1.1. Evaluation on the i2b2 2010 dataset—We selected the best-performed models 

in the i2b2 2010/VA challenge [24] as our baseline models, including Roberts et al. [8], 

Jiang et al. [9], Demner-Fushman et al. [10], Clark et al. [7], de Bruijn et al. [11].

We also compared our model with a feature-based Logistic Regression model and a 

fine-tuned ClinicalBERT model [33]. Table 3 shows that our proposed prompt model 

outperformed baseline methods by a large margin in terms of micro F-1 (> 1.8%). The 

BERT model achieved the second-best micro F-1 of 0.936. However, it failed to classify the 

few-shot classes, such as Conditional and Not Associated. In contrast, our prompt model 

boosted the classification performances of almost all classes, especially those few-shot ones, 

presenting a notable 1.85% improvement in the Hypothetical class and a 1.4% improvement 

in the Conditional class, demonstrating its superior capability of few-shot learning. We also 

noticed that compared to Demner-Fushman et al. [10], our prompt model reported a 9.6% 

lower F-1 in the Possible class.

The detailed class-wise precision and recall scores can be found in Table B.2 in Appendix 

A. We observed drastic improvements in the recall scores in most classes, except for a 

2.5% drop in the Present class. The tremendous recall boosts in the few-shot classes were 

particularly notable, 42% for Conditional and 11.7% for Not Associated. It is noticeable that 

there was a 4% increase on the precision score of Present, but a 0.2%–63.2% precision drop 

was also observed in other classes. The improved recall scores showed our model’s superior 

capability of identifying false negatives over state-of-the-art methods, which is critical in 

clinical practices.

We looked at some instances in the Possible class where our model failed to make correct 

predictions (Table 4, cases 1–3). In cases 1 and 2, our prompt model was not able to identify 

the possibleness reflected by the mentions of “consistent with”, mistakenly classifying the 

concepts to be Present. In case 3, our model sensed the hypothesis from the mention of “to 

reassess for”, hence classifying the “recurrent pleural effusion” to be Hypothetical.

We also looked at some error cases in the few-shot Conditional class (Table 4, cases 

4–7). In cases 4 and 5, there are certain conditions described in the clause following 

“when”, only under which the concepts-of-interest hold, but our model failed to identify the 

conditional prerequisites and mistakenly classified them into Present. In case 6, “symptoms” 

is conditional on “walk a few yards”, but our prompt method classified it as Absent. The 

double negative “could not walk a few yards” and “without developing symptoms” makes it 
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more difficult to classify the assertion of “symptoms”. In case 7, “allergy” is considered to 

be Conditional itself according to the annotation guideline, but our model classified it to be 

Possible.

3.1.2. Evaluations on external datasets—We further evaluated our model on five 

external datasets. We selected several baseline models for comparison, including one 

feature-based Logistic Regression model, two rule-based systems (NegEx [5] and RadText 

[35]), and a BERT-based model [4]. The class-wise performance comparisons in Tables 5 

and 6 show that our model demonstrated the best performances in almost all classes on 

all test sets. In Table 5, compared to the rule-based system RadText, drastic improvements 

can be observed on nearly all datasets. Compared to van Aken et al. [4], our prompt-based 

method achieved a noticeable 2% micro F-1 improvement on the BioScope dataset and 

reported comparable performances on other datasets. In Table 6, Chapman et al. [5] 

outperformed other methods on the NegEx dataset, but our prompt method showed superior 

or comparable results to other baselines, presenting a 0.3%–1.6% improvement in micro F-1 

on the remaining test sets.

The comparisons of micro F-1 scores and the detailed class-wise performance comparisons 

of MIMIC-III subsets can be found in Tables B.4 and B.5 in Appendix, respectively. Our 

proposed model had a slightly lower micro F-1 score than van Aken et al. [4] on the 

Physician Letters subset, but performed better on the other three subsets. The external 

evaluations showcased the prompt method’s outstanding generalizability to unseen data.

Comparing Tables 3, 5, and 6, we also observed that the performance improvement of our 

prompt model on the 3-type or 2-type assertion classification was not as substantial as that 

on the 6-type classification. One potential reason is that the class distribution of Present, 
Absent, and Possible is more balanced than other assertion types. For example, there are 

only 73 and 89 training instances for Conditional and Not Associated assertion types in the 

i2b2 2010 training set. The comparison demonstrates that prompt-based learning can achieve 

better and more robust performances than the standard fine-tuning learning, especially for 

the few-shot learning task. This capability might be useful in the clinical domain, where we 

often have a few training examples for a new task. In such a situation, prompting may offer a 

feasible alternative methodology.

3.2. Measuring rationality

We then evaluated the models’ rationality. Both the annotated linguistic scope and cue 

information of the concepts are required to compute the comprehensiveness and sufficiency. 

We utilized two datasets for measuring rationality, BioScope and an annotated corpus from 

i2b2 2010 dataset (the annotation details can be found in Appendix A). Note that both 

datasets only annotated the scopes and cues for the Possible and Absent concepts.

Fig. 3(a) compares the comprehensiveness scores of the Logistic Regression model, fine-

tuned BERT model and our prompt-based model on the BioScope dataset. Here, we 

hypothesize that removing the linguistic cues ought to decrease the model’s confidence 

in classifying assertions. The results show that the confidence in predicting Absent of 

the prompt model dropped by 79.03% (79.03% comprehensiveness), while the confidence 
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of the BERT model dropped by 69.09% (69.09% comprehensiveness) and the confidence 

of the Logistic Regression model only dropped by 14.99% (14.99% comprehensiveness). 

Similarly, the confidence in predicting Possible of the prompt model dropped by 48.84% 

(48.84% comprehensiveness), while the confidences of the BERT model and the Logistic 

Regression model dropped by 42.52% (42.52% comprehensiveness) and 30% (30% 

comprehensiveness) respectively. Here is one example, “Increase in markings centrally 

with streaky disease in lingula that has the appearance most suggestive of atelectasis, 

less likely early infiltrate”. After removing the linguistic cue “suggestive” from the input, 

the Logistic Regression model’s confidence of classifying “atelectasis” as Possible only 

dropped by 28.6%, the fine-tuned BERT model’s confidence dropped by 62.3%, while our 

prompt model’s confidence dropped by 98.9%. Fig. 3(c) compares the comprehensiveness 
scores on the annotated i2b2 2010 corpus. The prompt model is observed to yield a 

higher comprehensiveness than other models. The results prove that the prompt model is 

better at capturing comprehensive features that are aligned with human rationales to make 

predictions.

Fig. 3(b) compares the sufficiency scores of the Logistic Regression model, the fine-tuned 

BERT model and our prompt-based model on the BioScope dataset. Here, we hypothesize 

that the model should be able to come to a similar prediction (i.e., a smaller confidence 

drop) using only the linguistic scopes. The results show that the prompt model’s confidence 

in predicting Absent dropped by 19.31% (19.31% sufficiency), while the confidences 

of the BERT model and the Logistic Regression model dropped by 19.89% (19.89% 

sufficiency) and 20.74% (20.74% sufficiency) respectively. Similarly, the confidence in 

predicting Possible of the prompt model dropped by 4.20% (4.20% sufficiency), while the 

confidences of the BERT model and the Logistic Regression model dropped by 8.98% 

(8.98% sufficiency) and 14.72% (14.72% sufficiency) respectively. Here we also look at one 

example, “Scattered perihilar air space opacity with questionable left lower lobe opacity”. 

When only using the linguistic scopes “questionable left lower lobe opacity” as the input 

sentence, the fine-tuned BERT model’s confidence of classifying “lower lobe opacity” as 

Possible dropped drastically by 8.2%, the Logistic Regression model’s confidence dropped 

by 6.7%, while our prompt model’s confidence dropped by 0.4%, almost unchanged. Fig. 

3(d) compares the sufficiency scores on the i2b2 2010 corpus. We can observe that the 

prompt model reports a smaller confidence drop than the other two models when using 

only the linguistic scope information. The results suggest that the linguistic scopes are 

more adequate for a prompt model to make a prediction than for the BERT model and the 

feature-based machine learning model.

Fig. 3(e) compares the top-1 token-level F-1 scores of the Logistic Regression model, the 

fine-tuned BERT model and our prompt-based model on the BioScope dataset. The results 

show that the BERT model and the prompt model were comparable in terms of the Absent 
class F-1 scores, while the Logistic Regression model reported a much lower Absent class 

F-1 score. Our prompt-based model reported an F-1 score of 0.6705 in the Possible class, 

which was 14.95% higher than that of the fine-tuned BERT model. Fig. 3(f) compares the 

top-5 token-level F-1 scores the Logistic Regression model, the fine-tuned BERT model and 

our prompt-based model on the BioScope dataset. Our prompt-based model reported F-1 

scores of 0.4468 and 0.4728, respectively, in the Absent class and Possible class, which were 
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respectively 11.36% and 12.42% better than that of the fine-tuned BERT model, 21.34% 

and 20.25% better than that of the Logistic Regression model. The results imply a better 

rationale agreement between the prompt-based model and human beings, demonstrating 

superior model trustworthiness when compared to the BERT model and the feature-based 

machine learning model.

In summary, the evaluations show that our prompt method has better rationality for its 

faithfulness to the human rationales, and it is more trustworthy in terms of its rationale 

agreement with human beings.

3.3. Ablation study

We conducted several ablation studies to understand the effects of prompt engineering, label 

mapping and LM backbones in prompt-based learning.

3.3.1. Prompt engineering—We explored three types of prompt templates to evaluate 

the impact of prompt engineering (Table 7). Note that we kept all other model elements 

identical while the prompt template was the only variable here. P1 is to ask LMs to fill the 

assertion words in the [MASK] token based on their impressions of the whole sentence. P2 

provides the concept-of-interest together with a list of potential assertion types. It then asks 

LMs to choose one from the list. P3 provides LMs with the concept and asks LMs to fill in 

the assertion words. The evaluation was conducted on the i2b2 2010 test set. According to 

the results, P3 performed the best (a micro F-1 of 0.954), 0.5% higher than P1, and 0.4% 

higher than P2.

3.3.2. Label mapping—In this study, several label mapping approaches were explored 

(Table 8). M1 maps a single-letter answer to a classification label in a one-to-one manner. 

For example, the single-letter answer “P” maps to the label Present. M2 also does the 

mapping in a one-to-one fashion, but instead of using a single letter as the answer, it 

uses a single word. For example, the answer “positive” maps to the Present label. M3 

further extends M2 to a single-word many-to-one mapping. For example, both the answers 

“positive” and “present” can be mapped to the Present label. Among the three mapping 

approaches, M1 and M2 gave comparable performances, but M3 showed a 0.5% relative 

performance drop. The detailed mappings can be found in Table B.6 in Appendix A.

3.3.3. Backbone models—Our prompt-based method employs a LM as the backbone. 

Hence the model performance can vary when using different pre-trained LMs. To explore 

the impact of backbone models, we selected four pre-trained LMs, including BERT [36], 

BlueBERT [37], ClinicalBERT [33], and BioBERT+Discharge Summaries model [4]. We 

trained four prompt-based models on the assertion classification task, and compared their 

micro F-1 scores (Table 9). BioBERT+Discharge Summaries model performed 0.6% higher 

than the BERT model, 0.1% higher than the BlueBERT model and ClinicalBERT model.

In the ablation studies, though only three prompt templates and three label mapping 

approaches were evaluated, the reported 0.5% micro F-1 differences were not trivial. This 

implied that the importance of appropriate prompt engineering and answer designing should 

not be neglected. A more sophisticated prompt engineering (e.g., soft prompt templates 
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[38]) and label mapping design (e.g., soft answer tokens [39]) in building the clinical NLP 

application could potentially further improve the outcome. In the ablation study of backbone 

models, performance differences were identified among different LMs, and it is noticeable 

that BERT models fine-tuned on clinical notes or medical corpus demonstrated a better 

performance than the base BERT model.

4. Conclusions

In this work, we introduced the prompt-based method to the assertion classification 

task. Noticeable improvements were observed in the evaluations of six datasets, proving 

the effectiveness of prompting methods, especially in few-shot learning, compared to 

conventional supervised or fine-tuning methods. By introducing two rationale faithfulness 

metrics to measure our model’s rationality, we showed that our model demonstrated 

better adherence and faithfulness to human rationales. The evaluations of LIME-based 

explanations implied a better rationale alignment between our prompt-based model and 

human beings, which further proved better trustworthiness of our model. Through ablation 

studies, we showed the importance of prompt engineering and label mapping but found 

no significant performance differences using variant backbones. Compared to conventional 

machine learning-based systems, our method requires less exhausting feature engineering; 

compared to BERT-based systems, our method features better classification performances 

and explainability; compared to traditional rule-based systems, our method is way less labor-

intensive while possessing a more efficient inference capability. This enables our methods 

to better assist healthcare professionals to quickly understand crucial clinical information 

from clinical notes in several applications. For example, our prompt-based method can be 

incorporated with radiology report analysis for efficient assertion classification. Negative 

and uncertain assertions of medical findings are frequent in radiology reports [40]. Since 

they may indicate the absence or uncertainty of findings mentioned in the radiology report, 

identifying them is as important as identifying those positive ones. In our previous work, we 

developed NegBio [6,41]. It conducts pattern definition utilizing universal dependencies and 

graph traversal search using subgraph matching, so that the scope for negation/uncertainty 

is no longer restricted to the fixed word distance [42]. While NegBio has been widely used 

to harvest labels from radiology reports and construct chest X-ray databases such as NIH 

Chest X-ray and MIMIC, it is often impractical to exhaustively design high-quality patterns 

necessary for a new dataset, let alone to accommodate a new note type. Our prompt-based 

method provides an opportunity for high-performance assertion classification since it was 

trained on a diverse set of note types that covers various writing styles. In the future, we plan 

to integrate our model into clinical NLP pipelines, such as RadText [35], cTAKES [43], and 

medspaCy [44].

One limitation of our work is that the manual design of prompts and answers could inject 

bias into evaluations. Also, manually defining prompt templates may fail to discover optimal 

prompts. Automatic prompt generation methods and automated answer space searches can 

be further explored. Though our model demonstrated noticeable improvements in recall 

scores, we cannot neglect the performance drops in the precision scores. When evaluating 

the rationality of our model, we masked out some parts of the input sentence, which 

produced incomplete sentences. Such a perturbation could lead to several issues. For 
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example, the corrupted sentence could fall off the distribution of the training data [45]. 

Furthermore, there are ongoing discussions about LIME’s stability and robustness issues, 

that LIME can be stable when explaining linear models, but this may not be the case for 

non-linear models [46]. More sophisticated post-hoc explanation methods can be explored. 

We hope our results could encourage future work to address these limitations to further 

explore the potential of prompt-based learning.
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Appendix A.: Annotating rationales of the i2b2 2010 dataset

We randomly sampled 50 instances from the i2b2 2010 dataset, 34 of which were Absent 
assertions and 16 were Possible assertions. Two independent annotators annotated the cues 

and scopes of these 50 instances following the annotation guidelines of BioScope. Cases 

of the agreement were accepted without further checking, while differences between the 

two were resolved by a third expert, yielding the gold standard labeling of the corpus. 

After removing the ambiguous instances, there were 31 Absent assertions and 15 Possible 
assertions left. We measured the consistency level of the annotations using inter-annotator 

agreement analysis. We defined the inter-annotator agreement rate as the overall F-measures 

of one annotation, treating the second one as the gold standard [47]. Precision is the number 

of correct answers divided by the total number of answers a system has predicted. Recall is 

the number of correct answers divided by the total number of answers in the gold standard. 

We report high inter-annotator agreements (0.9787 for cue annotations and 0.9375 for scope 

annotations).

Appendix B

See Tables B.1–B.6.

Table B.1

Statistics of the MIMIC-III assertion dataset.

Note type Present Absent Possible Total

Discharge summaries 2,610 980 250 3,840

Nursing letters 293 59 14 366

Physician letters 204 66 34 304

Radiology reports 285 138 67 490
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Table B.2

Results of (P)recision, (R)ecall, and F-1 for each assertion type on the i2b2 2010 dataset. 

The best scores are bolded.

Model Present Absent Hypothetical

P R F-1 P R F-1 P R F-1

Logistic Regression 0.921 0.883 0.900 0.809 0.882 0.842 0.844 0.810 0.833

Roberts et al. [8]* 0.944 0.980 0.962 0.959 0.934 0.947 0.921 0.870 0.895

Jiang et al. [9]* 0.943 0.977 0.960 0.962 0.946 0.954 0.939 0.872 0.904

Demner et al. [10]⋄ 0.932 0.983 0.957 0.958 0.923 0.940 0.815 0.509 0.626

Clark et al. [7]* 0.937 0.980 0.958 0.955 0.920 0.937 0.924 0.859 0.890

de Bruijin et al. [11]⋄ 0.938 0.981 0.959 0.951 0.934 0.942 0.909 0.861 0.884

BERT model 0.936 0.983 0.959 0.967 0.943 0.955 0.906 0.898 0.902

Prompt-based 0.984 0.958 0.971 0.965 0.971 0.968 0.907 0.935 0.921

Possible Conditional Not Associated

Logistic Regression 0.441 0.482 0.464 0.462 0.487 0.471 0.501 0.735 0.596

Roberts et al. [8]* 0.816 0.589 0.684 0.729 0.298 0.423 0.915 0.814 0.861

Jiang et al. [9]* 0.761 0.593 0.666 0.714 0.270 0.391 0.962 0.782 0.863

Demner et al. [10]⋄ 0.937 0.792 0.859 0.759 0.257 0.384 0.917 0.766 0.835

Clark et al. [7]* 0.772 0.532 0.630 0.803 0.287 0.422 0.983 0.780 0.869

de Bruijin et al. [11]⋄ 0.818 0.530 0.643 0.963 0.152 0.263 0.955 0.724 0.824

BERT model 0.818 0.709 0.760 0.000 0.000 0.000 0.000 0.000 0.000

Prompt-based 0.709 0.825 0.763 0.331 0.907 0.485 0.824 0.931 0.875

*
- the numbers are from original paper, and were not directly comparable with our model.
⋄
- the numbers are computed based on the reported confusion matrices from the original paper, and were not directly 

comparable with our model.

Table B.3

Results of (P)recision, (R)ecall, and F-1 on the external evaluation datasets.

Dataset Model Present Absent Possible

P R F-1 P R F-1 P R F-1

i2b2 2010 Logistic Regression 0.934 0.918 0.926 0.835 0.900 0.866 0.490 0.447 0.468

NegEx [5] 0.881 0.975 0.925 0.885 0.792 0.836 – – –

RadText [35] 0.859 0.939 0.897 0.792 0.637 0.706 0.599 0.323 0.420

BERT model [4] 0.968 0.986 0.977 0.969 0.966 0.967 0.874 0.666 0.756

Prompt-based 0.975 0.985 0.980 0.973 0.976 0.975 0.835 0.712 0.769

i2b2 2012 Logistic Regression 0.944 0.899 0.921 0.725 0.847 0.782 0.508 0.595 0.548

NegEx [5] 0.913 0.962 0.937 0.779 0.855 0.815 – – –

RadText [35] 0.881 0.916 0.898 0.627 0.588 0.607 0.454 0.282 0.348

BERT model [4] 0.959 0.951 0.955 0.831 0.905 0.866 0.693 0.616 0.652

Prompt-based 0.961 0.951 0.956 0.846 0.906 0.875 0.671 0.641 0.656

BioScope Logistic Regression 0.904 0.989 0.945 0.724 0.847 0.780 0.919 0.592 0.720

NegEx [5] 0.784 0.999 0.879 0.658 0.587 0.621 – – –
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Dataset Model Present Absent Possible

P R F-1 P R F-1 P R F-1

RadText [35] 0.804 0.871 0.836 0.495 0.870 0.631 0.912 0.283 0.432

BERT model [4] 0.911 0.994 0.951 0.766 0.947 0.835 0.985 0.583 0.732

Prompt-based 0.941 0.991 0.966 0.752 0.908 0.823 0.961 0.702 0.811

MIMIC-III Logistic Regression 0.920 0.879 0.899 0.782 0.921 0.846 0.507 0.411 0.454

NegEx [5] 0.867 0.954 0.908 0.855 0.871 0.863 – – –

RadText 0.819 0.950 0.880 0.847 0.597 0.700 0.609 0.321 0.420

BERT model [4] 0.937 0.965 0.951 0.929 0.945 0.937 0.775 0.518 0.621

Prompt-based 0.946 0.953 0.950 0.922 0.945 0.933 0.722 0.611 0.662

NegEx Logistic Regression 0.985 0.874 0.926 0.725 0.945 0.821 – – –

NegEx [5] 0.977 0.988 0.983 0.951 0.912 0.931 – – –

RadText [35] 0.901 0.748 0.817 0.434 0.680 0.530 – – –

BERT model [4] 0.993 0.867 0.926 0.700 0.976 0.815 – – –

Prompt-based 0.975 0.907 0.940 0.747 0.912 0.821 – – –

Chia Logistic Regression 0.606 0.810 0.693 0.798 0.408 0.540 – – –

NegEx [5] 0.639 0.946 0.763 0.896 0.465 0.612 – – –

RadText [35] 0.570 0.916 0.703 0.803 0.293 0.430 – – –

BERT model [4] 0.640 0.944 0.763 0.915 0.467 0.619 – – –

Prompt-based 0.669 0.913 0.772 0.894 0.513 0.652 – – –

Table B.4

Micro F-1s on the MIMIC-III assertion dataset.

Model Discharge summaries Nursing letters Physician letters Radiology reports

Logistic Regression 0.865 0.820 0.805 0.837

NegEx [5] 0.877 0.915 0.783 0.767

RadText [35] 0.813 0.844 0.799 0.822

BERT model [4] 0.926 0.970 0.911 0.912

Prompt model 0.927 0.967 0.882 0.927

Table B.5

Results of (P)recision, (R)ecall, and F-1 on the MIMIC-III assertion dataset. The best scores 

are bolded.

Note type Model Present Absent Possible

P R F-1 P R F-1 P R F-1

Discharge 
summaries

Logistic 
Regression

0.923 0.890 0.906 0.792 0.917 0.850 0.521 0.396 0.450

NegEx [5] 0.876 0.961 0.917 0.881 0.878 0.879 – – –

RadText [35] 0.817 0.947 0.877 0.836 0.584 0.688 0.608 0.316 0.416

BERT model [4] 0.941 0.961 0.951 0.920 0.948 0.934 0.727 0.480 0.578
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Note type Model Present Absent Possible

P R F-1 P R F-1 P R F-1

Prompt-based 0.949 0.948 0.949 0.916 0.951 0.933 0.678 0.580 0.625

Nursing letters Logistic 
Regression

0.916 0.860 0.887 0.639 0.780 0.702 0.105 0.143 0.121

NegEx [5] 0.931 0.966 0.948 0.839 0.881 0.860 – – –

RadText [35] 0.875 0.956 0.914 0.719 0.390 0.506 0.429 0.429 0.429

BERT model [4] 0.980 0.983 0.981 0.966 0.949 0.957 0.786 0.786 0.786

Prompt-based 0.983 0.980 0.981 0.950 0.966 0.958 0.714 0.714 0.714

Physician letters Logistic 
Regression

0.912 0.814 0.860 0.628 0.952 0.756 0.682 0.469 0.556

NegEx [5] 0.809 0.912 0.857 0.703 0.788 0.743 – – –

RadText [35] 0.781 0.980 0.870 0.897 0.530 0.667 0.889 0.235 0.372

BERT model [4] 0.908 0.971 0.938 0.934 0.864 0.898 0.880 0.647 0.746

Prompt-based 0.895 0.956 0.924 0.887 0.833 0.859 0.875 0.618 0.724

Radiology reports Logistic 
Regression

0.887 0.856 0.871 0.876 0.971 0.921 0.516 0.478 0.496

NegEx [5] 0.767 0.902 0.829 0.768 0.862 0.812 – – –

RadText [35] 0.821 0.951 0.881 0.923 0.783 0.847 0.558 0.358 0.436

BERT model [4] 0.886 0.979 0.930 0.978 0.957 0.967 0.900 0.537 0.673

Prompt-based 0.923 0.968 0.945 0.970 0.942 0.956 0.825 0.702 0.758

Table B.6

Label mappings.

Present Absent Hypothetical

M1 P N H

M2 Present Absent Hypothetical

M3 P, Positive, Present N, Negative, Absent H, Hypothetical, Imaginary

Possible Conditional Not Associated

M1 U C O

M2 Possible Conditional Not-Associated

M3 U, Possible, Uncertain C, Conditional, Consequent O, Not-Associated, Irrelevant
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Fig. 1. 
Prompt-based assertion classification.
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Fig. 2. 
Comprehensiveness and sufficiency demonstrations. x is the input sentence, e is the concept 

of interest, c is the assertion semantic cue, s is the assertion scope containing the cue phrase 

and the objects it applies to.
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Fig. 3. 
Comparisons of model rationality. (a) comprehensiveness comparisons on BioScope. A 

higher comprehensiveness score implies a more important role the linguistic cues play in 

the model’s prediction. (b) sufficiency comparisons on BioScope. A lower sufficiency score 

implies the model’s better capability of capturing sufficient features. (c) comprehensiveness 
comparisons on i2b2 2010. (d) sufficiency comparisons on i2b2 2010. (e) Top-1 token-level 

F-1 comparisons on BioScope. A higher score implies the highest-scored model rationale 

token has a better agreement with the ground truth rationales. (f) Top-5 token-level F-1 

comparisons on BioScope. A higher score implies that the top-5 model rationale tokens are 

better aligned with the ground truth rationales.
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Table 1

Examples of assertion types. Concepts are italicized.

Assertion type Example

Present Severe systolic HTN is noted.

Absent There is no pericardial effusion.

Possible High CO and low SVR suggestive of sepsis.

Conditional Narcotics can cause constipation.

Hypothetical Return to the emergency room if he experiences any chest pain.

Not Associated Father had MI at 42.
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Table 5

Results of three-class assertion classification. The best scores are bolded.

Dataset Model Present Absent Possible micro F-1

i2b2 2010 Logistic Regression 0.926 0.866 0.468 0.888

RadText [35] 0.897 0.706 0.420 0.839

BERT model [4] 0.977 0.967 0.756 0.964

Prompt model 0.980 0.975 0.769 0.966

i2b2 2012 Logistic Regression 0.921 0.782 0.548 0.874

RadText [35] 0.898 0.607 0.348 0.829

BERT model [4] 0.955 0.866 0.652 0.924

Prompt model 0.956 0.875 0.656 0.927

BioScope Logistic Regression 0.945 0.780 0.720 0.877

RadText [35] 0.836 0.631 0.432 0.735

BERT model [4] 0.951 0.835 0.732 0.892

Prompt model 0.966 0.823 0.811 0.912

MIMIC-III Logistic Regression 0.899 0.846 0.454 0.855

RadText [35] 0.880 0.700 0.420 0.816

BERT model [4] 0.951 0.937 0.621 0.927

Prompt model 0.950 0.933 0.662 0.927
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Table 6

Results of two-class assertion classification. The best scores are bolded.

Dataset Model Present Absent micro F-1

i2b2 2010 Logistic Regression 0.926 0.866 0.911

NegEx [5] 0.925 0.836 0.906

RadText [35] 0.897 0.706 0.858

BERT model [4] 0.977 0.967 0.975

Prompt model 0.980 0.975 0.978

i2b2 2012 Logistic Regression 0.921 0.782 0.893

NegEx [5] 0.937 0.815 0.917

RadText [35] 0.898 0.607 0.853

BERT model [4] 0.955 0.866 0.940

Prompt model 0.956 0.875 0.943

BioScope Logistic Regression 0.945 0.780 0.914

NegEx [5] 0.879 0.621 0.847

RadText [35] 0.836 0.631 0.789

BERT model [4] 0.951 0.835 0.928

Prompt model 0.966 0.823 0.938

MIMIC-III Logistic Regression 0.899 0.846 0.883

NegEx [5] 0.908 0.863 0.896

RadText [35] 0.880 0.700 0.890

BERT model [4] 0.951 0.937 0.947

Prompt model 0.950 0.933 0.950

NegEx Logistic Regression 0.926 0.821 0.889

NegEx [5] 0.983 0.931 0.972

RadText [35] 0.817 0.530 0.734

BERT model [4] 0.926 0.815 0.890

Prompt model 0.940 0.821 0.938

Chia Logistic Regression 0.693 0.540 0.609

NegEx [5] 0.763 0.612 0.705

RadText [35] 0.703 0.430 0.609

BERT model [4] 0.763 0.619 0.708

Prompt model 0.772 0.652 0.724
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Table 8

Micro F-1 comparisons of different answer mappings.

Label Mapping micro F-1

M1: Single-letter one-to-one mapping 0.954

M2: Single-word one-to-one mapping 0.954

M3: Single-word many-to-one mapping 0.949
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Table 9

Micro F-1 comparisons of the prompt model using different backbone models.

Backbone Model micro F-1

BERT 0.948

BlueBERT 0.953

ClinicalBERT 0.953

BioBERT+Discharge summaries 0.954
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