Table 6.
Dataset | Model | Present | Absent | micro F-1 |
---|---|---|---|---|
i2b2 2010 | Logistic Regression | 0.926 | 0.866 | 0.911 |
NegEx [5] | 0.925 | 0.836 | 0.906 | |
RadText [35] | 0.897 | 0.706 | 0.858 | |
BERT model [4] | 0.977 | 0.967 | 0.975 | |
Prompt model | 0.980 | 0.975 | 0.978 | |
i2b2 2012 | Logistic Regression | 0.921 | 0.782 | 0.893 |
NegEx [5] | 0.937 | 0.815 | 0.917 | |
RadText [35] | 0.898 | 0.607 | 0.853 | |
BERT model [4] | 0.955 | 0.866 | 0.940 | |
Prompt model | 0.956 | 0.875 | 0.943 | |
BioScope | Logistic Regression | 0.945 | 0.780 | 0.914 |
NegEx [5] | 0.879 | 0.621 | 0.847 | |
RadText [35] | 0.836 | 0.631 | 0.789 | |
BERT model [4] | 0.951 | 0.835 | 0.928 | |
Prompt model | 0.966 | 0.823 | 0.938 | |
MIMIC-III | Logistic Regression | 0.899 | 0.846 | 0.883 |
NegEx [5] | 0.908 | 0.863 | 0.896 | |
RadText [35] | 0.880 | 0.700 | 0.890 | |
BERT model [4] | 0.951 | 0.937 | 0.947 | |
Prompt model | 0.950 | 0.933 | 0.950 | |
NegEx | Logistic Regression | 0.926 | 0.821 | 0.889 |
NegEx [5] | 0.983 | 0.931 | 0.972 | |
RadText [35] | 0.817 | 0.530 | 0.734 | |
BERT model [4] | 0.926 | 0.815 | 0.890 | |
Prompt model | 0.940 | 0.821 | 0.938 | |
Chia | Logistic Regression | 0.693 | 0.540 | 0.609 |
NegEx [5] | 0.763 | 0.612 | 0.705 | |
RadText [35] | 0.703 | 0.430 | 0.609 | |
BERT model [4] | 0.763 | 0.619 | 0.708 | |
Prompt model | 0.772 | 0.652 | 0.724 |