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Abstract

The application of whole-exome sequencing (WES) has led to the identification of high and 

moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming 

disease-causing variants remains challenging. We applied a gene co-expression network analysis 

to prioritize candidate genes identified from WES of 34 melanoma-prone families with at 

least three affected members sequenced per family (n=119 cases). A co-expression network 

was constructed from genotype-tissue expression (GTEx) project, skin melanoma from the 

cancer genome atlas (TCGA), and primary melanocyte cultures. We performed module-specific 

enrichment and focused on modules associated with pigmentation processes since they are 

the best-studied and most well-known risk factors for melanoma susceptibility. We found that 

pigmentation-associated modules across the four expression datasets examined were enriched 

for well-known melanoma susceptibility genes plus genes associated with pigmentation. We 

also used network properties to prioritize genes within pigmentation modules as candidate 

susceptibility genes. Integrating information from co-expression network analysis and variant 

prioritization, we identified 36 genes (such DCT, TPCN2, TRPM1, ATP10A and EPHA5) as 

potential melanoma risk genes in our families. Our approach also allowed us to link families 
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with “private” gene mutations based on gene co-expression patterns and thereby may provide an 

innovative perspective in gene identification in high-risk families.
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INTRODUCTION

The identification of rare and highly penetrant pathogenic variants in CDKN2A and CDK4 
was the start of a continued effort to uncover genetic susceptibility to cutaneous malignant 

melanoma (CMM). In the last several years, BAP1, POT1, ACD, TERF2IP, and TERT 
were also identified as high-risk melanoma susceptibility genes. Together, however, the 

pathogenic variants in these genes account for melanoma risk in only ~40 percent of familial 

cases (Read J et al., 2016). In addition, genome-wide association studies (GWAS) have 

identified a number of common and low-risk variants, including 54 significant loci in the 

latest largest GWAS (Landi MT et al., 2020); however, additional genetic susceptibility to 

CMM remains to be discovered.

Whole-exome sequencing (WES) is a valuable approach for identifying rare variants in 

high-risk pedigrees. However, the lack of recurrent variants or genes in multiple families, 

incomplete penetrance, and overwhelmingly large numbers of potential candidate variants 

have resulted in complexities of gene identification in many family studies. Alternative 

prioritization strategies followed by WES and novel analytical approaches to address the 

complexity of genetic susceptibility are critically needed.

The prioritization by coexpression is based on the principle that genes influencing and 

causing diseases are often functionally related; they participate in similar processes and 

pathways and are often coexpressed (Goh et al., 2007). This approach can be used 

for candidate disease gene prioritization, functional gene annotation, and transcriptional 

regulatory program identification (van Dam S et al., 2018). We constructed weighted 

correlation networks utilizing candidate genes from WES analysis of germline DNA from 

34 CMM families and information from disease-relevant expression profiles measured in 

melanocytes, skin cells, and cutaneous melanoma samples (Figure 1). Our primary goal 

was to prioritize genes from WES that share similar functions with known melanoma risk 

pathways and processes and provide mechanistic insight into how they influence disease 

susceptibility.

RESULTS

Construction of gene co-expression networks

After the WES bioinformatic processing of 34 families with at least three affected members 

sequenced per family, nonsynonymous variants were subjected to quality control check 

and filtered by minor allele frequency (MAF) as described in Methods. Eight thousand 

one hundred fifty-three variants resulting from WES analysis were then aggregated into 

5978 genes. The coexpression networks constructed from these genes in the four expression 
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datasets, genotype-tissue expression (GTEx) human skin sun-exposed, GTEx human skin 

not sun-exposed, TCGA skin cutaneous melanomas, and 106 primary melanocyte cell lines, 

consisted of 26, 25, 37, and 20 modules, respectively. Figure 2 shows the dendrograms of 

genes clustered, represented by different colors, based on a dissimilarity measure. Figure S1 

depicts the determination of soft-thresholding power in each dataset.

Identification and characterization of modules associated with pigmentation

Module-specific enrichment—We performed a module-specific enrichment in search 

of modules significantly enriched with melanin/pigmentation terms by gene ontology (GO) 

analysis. We focused on studying pigmentation modules because pigmentation processes 

are among the best-known risk factors for CMM susceptibility. This strategy may help 

us identify potentially novel genes coexpressed with previously well-known pigmentation-

related melanoma risk genes. Enrichment categories such as biological process, molecular 

function, and cellular component were analyzed in each module independently across the 

expression datasets, which comprised 108 modules in total. Enrichment for pigmentation 

was identified in the dark red (GTEx sun-exposed skin, 61 genes), dark green (GTEx 

sun non-exposed skin, 44 genes), green and red (TCGA SKCM, 183 genes), and brown 

(Melanocyte cell line, 244 genes) modules. The top 10 significantly enriched terms for 

the pigmentation modules in the two GTEx datasets and significant terms associated with 

pigmentation in selected modules in the TCGA and the melanocyte cell line are listed in 

Figure S2.

Module gene content—When comparing genes in these pigmentation-associated 

modules against a curated list of melanoma-related genes corresponding to well-known 

CMM susceptibility genes, GWAS loci, expression quantitative trait loci (eQTLs), genes 

with pleiotropic associations, and pigmentation genes from GO terms (Table S1), we found 

the enrichment of melanoma-related genes in pigmentation modules across the expression 

datasets (Figure 3). Genes mapped to pigmentation modules in multiple expression datasets 

included several well-known melanoma risk genes such as OCA2, MC1R, TYR, TYRP1, 
IRF4, MITF, and SLC45A2; newly identified GWAS loci such as MFSD12, and MSC; 

genes demonstrating pleiotropic associations with CMM and other risk factors such as 

SLC24A5, SLC24A4, and MXI1; and genes with a suggestive role in pigmentation 

processes from GO terms analysis but an unclear role in melanoma such as TRPM1, 

TPCN2, CDH3, LYST, and MYO5A. The pigmentation modules shared similar expression 

patterns and were enriched for functionally similar genes across datasets, with 75 genes 

mapped in more than two datasets in the pigmentation modules (Figure 3, Table S2, 

highlighted in bold). TYR, TYRP1, MFSD12, SLC24A5 and TPCN2 were identified in all 

four datasets. This pattern of shared genes among the expression datasets demonstrated the 

consistency of results and highlighted the value of using multiple disease-relevant expression 

datasets. These genes, especially those with disease co-segregating variants within families 

(Figure 3 highlighted in blue) and unknown role in melanoma susceptibility (Figure 3 

highlighted in pink), are considered as strong candidates for new CMM risk genes in our 

families. For example, EPHA5 and ATP10A were identified in pigmentation modules of 

three different expression datasets and variants in these genes were shared by at least three 

affected relatives within a family.
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Network properties—We also used network properties to prioritize genes within 

pigmentation modules as putative susceptibility genes. We first determined if the selected 

modules’ network topology was relevant for the function of pigmentation. We plotted 

the correlation between eigengene-based connectivity (kME) and gene significance (GS), 

among the selected pigmentation modules (Figure S3). We identified a strong correlation 

between kME and GS particularly for the dark red and dark green modules from GTEx 

sun-exposed (r=0.96, P=2.6e−34) and GTEx sun non-exposed (r=0.95, P=7.6e−23) datasets 

(Figure S3). This finding is important since it suggests that not only the pigmentation genes 

are informative, but the topology of the modules is also important for the functions related 

to pigmentation. The networks corresponding to these modules consisted of 44 nodes and 

364 edges for the dark green module and 61 nodes and 709 edges for the dark red module 

(Figure 4). Some known melanoma/pigmentation genes were grouped into a core of highly 

correlated genes radiating strong interconnections with candidate genes in both networks 

based on high topological overlap measure (TOM) values (darker edges in Figure 4).

We used network metrics to prioritize genes in pigmentation-related modules by selecting 

genes with the top 10 highest scores in kME, GS, and TOM metrics in each module. A 

complete list of network metrics and module assignments for all genes is included in Tables 

S3-S6. Notably, TYR, TYRP1, TRPM1, DCT, and TPCN2 were identified by network 

topology and network metrics. These and other genes that showed high scores in network 

metrics may relate to both pigmentation and melanoma and therefore were prioritized for 

further analyses.

Although the brown module in the primary melanocyte cell line showed genes associated 

with pigmentation and shared multiple genes related to this process with the other 

expression datasets, it did not show strong correlations with network metrics (Figure S3). 

To further explore and prioritize genes in the brown module, we analyzed the module 

substructure. A modularity analysis identified five distinct submodules, indicating gene 

subgroups with distinct expression patterns, with classic pigmentation genes represented by 

the blue color in Figure 5a. We therefore focused on genes in this subgroup, such as genes 

that showed direct coexpression with well-known melanin synthesis genes present in the 

module (TYR, TYRP1) and MITF, a master regulator of the melanocyte lineage. Using this 

strategy, we identified several genes with co-segregating variants in at least three affected 

members of the same family (e.g., ATP10A, EPHA2, MSR1, and WNT4) that we consider 

as potential CMM susceptibility genes (Figure 5b).

Gene and variant prioritization in WES families

Since rare, loss-of-function and predicted deleterious missense variants (see Methods) are 

more likely to influence predisposition and result in disease than other types of variants, 

we further restricted variants based on these criteria. Rare loss-of-function and predicted 

deleterious missense variants were prioritized from 1) known melanoma and pigmentation-

related genes; 2) genes with the highest scores in network property analyses; and 3) all genes 

with cosegregating variants in families.

Using this strategy, we identified 38 candidate variants in 36 genes (13 loss of function 

and 25 missense variants) as potential candidate genes in our families, which include some 
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well-known CMM risk genes such as TYR and TYRP1, and new genes with previously 

unknown roles in melanoma risk. Table 1 shows the type, location, and frequencies of these 

variants.

In our WES analysis, most families have a distinct set of candidate genes. Using network 

analysis, our data showed that although families may not harbor mutations in the same 

genes, they can be connected by genes in a co-expression network. Figure S4 shows an 

example of co-expressed genes with rare, potential pathogenic variants in families connected 

via pigmentation-related modules.

DISCUSSION

Using gene co-expression networks and multi-type data integration, we prioritized 

candidate risk genes identified from WES analysis of multiplex melanoma-prone 

families. We identified pigmentation-associated modules in multiple large disease-related 

expression datasets by weighted gene correlation network analysis (WGCNA) and 

functional enrichment analysis. All pigmentation-associated modules identified shared 

similar gene expression patterns and contained melanoma-related genes such as well-

known susceptibility genes, GWAS loci, eQTLs, genes with pleiotropic associations, and 

pigmentation genes across four different expression datasets. Integrating information from 

gene content, network property, and variant analyses allowed us to identify potential new 

candidates with close co-expression with known melanoma risk genes but previously 

unknown evidence for involvement in melanoma risk (e.g., DCT, TPCN2, TRPM1, 

ATP10A, EPHA5). In addition, our approach allowed the connection of families that do 

not share variants in the same affected genes but rather involve genes that interact with 

each other in co-expression networks, which may provide an innovative analysis perspective 

in addressing the common challenge of private mutations observed in WES analysis of 

families.

Our approach uncovered multiple genes with previous evidence for involvement in 

melanoma, such as genes identified from melanoma GWAS meta-analysis (TYRP1, 

MFSD12, MSC, CDH1, DSTYK, SOX6, MCF2L, and LMO3), genes showing pleiotropic 

associations with cutaneous melanoma and nevus count or hair color (SLC24A5, TFAP2B, 

SLC24A4, IRX6, MXI1, PPFIBP2, SYNE2, RREB1, ZFP36L1, FAT3, TMEM163, and 

DNAJB4), and well-known genes previously associated with familial melanoma such as 

CDKN2A, OCA2, TYR, and MC1R, which strengthens the functional implication of these 

candidate genes in the studied modules.

We also provided a framework that helps reconstruct molecular processes and implicates 

genes in biological processes to prioritize genes for further studies. We were able to identify 

coordinated co-expression patterns of several candidate susceptibility genes that participate 

in pigmentation signaling processes, particularly genes identified by network metrics in 

pigmentation modules of GTEx datasets and a submodule in melanocytes, that demonstrated 

a clear role in melanin production. For example, DCT (dopachrome tautomerase) is involved 

in the formation of eumelanin, and with TYR and TYRP1, it is under the regulation of 

MITF, a master gene of melanocyte lineage (Goding CR, 2000). In the melanosome, 
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tyrosine’s active uptake is required, which initiates a process of oxidation by TYR and 

other enzymes such as TYRP1 and DCT. The coupling of ion transport with SLC45A2, 

SLC24A5, and TPCN2 is critical in regulating the process since ion transport is necessary 

for melanosome function, with TYR activity being pH-dependent (Sturm RA and Duffy 

DL, 2012). MYO5A encodes a protein that is an actin-based motor involved in short-range 

movement of melanosomes, which is involved in moving melanosomes to the dendrites 

(Van Gele M 2009; Barral DC et al., 2004). The expression of TRPM1, which is a calcium 

permeable cation channel gene that is involved in malignant melanoma pathophysiology, has 

been shown to be inversely correlated with melanoma aggressiveness (Guo H et al., 2012).

Further, our analysis revealed molecular functions of some of the most recently identified 

GWAS genes. For example, MFSD12, was mapped to the pigmentation module, which is 

consistent with its role as a key promoter of cell proliferation in melanoma cells (Wei CY 

et al., 2019). This gene is also known for suppressing eumelanin biogenesis in melanocytes 

(Grawford NG et al., 2017).

Some genes that show co-segregation in families (blue in Figure 3) have recently been found 

to have putative functional roles in melanoma, as summarized in Table S7. For example, 

the embryonic stem cell factor SALL4 was shown to be upregulated in hyperplastic 

murine melanoma-prone melanocytes and that its expression was essential for melanoma 

primary tumor growth (Diener J et al., 2021). NNT, which encodes the mitochondrial redox-

regulating enzyme nicotinamide nucleotide transhydrogenase, mediates redox-dependent 

tyrosinase degradation and pigmentation via a UVB- and MITF-independent mechanism 

(Allouche J et al., 2021). Eph receptors are the largest family of receptor tyrosine kinases 

that play roles in multiple cellular processes such as cell proliferation, adhesion, and various 

developmental processes. In particular, EPHA2 is located on 1p36, which is a region 

frequently altered in tumors of neuroblastoma and melanoma (Sulman EP et al., 1997). 

A previous study demonstrated that EPHA2 was upregulated by ultraviolet radiation and is a 

critical oncogene in melanoma (Udayakumar D et al., 2012). These findings further support 

the functional relevance of the candidate genes prioritized by our co-expression network 

analysis approach.

To examine whether these potential CMM susceptibility genes are enriched for somatic 

alterations in melanoma tumors, we investigated somatic single nucleotide variations 

(SNVs) and copy number alterations (SCNAs) in top candidate genes in tumor samples 

using data from the NCI’s Genomic Data Commons (GDC), including 13,035 tumors 

from The Cancer Genome Atlas (TCGA) and The Therapeutically Applicable Research to 

Generate Effective Treatments (TARGET) projects. Given the high tumor mutational burden 

in skin cutaneous melanoma (SKCM), it is not surprising that mutation rates for most of 

these genes are higher in SKCM as compared to other cancer types. However, some of 

our candidate CMM susceptibility genes, such as CDKN2A, MSR1, SLFN11, and TRPM1 
for SNVs and CDKN2A, CDKN2B, TRPM1, and ZC3H12C for SCNAs, showed higher 

frequencies of alterations among SKCM than other tumors (Figure S5), supporting the role 

of these genes in melanoma involvement.
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The use of network analysis provided several distinctive advantages over single gene-based 

approaches. By capturing the broad organization of interactions, the network analysis 

provides molecular insights into potential risk genes and how they interact with each other to 

influence disease. Our multidimensional exploration allowed integrating expression profiles 

in specific tissues, exome data from families, and previous knowledge on susceptibility 

genes with co-expression modules. Combining information from different layers of genomic 

data may reveal new biologically interpretable associations and improve the accuracy of 

variant/gene predictions. We studied modules related to pigmentation, a critical process for 

melanoma susceptibility; however, our approach may also be applied to other pathways 

and biological processes such as telomere maintenance, immune response, melanocyte 

differentiation, and cell adhesion that have been associated with melanoma risk (Landi 

MT et al., 2020). One caveat of the approach is the lack of rigorous statistical tests in gene/

variant prioritization. Other limitations of our study include the inherent small number of 

patients in pedigree-based WES analyses and the lack of an independent dataset to replicate 

our results. In addition, the multiple genomic layers of information such as gene expression 

and WES data integrated onto the networks were not derived from the same set of samples. 

Further, functional characterization of the proposed candidate genes and understanding of 

their mechanisms of action are required to confirm whether they are indeed disease-causing.

In summary, using co-expression networks constructed from tissue-specific expression 

datasets and germline WES data as well as various gene/variant prioritization strategies, we 

identified potential risk genes for melanoma in our melanoma-prone families. Our study not 

only provides additional insight into melanoma susceptibility but also provides an alternative 

analytical perspective on gene prioritization in exome analyses of families with genetic 

heterogeneity. Further evaluation of candidate genes and validation in larger datasets are 

needed to confirm the relevance of these genes/variants in melanoma susceptibility.

MATERIALS AND METHODS

Exome analysis and variant filtering

All family members who were willing to participate in the study provided written informed 

consent under a National Cancer Institute (NCI) Institutional Review Board (IRB) approved 

protocol (NCT00040352; 02-C-0211). All methods were performed in accordance with the 

relevant guidelines and regulations.

WES of 34 families with at least three members affected with CMM per family (n=119 

CMM patients) was performed at the Cancer Genomics Research Laboratory, National 

Cancer Institute (CGR, NCI). Details of the exome capture, WES, and bioinformatics 

pipeline used have been previously described (Goldstein AM, 2017; Pathak A et al., 2015; 

Yang XR et al., 2016). Briefly, exome sequencing was performed to a sufficient depth to 

achieve a minimum coverage of 15 reads in at least 80% of the coding sequence from the 

UCSC hg19 transcripts database. Variant discovery and genotype calling were performed 

globally using three variant callers (UnifiedGenotyper and HaplotypeCaller modules from 

GATK and FreeBayes). We included all targeted regions, as well as a 250-bp flanking 

region on each side. An Ensemble variant calling pipeline (v0.2.2) was then implemented to 

integrate the analysis results.
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Genes were included for network reconstruction if they carry variants that met the following 

criteria: 1) had a minor allele frequency (MAF) of <0.001 in the 1000 Genomes Project, 

Exome Sequencing Project (ESP6500), and Exome Aggregation Consortium (ExAC); 2) 

were observed in ≤2 families from an in-house database (CGR, NCI) of ∼2000 exomes 

in ∼1000 cancer-prone families (excluding melanoma-prone or pancreatic cancer families); 

3) were classified as non-synonymous including frameshift, stopgain, inframe deletion or 

insertion, missense, and splicing site variants. Variants flagged with our pipeline quality 

control metric (CScorefilter), with read depth < 10, ABHet < 0.2 or > 0.8, or called by only 

one of the three callers used were excluded. Resulting variants were then aggregated into 

genes for the subsequent network analysis.

Expression datasets and pre-processing

Since skin is a heterogeneous tissue and CMM is a complex disease influenced by its 

cellular microenvironment, we attempted to capture the actual cellular target of melanoma 

by using expression datasets of disease-relevant cell types in a complementary manner. The 

co-expression networks used for this analysis were constructed from the aggregated genes 

resulting from the WES analysis of our CMM families and gene expression information 

from an extensive collection of samples: normal skin, melanocyte cells culture, and CMM 

tissues (Figure 1). We downloaded the expression data for normal human skin from the 

GTEx project (http://www.gtexportal.org, sun-exposed skin n=605, and sun non-exposed 

skin n=516), primary melanocyte cultures from 106 newborns as previously reported (Zhang 

T et al., 2018), and skin cutaneous melanomas (SKCM) from TCGA (n=329) at the 

Genomic Data Commons (https://gdc.cancer.gov/access-data). Normalized gene read counts, 

Fragment/Reads Per Kilobase Million (FPKM) or Transcripts Per Kilobase Million (TPM) 

were used, and only protein-coding genes were kept. A set of covariates identified using the 

Probabilistic Estimation of Expression Residuals (PEER) method were calculated (Stegle 

et al., 2010) to control for confounding effects and hidden batch effects in expression 

datasets. The median absolute deviation (MAD) was used as a measure of variability, only 

the top 4000 most variable genes based on MAD from the expression datasets were used for 

network construction.

Weighted gene co-expression networks to identify gene co-expression modules

Co-expression analyses were performed using the WGCNA approach (Langfelder P, 

Horvath S, 2008). We first calculated Pearson correlation coefficients for all gene-gene 

pairs across all samples in the dataset and obtained the correlation matrix for all genes. The 

matrix of correlations was then converted to an adjacent matrix of connection strengths, the 

process uses the scale-free topology criterion (Zhang B, Horvath S. 2005) to select the soft 

threshold power (β), which removes the weakly correlated genes while retaining the stronger 

ones. Adjacent matrices were then converted to topological overlapping matrices. Then 

hierarchical clustering was used to make a cluster dendrogram with branches corresponding 

to gene co-expression modules. Modules were precisely defined using the Dynamic Hybrid 

branch cutting algorithm following these parameters: deep split = 4, maximum cut height 

= 0.95, minimal module size = 30 genes, and genes with similar expression profiles were 

classified into the same gene modules (Langfelder P et al., 2008). Figure 1 shows the study 

workflow.
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To evaluate the functional relevance of the identified modules in relation to melanoma 

susceptibility and pigmentation processes and to rank genes within modules, we created 

a comprehensive list of genes that include known CMM susceptibility genes and genes 

that are related to pigmentation, which is a key process underlying melanoma biology. 

Specifically, we started by generating a list of genes located within GWAS loci, selected 

based on p < 2.3e−8 in a recent GWAS meta-analysis, which reported results from ~ 36,760 

cases of melanoma and 375,188 controls (Landi MT et al., 2020). Loci previously identified 

in CMM GWAS (Macgregor S et al., 2011; Bishop, D. T et al., 2009; Barrett J. H et al., 

2011; Law M. H et al., 2015; Duffy D. L et al., 2018), eQTLs, and a curated list of genes 

related to pigmentation and melanoma biology from GO term analysis, as well as known 

CMM high-, intermediate- and low-risk genes that had been identified by family studies 

and linkage analyses (Read J et al., 2016; Goldstein AM et al., 2017) were also included. 

Some genes are observed in more than one category. The list of above-mentioned genes, 

summarized as melanoma-related genes that were used for gene selection, is shown in Table 

S1.

GO Enrichment

To select modules with biological mechanisms associated with melanoma risk, such as 

melanin/pigmentation processes, module-specific enrichment was performed using GO 

enrichment analysis and the GOstats R package (Falcon S, Gentleman R 2007). Selection 

criteria for significance were set using a false discovery rate (FDR) and P-value less than 

0.05.

Network properties

Gene significance—To study whether candidate genes are related to pigmentation, the 

GS for each gene was calculated. GS is defined as the absolute value of the correlation 

between the expression of each candidate gene and the eigengene summarizing the 

expression of five key pigmentation genes (TYR, TYRP1, MC1R, ASIP, and OCA2). These 

genes were selected based on previous evidence of their role in pigmentation and CMM risk.

Module membership also known as eigengene-based connectivity—Based on 

the eigenvectors of each module (the first principal component of each module’s gene 

expression matrix), we calculated the correlation of the expression of each gene with the 

corresponding module eigengene in each module (Langfelder P, Horvath S. 2008). kME is a 

property inherent to each gene of how tightly a particular gene fit into its module.

Network representations—We studied module topology by depicting edges and their 

corresponding nodes using the TOM (Zhang B, Horvath S.A 2005). Network depictions 

were performed in Gephi (Bastian M HS, Jacomy M, 2009).

Gene and variant prioritization in WES families

Variants were prioritized from 1) known melanoma and pigmentation-related genes included 

in Table S1 and found in the modules studied; 2) genes with the highest scores in network 

property analyses; and 3) all genes with cosegregating variants in families (variants shared 

by at least three affected members within a family). Variant filtering was based on frequency 
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and pathogenicity criteria: (MAF of <0.001), high impact (frameshift indels, stop gain/loss, 

or known splice sites), and evidence of pathogenicity based on at least 2 in silico predictions 

algorithms (Meta Likelihood ratio: D, METASVM: D, and CADD: ≥ 20). The first two 

algorithms are Ensembl prediction scores that incorporate results from nine algorithms 

(SIFT, PolyPhen-2, GERP ++, Mutation Taster, Mutation Assessor, FATHMM, LRT, SiPhy, 

and PhyloP) and allele frequency (Dong C et al., 2015).
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kME eigengene-based connectivity

TOM topological overlap measure

GS gene significance

WGCNA weighted gene correlation network analysis
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Figure 1. 
Study workflow of whole-exome analysis and co-expression network analysis. Gene co-

expression networks and multi-type data integration (green boxes) were used to prioritize 

candidate risk genes from whole-exome analysis of melanoma-prone families. Various 

disease-related expression data (TCGA melanoma, primary melanocyte cultures, and skin 

in GTEx) were used for network construction. After the pre-processing of expression data, 

pairwise association was calculated for each gene pair in each dataset. The matrixes of 

correlations were then converted to adjacency matrixes of connection strengths. The soft 

threshold operation was used to identify strong correlations and remove weak or negative 

correlations, to make the correlation value in agreement with scale-free networks, and 

to identify biological significance. Modules within these networks were identified using 

clustering analysis. Functional enrichment, gene content analysis, and network properties 

were then performed on these modules.
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Figure 2. 
Module identification by Weighted Gene Correlation Network Analysis (WGCNA). The 

network analysis identified distinct modules of coexpressed genes. Dendrograms of genes 

were clustered based on a dissimilarity measure: (a) Sun-exposed skin, 26 modules (43 to 

521 genes); (b) Sun non-exposed skin, 25 modules (44 to 378 genes); (c) Skin cutaneous 

melanomas, 37 modules (37 to 365 genes); (d) Primary melanocyte cultures, 20 modules 

(67 to 639 genes). Each leaf (vertical line) in the dendrogram corresponds to a gene (top). 

The branches are expression modules of highly interconnected groups of genes with the 

color indicating the module assignment (bottom panel). Modules enriched with pigmentation 

terms are indicated by arrows: dark red (GTEx sun-exposed skin), dark green (GTEx 

sun non-exposed skin), green and red (TCGA SKCM), and brown (Melanocyte cell line) 

modules.
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Figure 3. 
Genes included in pigmentation-enriched modules across the four expression datasets. 

(a) Gene categories are depicted in colors. (b) Veen diagram showing numbers of genes 

in common. TYR, TYRP1, MFSD12, SLC24A5 and TPCN2 were identified in all four 

datasets.
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Figure 4. 
Network topology view of modules associated with pigmentation. Panel (a) dark red and 

panel (b) dark green modules from GTEx dataset. Edges with high topological overlapping 

matrices (TOM) and their corresponding nodes are displayed. Two genes have a high TOM 

if they are highly interconnected with the same set of genes, revealing strong co-expression 

relationships. Nodes are colored based on the type of genes used for gene content analysis. 

Some genes belong to more than one category.
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Figure 5. 
Network topology view of the pigmentation-associated brown module from the primary 

melanocyte cell line. (a) Modularity analysis of the brown module revealed five submodules 

of genes. The submodule containing classic pigmentation genes is shown on the right side of 

the figure (blue colored). (b) Genes with co-segregating variants showing co-expression with 

MITF, TYR and TYRP1.
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