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The gene encoding a hyperthermostable type II pullulanase produced by Thermococcus hydrothermalis
(Th-Apu) has been isolated. Analysis of a total of 5.2 kb of genomic DNA has revealed the presence of three
open reading frames, one of which (apuA) encodes the pullulanase. This enzyme is composed of 1,339 amino
acid residues and exhibits a multidomain structure. In addition to a typical N-terminal signal peptide, Th-Apu
possesses a catalytic domain, a domain bearing S-layer homology-like motifs, a Thr-rich region, and a potential
C-terminal transmembrane domain. The presence of these noncatalytic domains suggests that Th-Apu may be
anchored to the cell surface and be O glycosylated.

Pullulanases (EC 3.2.1.41) cleave the a-1,6 glucosidic bonds
in pullulan (2) and can be classified according to the additional
ability (type II) or inability (type I) to degrade the a-1,4 glu-
cosidic bonds of other polysaccharides (1). In recent years, a
considerable number of type II pullulanases (also termed amy-
lopullulanases) have been isolated from a wide variety of mi-
croorganisms, particularly thermophilic ones, since scientific
interest in this class of enzymes is motivated by industrial
applications (11, 18, 23, 25, 26, 39). To date, four members of
the archaeal order Thermococcales, Pyrococcus furiosus, Ther-
mococcus litoralis (3), P. woesei (35), and T. celer (4), have been
described as pullulanase producers. In each case, the pullula-
nase activity was described as type II and was localized in the
culture medium, indicating that these enzymes are secreted.
The enzymes from P. furiosus and T. litoralis have been de-
scribed as glycosylated and may be present in multiple forms.
In addition, the production of these enzymes appears to be
inducible, with malto-oligosaccharides being the principal in-
ducers. Among these enzymes, only those of P. furiosus and P.
woesei have been studied at the genetic level. In both cases, a
gene encoding a type II pullulanase has been isolated, cloned,
and characterized, although the actual nucleotide sequence of
the P. woesei type II pullulanase is not available for analysis.

Previously, we have characterized the amylolytic activities of
T. hydrothermalis and have shown that this archaebacterium
produces several amylolytic enzymes, including at least one
pullulanase (Th-Apu) (13, 19). Purification and characteriza-
tion of this enzyme have revealed that it is highly thermostable
and is capable of hydrolyzing the a-1,6 glucosidic bonds of
pullulan, producing maltotriose, and both the a-1,6 and a-1,4
glucosidic bonds of starch, producing oligosaccharides (degree
of polymerization, as low as 4) (12). In this work, we report the
isolation and characterization of the gene encoding Th-Apu, as

well as two other partial open reading frames (ORFs) which
encode mal-like operon elements.

Isolation and characterization of the Th-Apu gene and its
surrounding DNA environment. In order to isolate the gene
encoding Th-Apu, we first performed N-terminal microse-
quencing of the native protein purified from the medium of a
T. hydrothermalis AL662 culture. This yielded a sequence of 11
amino acid residues (AEPKPLNVIIV) which was compared to
the N-terminal sequence of the mature pullulanase from P.
furiosus (Pf-Apu) (12). The high degree of similarity between
these two small regions (9 of 11 amino acid residues are iden-
tical) indicated that the two proteins might share a high degree
of overall homology. Therefore, using the primary sequence of
Pf-Apu, three degenerate oligonucleotides were designed for
use in standard PCRs using T. hydrothermalis AL662 genomic
DNA as the template. In this way, specific sequences were
amplified and then sequenced, thus providing the necessary
sequence information to perform genome crawling in the up-
stream and downstream directions. Likewise, a 5,200-bp se-
quence was generated which contains the entire Th-Apu gene
(designated apuA) flanked by two partial ORFs. Translation of
the partial ORFs generated two polypeptides of 118 and 261
amino acids, respectively. The first of these proteins is highly
similar (81% identity) to the C-terminal part of the hypothet-
ical MalG-like protein from P. furiosus (10) and indeed dis-
plays identity with several known MalG proteins, including that
of Escherichia coli (41%) (9). Similarly, the second polypeptide
exhibits strong identity with several MalK proteins, including
those of E. coli (57% identity) (14), Salmonella typhimurium
(56% identity), and Enterobacter aerogenes (57% identity) (8),
leading us to the conclusion that this protein may be a MalK
homologue. The apparently promoterless apuA gene, surround-
ed by these mal-like genes, is composed of 4,011 bp, 2,562 bp
of which show some similarity (;40%) to the sequence encod-
ing Pf-Apu. However, the P. furiosus and T. hydrothermalis se-
quences diverge after this point. Whereas the Pf-Apu ORF
ends at this position with a stop codon, the T. hydrothermalis
ORF has an additional 1,449 bp before the stop codon (TGA)
is found.
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Primary structure analysis of Th-Apu. Translation of apuA
revealed a polypeptide sequence comprised of 1,339 amino
acids which are arranged into several well-defined domains
(Fig. 1). Like Pf-Apu, Th-Apu possesses an N-terminal se-
quence (amino acids 2 to 27) which bears the characteristics of
a signal peptide (33). The ensuing sequence (PUL), composed
of 827 amino acids, presents a high degree of sequence identity
(79%) with Pf-Apu and, as such, probably represents the cat-
alytic domain. Beyond this point, three other domain types,
absent in Pf-Apu, can be distinguished. The first of these con-
sists of two almost identical sequence repeats (R1 and R2),
each of which possesses a repeated motif which, when com-
pared to the PROSITE database, shows similarity to the S-
layer homology (SLH) signature. Alignment of these repeated
motifs with the prealigned sequences of ProDom domain 1624
(7) confirmed this finding while indicating that there is no
complete consensus between the Th-Apu motifs (Fig. 2). In-
deed, the latter part of the SLH consensus motif, defined as
ILLA TS R ASQ EDQ, where consensus amino acid residues
are in boldface (24) is absent in the first SLH motif of both
Th-Apu S-layer motif-bearing domains (SLD1 and SLD2),
while being barely distinguishable in the second SLH motif of
each of these domains. Although this sequence appears to be
a well-conserved element of the SLH motif, its absence does
not necessarily indicate that the Th-Apu-derived domains are
not SLDs, since a large sequence diversity exists, even among
the known eubacterial SLH motifs. Indeed, a similar, incom-
plete SLH motif in the SlpA protein of Clostridium thermocel-
lum has recently been described (21). Furthermore, apart from
this apparent divergence from the canonical sequence, the
alignment revealed that the thermococcal domains possess
most of the other pertinent features of a eubacterial SLD. In
contrast, comparison of the SLH motifs of Th-Apu with those
of several proteins from methanogenic archaebacteria (6, 28,
29) failed to reveal anything more than superficial similarity.

The presence of two SLDs in Th-Apu is interesting since
such domains have already been observed in a variety of ex-
tracellular polysaccharide-degrading enzymes, including three
from T. thermosulfurigenes, a type II pullulanase (26), a polyga-
lacturonate hydrolase and a xylanase (27), a xylanase from
C. thermocellum (16), and an a-amylase–pullulanase from
Bacillus sp. (18). Previous studies have indicated that these
enzyme-associated SLDs may be responsible for the anchoring
of proteins to the cell surface, possibly by interacting with
peptidoglycan in certain bacteria or with the S-layer itself via
SLH-SLH interactions (22, 31, 36).

A remarkable Thr-rich region (PET) follows domains R1
and R2 and precedes a smaller domain (TM) which shows a

FIG. 1. Multidomain structure of Th-Apu and comparison of this protein to
Pf-Apu. R1 and R2 are two homologous, 230-amino-acid (aa) residue repeats.
SLD1 and SLD2 (checkered) are SLH motif-bearing domains (containing ap-
proximately two and a half SLH motifs per domain). SP is a signal peptide, PET
is a Thr-rich domain, and TM is a hydrophobic C-terminal domain.
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striking resemblance to an inverted lipoprotein signal peptide
(34). Database searching revealed that this arrangement is very
similar to that found in the C termini of S-layer proteins
(SLPs) of Haloferax halobium (17) and H. volcanii (38). In
these proteins, the Thr-rich regions have been shown to be
targets for intensive O glycosylation (glucose-galactose disac-
charides) while the shorter, hydrophobic domains have been
proposed as transmembrane anchors. In Th-Apu, therefore, it
is possible that the PET domain is O glycosylated and that the
shorter, C-terminal TM domain serves as either a transmem-
brane anchor or, indeed, as a hydrophobic cell wall anchor,
rather like the C-terminal domain of the SLP of Corynebacte-
rium glutamicum (5).

Interestingly, several SLH-bearing enzymes exhibit varia-
tions of the Thr-rich region which are usually described as
linker regions. Indeed, in the case of the T. thermosulfurigenes
pullulanase, it has been suggested that this region, due to the
probable extended, flexible nature of its structure, would allow
optimal orientation of the enzyme’s catalytic site toward the
substrate (26). In another carbohydrate-degrading enzyme, the
glucoamylase from Aspergillus awamori, it has been shown that
this region is subject to O glycosylation (hypermannosylation)
and that its presence in this enzyme increases the efficiency of
degradation of insoluble starch granules (37). In the same way,
the glycosylated-linker regions of two glycanases from Cellu-
lomonas fimi appear to increase the affinity of these enzymes
for microcrystalline cellulose and may favor the disruption of
cellulose fibers (32).

Expression of the catalytic domain in E. coli. Having failed
in our attempts to obtain a plasmid containing an intact apuA
gene, we constructed a plasmid containing only the PUL do-
main of Th-Apu (pAPUD1). Expression trials using pAPUD1
led to the production of a significant amount of recombinant
protein in E. coli cells which was present in a soluble form in
the cytoplasmic fraction after cell lysis. Crude purification of
this protein could be achieved by a simple heat treatment
(80°C, 30 min) which provoked the precipitation of most of the
contaminating proteins. Examination of the recombinant pro-
tein by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis revealed the presence of two isoforms (the two spe-
cies have identical N-terminal sequences) which exhibit
molecular masses of approximately 90 and 85 kDa. Zymogram
analysis was then employed, the results of which showed that
both species possess thermostable pullulanolytic activity, indi-
cating that the catalytic determinants are indeed present within
the PUL domain.

Conclusion. On the basis of our results, we propose that
Th-Apu forms part of a maltose transport operon different
from the one previously described for T. litoralis (15). This
enzyme is probably secreted in T. hydrothermalis cells, although
rather than being released into the extracellular medium, Th-
APu may be anchored to the cell membrane or another hydro-
phobic component of the cell envelope via its TM domain, with
its catalytic domain exposed to the surrounding medium. By
analogy to other Pro-Thr-rich domains, it can be assumed that
the PET domain has a rather extended, perhaps flexible, con-
formation which would be susceptible to proteolytic digestion
(30). Thus, intense O glycosylation of this domain would re-
duce the vulnerability of this structure. With regard to its
function, the PET domain may serve as a linker and/or perform
a role similar to that of the Thr-rich region of the glucoamylase
from A. awamori or may fulfill a cell wall-anchoring role rather
like the Gly/Ser-rich region in SbsB (36). The role of the
Th-Apu SLDs is unclear since, to our knowledge, nothing is
known concerning the cell envelope of T. hydrothermalis. How-
ever, by analogy to other proteins which exhibit SLH motifs, we

speculate that these domains interact with a hitherto uniden-
tified component of the cell envelope.

Clearly, the idea that Th-Apu is localized at the cell surface
appears to contradict previous experimental data from chemo-
stat cultures which have indicated that Th-Apu is completely
secreted and released into the extracellular medium. However,
as others have already suggested (20, 26), it is possible that
cellular attachment may be a transient state prior to complete
release of the protein and/or that the prevailing conditions of
a chemostat culture may provoke the degradation of the cell
envelope, thus eliminating certain protein attachment points
(e.g., SLH anchoring determinants).

Nucleotide sequence accession number. The GenBank ac-
cession number for the 5.2-kb DNA fragment described here is
AF113969.
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