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ABSTRACT
◥

Genomic profiling of bronchoalveolar lavage (BAL) samples may
be useful for tumor profiling and diagnosis in the clinic. Here,
we compared tumor-derived mutations detected in BAL samples
from subjects with non–small cell lung cancer (NSCLC) to those
detected inmatched plasma samples. Cancer Personalized Profiling by
Deep Sequencing (CAPP-Seq) was used to genotype DNA purified
from BAL, plasma, and tumor samples from patients with NSCLC.
The characteristics of cell-free DNA (cfDNA) isolated from BAL fluid
were first characterized to optimize the technical approach. Somatic
mutations identified in tumor were then compared with those iden-
tified in BAL and plasma, and the potential of BAL cfDNA analysis to
distinguish lung cancer patients from risk-matched controls was
explored. In total, 200 biofluid and tumor samples from 38 cases and
21 controls undergoing BAL for lung cancer evaluation were profiled.
More tumor variants were identified in BAL cfDNA than plasma
cfDNA in all stages (P< 0.001) and in stage I to II disease only. Four of

21 controls harbored low levels of cancer-associated driver mutations
in BAL cfDNA [mean variant allele frequency (VAF)¼ 0.5%], sugges-
ting the presence of somatic mutations in nonmalignant airway cells.
Finally, using a Random Forest model with leave-one-out cross-
validation, anexploratoryBALgenomicclassifier identified lungcancer
with 69% sensitivity and 100% specificity in this cohort and detected
more cancers than BAL cytology. Detecting tumor-derived mutations
by targeted sequencing of BAL cfDNA is technically feasible and app-
ears to be more sensitive than plasma profiling. Further studies are
required to define optimal diagnostic applications and clinical utility.

Significance: Hybrid-capture, targeted deep sequencing of lung
cancer mutational burden in cell-free BAL fluid identifies more
tumor-derived mutations with increased allele frequencies com-
pared with plasma cell-free DNA.

See related commentary by Rolfo et al., p. 2826

Introduction
Lung cancer is the leading cause of cancer-related deaths worldwide

and the majority of patients are diagnosed with metastatic disease that
is generally incurable. Survival for lung cancer remains poor in large
part due to detection at late stages (1–3). Genotyping is now standard
of clinical care for treating lung cancer, but this can be difficult to
perform due to issues with the amount and quality of sample acquired
during clinical evaluation.

Therapies that target specific oncogenic alterations in lung cancers
have been approved for clinical use (4, 5). Appropriate use of these
therapies requiresmolecular profiling of lung tumor tissue. The diagnosis

and genomic profiling of lung cancer is achieved by biopsy or surgical
resection for patients with early-stage disease (localized or regional
disease) or biopsy alone for those with advanced disease (widespread).
Unfortunately, biopsy samples are difficult to obtain in a significant
subset of patients and/or contain insufficient material for mutation
profiling. As an example, for bronchoscopic biopsies of peripheral lung
lesions, diagnostic yield is 50% (6, 7) and adequate molecular profiling of
diagnostic biopsies ranges from60% to 100% (8, 9). Patients are therefore
frequently subjected to repeat sampling via multiple procedures, or
clinicians are left to render treatment decisions with incomplete data.

Chest practitioners have routinely performed bronchoalveolar
lavage (BAL) for decades at academic and community medical centers
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across the world with little change in practice and few new assays
developed to increase utility (10). BAL is simple to perform, easily
obtained, relatively inexpensive to process, and safely retrieved
during bronchoscopy for lung cancer evaluation, but it has a poor
yield for cancer diagnosis by cytology alone (11). Currently, there is
no role for BAL fluid to molecularly profile lung cancer, despite
evidence that it might provide complementary information to tissue
sampling (7).

Genomic profiling from a routine blood draw is a convenient and
promising approach to noninvasively profile lung cancer (12), yet its
utility for detecting and profiling early tumors is limited by the low
quantities of circulating tumor DNA (ctDNA) shed in patients with
low tumor burden (13).

Studying proximal fluids such as pleural fluid, urine, ascites, or
cerebrospinal fluid can enhance tumor detection since they are often
enriched for molecular markers of the cancer of interest. Molecular
analyses of biofluids to detect tumors and their associated mutation
profiles is therefore an important and emerging approach for solid
cancer evaluation (14–16). For lung cancer, new paradigms of biofluid
analysis for genomic analysis could reduce patient morbidity, decrease
costs of care, shorten time to treatment, and increase treatment
efficacy.

We hypothesized that BAL fluid from patients with early-stage lung
cancer is enriched for lung tumor–derived DNAwhen compared with
blood. To explore this question, we utilized Cancer Personalized
Profiling by Deep Sequencing (CAPP-Seq) to identify mutations in
regions of the genome that are commonly altered in lung
cancer (12, 17–19). We identified putative tumor mutations in BAL
fluid and then compared these results to tumor tissue and plasma
profiling. We demonstrate that BAL fluid obtained during routine
bronchoscopy frequently contains lung tumor-derived mutant DNA
and could add value to routine BAL cytology.

Materials and Methods
Patient enrollment

Our goal was to explore whether molecular profiling of BAL fluid
might have utility for genotyping and detection of lung cancer by
utilizing the CAPP-Seq platform (Supplementary Fig. S1). We per-
formed routine bronchoscopy and phlebotomy in patients undergoing
clinical evaluation for lung cancer to collect BAL and plasma samples
from 2015 to 2017 at Stanford Health Care (Stanford, CA). We
enrolled a separate cohort of patients without cancer who underwent
lung cancer screening from 2016 to 2017 at Vanderbilt Health
(Nashville, TN) to identify field cancerization and to then develop a
BAL genome classifier. Additional details on sample collection, DNA
extraction, library preparation, and statistical analyses of biofluids are
provided in the Supplementary Methods.

Written informed consent was obtained from the patients in this
study in accordance with ethical guidelines put forth by the Declara-
tion of Helsinki at each participating center. Protocols were approved
by the institutional review board at each center prior to initiation of the
study.

CAPP-Seq analysis
Targeted capture and sequencing analysis of all samples was

performed using CAPP-Seq (17). We employed a 302-kb CAPP-
Seq selector targeting 771 noncontiguous regions of the human
genome, spanning 276 genes (18). A maximum of 32 ng DNA was
input into sequencing library preparation. For plasma and BAL fluid
samples with less than 32 ng of isolated cell-free DNA (cfDNA), all the

extracted cfDNA was used for library preparation, down to a mini-
mum of 16 ng. Samples were sequenced using 2� 100 or 2� 150 reads
on an Illumina HiSeq 2500 or 4000. Sequencing data were processed
using a previously described bioinformatics pipeline (12, 17). SNVs
and indels were genotyped in all samples (17).

Mutation identification pipeline
Tumor informed

Mutational profiling of primary tumor biopsy samples in 34
patients was performed in the Stanford pathology department using
the Solid Tumor Actionable Mutation Panel (STAMP), a Clinical
Laboratory Improvement Amendments (CLIA)–certified tumor
genotyping assay (20). Variants that were identified in tumor tissue
were then compared to the corresponding biofluids from these
patients (18). We limited our analysis to genomic positions targeted
by both STAMP and the lung cancer-focused CAPP-Seq selector.
62 genes (53.5 kb total) overlapped between the STAMP (150 total
genes) and CAPP-Seq (276 total genes) panels. Overlapping posi-
tions were identified to generate patient-specific tumor variant lists
after removing germline variants that were identified by sequencing
germline DNA from plasma depleted whole blood. Sequencing
results from corresponding plasma, BAL cfDNA and BAL cell
pellets were then queried for the presence of single-nucleotide
variants (SNV) and small structural variants (indels) that were
identified in matched tumor tissue using our previously described
Monte-Carlo–based ctDNA detection index (12, 14, 21, 22). We
refer to variants detected in tumor and biofluids as tumor-derived.

Tumor-na€�ve
BAL is usually performed during a biopsy procedure or prior to

surgical resection, so determining whether BAL mutation detection is
useful without a priori knowledge of a tumor’s molecular profile is
relevant for clinical utility assessment. To study this question, we
applied an adaptation of a previously described tumor-na€�ve geno-
typing strategy developed by our group to analyze BAL cfDNA (19).
SNVs for patients with cancer and noncancer patients for all se-
quenced plasma cfDNA and BAL cfDNA were identified without
using primary biopsy data after comparing to matched germline DNA
as previously described (12, 17, 19).

BAL genomic classifier model development
We also performed an exploratory analysis to determine whether

BAL fluid profiling might be useful for diagnosis of lung cancer. In
order to classify benign controls versus lung cancer cases, the following
set of features was defined to summarize the mutations identified in a
BAL sample: (i) the mean variant allele frequency (VAF) across all the
mutations identified (mVAF), (ii) the total number of mutations (n),
(ii) the maximum allele frequency (mxVAF), (iv) the number of
mutations identified that were observed in ≥1 cancer cases observed
in the COSMIC database (CosmicGenomeScreens v85; nCOSMIC1),
(v) the number of mutations identified that were observed in ≥1 lung
cancer cases in the COSMIC database (CosmicGenomeScreens v85;
nCOSMICL1), (vi) the number of mutations identified that were
observed in ≥10 lung cancer cases observed in the COSMIC database
(CosmicGenomeScreens v85; nCOSMICL10), (vii) the number of
mutations in canonical lung cancer driver genes (lung_driver;
ref. 23), (viii) the mean allele frequency of nonsynonymous muta-
tions (ns mVAF), (ix) the number of nonsynonymous mutations
(nns), (x) the fraction of mutations present in matched leukocyte
DNA (nGp), and (xi) fraction of mutations with a control-compared
empirical P ≤ 0.05 or nCOSMICL1 > 0 (nEp).
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Using these 11 features a Random Forest model with n ¼ 1,000
trees was then trained, and a classifier was generated through a
leave-one-out cross-validation framework. An ROC curve and its
AUC were used to summarize model performance. Diagnostic
sensitivity and specificity were calculated per standard methods
based on the derived ROC curves. R packages randomForest and
pROC were used for the analysis. To evaluate individual feature
importance for the proposed classifier, we used the ‘mean decrease
in accuracy’ metric and summarized this metric across the models
generated in the leave-one-out cross-validation. A comparison with
BAL cytology was performed by AUC analysis, where BAL cytology
was dichotomized as not diagnostic for cancer for atypical, suspi-
cious or no malignancy detected and diagnostic for cancer if
definitive malignant cells were reported.

Data availability
The data generated in this study are available within the article and

its supplementary data files. Additional data generated not reported
herein are available upon request from the corresponding author. Raw
data for this study were generated at Stanford University and are
available from the corresponding author upon request if permitted by
the local institutional review board.

Results
Cohort

In total, we analyzed 200 samples from 59 participants that included
38 subjects with lung cancer and 21 high-risk controls without cancer
(Supplementary Table S1). Controls were patients who had nodules
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Figure 1.

Characteristics of BAL DNA from
lung cancer. A, cfDNA fragment size
distribution for two representative BAL
cfDNA samples. FU, fluorescence units.
B, DNA fragment size for BAL cfDNA
stratified by a 500-bp threshold
(orange, >500 bp; blue, <500 bp) for
n ¼ 12 patients (x-axis). C, Median
sequencing depth obtained from BAL
cfDNA samples with and without shear-
ing.D,Number of mutations detected in
both sheared and unsheared samples or
in sheared samples alone for the two
patients from C. A total of 42 mutations
were detected in sheared samples ver-
sus 18 in unsheared (P < 0.001). E, BAL
DNA concentrations in 20 patients with
lung cancer for BAL cfDNA and BAL
cellular DNA. F, Comparison of mean
VAF% for BAL cfDNA and BAL cellular
DNA for 15 patients. ND, not detected. P
is displayed above the plot.
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detected on CT scan that ultimately were diagnosed as not having
cancer (n ¼ 11) or were undergoing lung cancer screening based on
age and tobacco history and did not have cancer (n¼ 10). 34 patients
with lung cancer had their primary tumor sequenced by STAMP
(Supplementary methods). For each subject we profiled matching
BAL fluid, plasma, and plasma depleted whole blood (PDWB) by
CAPP-Seq (17, 19). Most BAL specimens from patients with cancer
were adequate for library preparation and sequencing after extraction
(35 of 38, 92%). All 21 control subjects at risk for lung cancer had
adequate cfDNA isolated from BAL fluid and plasma to carry forward
for sequencing.

Characteristics of BAL cellular DNA
Because sequencing of BAL fluid is not well characterized in the

literature (24–26), we assessed the quality of DNA and sequencing
between the BAL cell pellet (BAL cellular DNA) and supernatant (BAL
cfDNA). DNA fragments from BAL cfDNAwere consistently larger in
size when compared with plasma fragments that have a stereotyped
size distribution with a mode fragment size of approximately 167 bp
(Fig. 1A and B; ref. 27). We therefore sequenced BAL cfDNA before
and after DNA shearing to understand the impact of fragment size on
our ability to genotype tumor-derived mutations in BAL cfDNA.
Sheared BAL cfDNA samples yielded more unique, “deduplicated”
DNA reads and detectedmore mutations than unsheared BAL cfDNA
(Fig. 1C and D). Based on these results, all subsequent BAL cfDNA
samples analyzed were sheared before library preparation and
sequencing.

In 20 patients with lung cancer, BAL cellular DNA concentrations
ranged from 38.5 to 44,213 ng/mL (median, 1,007 ng/mL), which was
34 times higher compared with BAL cfDNA (range, 1.3–7,795 ng/mL;
median, 29.3 ng/mL; P < 0.001; Fig. 1E). Despite more DNA being
present in cellular BAL, the median VAF of tumor-derived mutations
was significantly lower in BAL cellular DNA (0.11%, range, 0%–34%)
compared with BAL cfDNA (0.99%, range, 0%–51%; n ¼ 15; P ¼
0.048; Fig. 1F; Supplementary Table S2). Furthermore, 87% of BAL
cfDNA samples contained tumor-derived DNA as determined by
tumor-informed monitoring using a cut-off of P < 0.05 to identify
variants compared with only 60% in cellular BAL. Finally, the mean
VAF of all mutations detected in BAL cfDNA samples was higher in 11
of the 15 BAL samples that analyzed both BAL cfDNA and BAL
cellular DNA. Taken together, these results suggest that BAL cfDNA
best captures tumor-derived fragments, and we therefore focused on
sequencing BAL cfDNA for our subsequent analyses.

Cell-free BAL fluid contains a higher concentration of tumor
DNA than plasma

DNA was extracted from a median of 4.7 mL of cell-free BAL
[interquartile range (IQR): 4.1–7.0 mL] and 4.0 mL plasma (IQR:
3.8–4.9 mL) from 38 cancer subjects to input for library preparation
and sequencing (Supplementary Table S3). DNA quantity extracted
from BAL cfDNA (P ¼ 0.71) and plasma (P ¼ 0.29) did not differ
stratified by stage I/II versus III/IV lung cancer. Median dedupli-
cated read depth per sample for BAL cfDNA and plasma cfDNA
samples was 2,228 (IQR: 1,366–3,240) and 3,612 (IQR: 2,666–4,903)
respectively (P < 0.001; Supplementary Fig. S2). Read depth did not
differ by tumor stage for BAL cfDNA (P ¼ 0.46) or plasma cfDNA
(P ¼ 0.30).

We identified a median of four mutations per tumor. Mutations
affecting TP53 and KRAS were the most frequent alterations detected
(41% and 35% of tumors respectively; Supplementary Table S4).
Patient smoking status (ever vs. never) was associated with more

tumor mutations (P ¼ 0.015), but age (>65 years, P ¼ 0.66), gender
(P ¼ 0.30) and stage (I/II vs. III/IV, P ¼ 0.33) were not.

Using tumor-informed analysis (which leverages prior knowledge
of somatic mutations from tumor tissue sequencing), we identified
tumor-derived variants (SNVs and indels) in 81% of BAL cfDNA
samples and 47% of plasma cfDNA samples (P ¼ 0.016; Table 1).
There was no significant association between stage and the number of
tumor-derived mutations identified in BAL cfDNA (I–II vs. III–IV,
P ¼ 0.96; Supplementary Table S5). SNVs were identified in 21 of 27
BAL cfDNA samples (78%) compared with 14 of 27 plasma cfDNA
samples (52%, P ¼ 0.12; Fig. 2A; Supplementary Table S5). Further-
more, the tumor-derived mean VAF% of SNVs was higher in BAL
cfDNA than for plasma cfDNA in 22 of 27 patients (P¼ 0.001; Fig. 2B).

We then applied a tumor-na€�ve calling approach that would approx-
imate a clinical scenario where tumor mutation data was not available,
such as in the diagnostic setting (Supplementary Tables S6 and S7). We
again observed that analysis of BAL cfDNA identified more tumor-
associated variants than analysis of plasma (SNVs and indels,P¼ 0.004).
Using the tumor-na€�ve approach,we detected at least one tumor-derived
mutation in 20 of 27 (74%) patients using BAL cfDNA but only 4 of 27
(15%) patients using plasma cfDNA (Fig. 2C; Supplementary Fig. S3A).
In addition, among early-stage patients BAL cfDNA harbored more
variants (12/18, 67% vs. 2/18, 11%) with a higher median VAF% (0.74%
vs. 0.0%; P ¼ 0.002) than plasma (Fig. 2D). 19 of the 27 BAL samples
with variants identified by tumor-na€�ve calling had higher mean VAF%
in BAL cfDNA compared with plasma cfDNA (P ¼ 0.003, Fig. 2E).

As expected, fewer tumor-derived mutations were detected in both
BAL cfDNA and plasma cfDNA using a na€�ve calling strategy (n¼ 27
subjects) when compared with the informed approach. This is due to
the fact that tumor-informed CAPP-Seq analysis decreases multiple
hypothesis testing by only interrogating positions known to bemutant
in the matching tumor and achieves an ≥10-fold lower detection limit
(�0.01% vs. �0.1%–0.5%; refs. 12, 17). However, due to the higher
concentrations of tumor-derived DNA, analysis of BAL cfDNA iden-
tified more mutations than plasma cfDNA (P < 0.001; Supplementary
Fig. S3B). Importantly, statistically significant decreases between the
two approaches were noted for plasma cfDNA (P < 0.001) but not for
BAL cfDNA. When focusing on cancer driver genes only, the pro-
portion of mutations in these genes detected in BAL cfDNA was again
higher compared with plasma cfDNA (P < 0.001) and not significantly
different between the two approaches (Supplementary Fig. S3C).

Development of a diagnostic classifier from tumor-derived
mutations in BAF

A common indication for bronchoscopy and BAL is for diag-
nosis of lung cancer in patients with lung nodules. Therefore, we

Table 1. Tumor mutation characteristics by fluid type.

Variant statistic
Tumor,
n ¼ 34

BAL cfDNA,
n ¼ 31

Plasma,
n ¼ 34

Tumor variants detecteda 34 (100%) 25 (81%) 16 (47%)
Mean number of variants 5.1 1.9 0.91
Median number of variants 3.5 1.0 0.0
Mean VAF% 12.9 6.6 2.5
Median VAF% 4.2 2.4 0.09
Mean VAF%, drivers only 17.4 9.0 3.3
Median VAF%, drivers only 8.9 2.4 0.08

aIncluding indels, see Supplementary Table S5; P < 0.05 level using a Monte-
Carlo approach described in Materials and Methods.

BAL Genomics in Lung Cancer

AACRJournals.org Cancer Res; 82(16) August 15, 2022 2841



wished to explore if BAL cfDNA analysis might aid in distinguish-
ing patients with lung cancer from at-risk controls. One potential
complication for such an approach is field cancerization, which
refers to the acquisition of somatic mutations in morphologically

normal appearing tissues (28). Because the lung is susceptible to
field cancerization (29–31), we aimed to compare results of tumor-
na€�ve BAL cfDNA analysis in 35 patients with cancer and 21
noncancer controls at risk for lung cancer who underwent
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bronchoscopy as part of research studies at two medical centers
(Supplementary Methods).

The 21 non-lung cancer controls consisted of 7 subjects with
benign nodules or masses who underwent bronchoscopy for lung
cancer evaluation and 14 subjects that were current or ex-smokers
from a lung cancer screening program, 4 of whom had lung nodules
detected on their screening CT. Gender (P ¼ 0.72), and smoking
status (P ¼ 0.53) were not significantly different between cases and
controls with age showing a trend towards difference (P ¼ 0.07).

The concentration of cfDNA and sequencing depth did not differ in
the two groups (P ¼ 0.79 and P ¼ 0.21 respectively; Supplementary
Table S3). While the mean VAF% of detected mutations (Fig. 3A)
and the frequency of lung cancer driver mutations (Fig. 3B) was
significantly lower in both biofluids for at-risk controls compared
with patients with cancer, mutations in lung cancer driver genes
were identified in 4/21 (19%) of BAL cfDNA controls (Fig. 3C;
Supplementary Table S8). A total of 38 driver mutations were
detected in BAL cfDNA among the patients with lung cancer, 25 of
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Blue, BAL cfDNA. Red, Plasma. P values are displayed above the plot.B, Fraction of patientswith cancer and controls with drivermutations detected in BAL (blue) or
plasma cfDNA (red). NS, not significant. C, Oncoprint of lung cancer driver genes in 27 lung cancer cases and 21 risk-matched controls for BAL cfDNA profiles
(Supplementary Table S8). Tumor DNA results are shown for patients with cancer. Each column denotes one patient and each row a driver mutation. For mutations
found in tumors, BAL cfDNA mutations are only shown if they are identical. Clinical characteristics [tumor histology, tumor stage according to American Joint
Committee onCancer (AJCC)VIII guidelines, smoking status, andage inyears] aredisplayedat the topof theoncoprint. For diagnosis, a black box represents a cancer
patient and a white box a noncancer patient. NSCLC, non–small cell lung cancer.
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which were also present in matched tumor tissue (concordance
66%) This indicates that the presence of mutations in cancer driver
genes alone is insufficiently specific for distinguishing between
controls and patients with lung cancer using BAL cfDNA.

We therefore performed an exploratory analysis to test if it is
possible to develop a machine learning-based classifier to distinguish
between the two groups of patients. Specifically, we trained a multi-
variable BAL genomic classifier using a random forest model on 56

samples (35 cases and 21 controls) and eleven gene features (Supple-
mentary Table S9). Performance was evaluated using leave-one-out
cross-validation (Fig. 4A). The three features with the largest impact
on model performance were mean VAF% of detected mutations,
number of cancer driver mutations detected, and number of total
single nucleotide variants detected (Fig. 4B; Supplementary Fig. S4A).
The genomic classifier achieved an AUC of 0.84 with all 11 features
incorporated (Fig. 4C), with 69% sensitivity at 100% specificity.

Figure 4.

Derivation and performance of a BAL cfDNA genomic classifier for lung cancer diagnosis. A, BAL risk score based on 11 genomic features (Supplementary Table S9;
seeMaterials andMethods). Case–control status and relevant clinicopathologic variables are indicated. NSCLC, non–small cell lung cancer.B, Individual performance
of the top three features contributing to the BAL cfDNA classifier at the optimal cut point (Youden value). Mean VAF% (green line), cancer driver genes (orange line),
and number of mutations (blue line). C, Performance of the BAL cfDNA classifier using all 11 features at the optimal cut-off point (Supplementary Table S9).
D, Sensitivity of the BAL genomic classifier and BAL cytology at a specificity of 100% for diagnosing lung cancer stratified by stage. Point estimates are represented
by a circle and 95% confidence intervals by whiskers. Analysis based on 17 patients with cancer and 16 controls who had both cytology and BAL genomics
scores available. E, Patient-level comparison of BAL cytology and BAL genomic classifier risk scores using a 100% specificity threshold. Seventeen patients with
cancer and 16 noncancer patients that had both cytology and a risk score assigned to them are arranged on the x-axis by stage and cancer status.
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Notably, the classifier outperformed BAL cytology (P¼ 0.001) for both
early- and late-stage patients (Fig. 4D), and it was not associated with
patient age, gender, and smoking status (Supplementary Fig. S4B). Of
the 17 lung cancer cases profiled with BAL cytology, 2 (12%) were
diagnosedwith lung cancer by cytology, comparedwith 11 (65%) using
the BAL genomic classifier (Fig. 4E).

Discussion
Here, we compared BAL cfDNA and plasma cfDNA as two different

sources of tumor derived DNA and found that BAL cfDNA analysis is
more sensitive than plasma for identifying lung cancer-derived muta-
tions. We also explored the potential of tumor-na€�ve BAL cfDNA
analysis for detection of lung cancer. Our results suggest that BAL
cfDNA analysis could have clinical utility for identification ofmutations
in lung cancer patients and, potentially, for the diagnosis of lung cancer.

Although previous studies have demonstrated the feasibility of
tumor genotyping via BAL (25, 26, 32), we directly compared BAL
with plasma cfDNA. We observed that tumor DNA concentrations
were significantly higher in BAL than in plasma and more likely to be
above our assay’s detection limit. Using tumor-informed analysis, we
found higher concentrations of tumor-derived DNA and an increased
sensitivity for identifying tumor mutations in BAL cfDNA samples
(17/22, 77%) compared with plasma cfDNA samples 10/22 (45%) in
early stage I to II disease. Tumor-na€�ve analysis, which is clinically
relevant in the diagnostic setting when tumor profiling is not available,
also demonstrated higher ctDNA concentrations and better perfor-
mance in BAL cfDNA (12/18, 67%) than plasma cfDNA in stage I to II
disease (2/18, 11%). Only a subset of stage I to II lung cancers can
be detected using ultrasensitive plasma cfDNA profiling methods
(19, 33, 34). In addition, our study adds to an emerging literature
that has demonstrated successful high throughput genome sequen-
cing of proximal fluids in several cancer types including cerebro-
spinalfluid for gliomas (35–37), urine for genito-renal cancers (14, 38),
and lavage or ascites for gynecologic cancers (39–41).

Several groups have demonstrated that gene expression profiling of
histologically normal bronchial mucosal tissue can identify patients at
high risk for developing lung cancer, due to a process called field
cancerization (29, 30, 42). Genomic analysis of brushing specimens
and single cell analysis has recently confirmed this effect at the DNA
level (31, 43). Our data are consistent with these findings. Specifically,
our observation of mutations in cancer driver genes in BAL cfDNA
that were not found in the matching tumor specimens and were also
detected in at-risk patients without lung cancer (Fig. 3C) supports the
existence of field cancerization and less likely tumor heterogeneity.We
speculate that these mutations reflect clonal mutagenesis of airway
epithelial cells, analogous to the clonal mutations observed in tissues
such as blood, esophagus, skin, and uterus (44–47). Finally, our
exploratory analysis developing aBAL cfDNA-based classifier suggests
that it may be possible to leverage field cancerization to diagnose lung
cancer in patients with nondiagnostic bronchoscopic biopsies.

Strengths of our work include benchmarking of alterations iden-
tified in plasma cfDNA and BAL cfDNA to those present in matched
tumor samples, sequencing of matched leukocytes to remove germline
alterations and alterations arising due to clonal hematopoiesis, use of
risk-matched controls to account for field cancerization, and utiliza-
tion of a validated and ultrasensitive sequencing method to detect
tumor derived mutations from cfDNA.

Our study has a number of limitations. First, we performed this
work on patients enrolled in an observational study of BAL biomarkers
without predefined assay criteria, since this was a proof-of-concept and

method development study. Second, the majority of patients had
adenocarcinoma and we therefore did not have sufficient power to
examine the impact of tumor histology on the ability to detect tumor-
derived variants in BAL. Third, we developed our BAL genomics
classifier using a cross-validation framework, and therefore validation
in an independent cohort will be required. Finally, collection protocols
were not standardized between the two centers.

Before we can realistically consider BAL genomics for mutational
profiling or detection of lung cancer in the clinic, further studies are
required to enable a better understanding of how preanalytic variables
influence tumor DNA identification in BAL. Standardization of
collection methods will facilitate robust genomic profiling of BAL in
larger cohorts of patients. In addition, it will be important to inves-
tigate alternative tumor DNA detection strategies such as whole-
genome sequencing or DNA methylation analysis (34, 48, 49) and to
compare these with our mutation-based approach. Finally, it will be
informative to explore if features such as histology, grade, and location
in the lung are associated with shedding of tumor DNA in BAL. These
studies will more fully elucidate the clinical utility of BAL genomic
profiling during lung cancer evaluation as a complementary liquid
biopsy approach to blood-based analyses (50).
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