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ABSTRACT
◥

African-American (AA) men are more likely to be diagnosed
with and die from prostate cancer than European American (EA)
men. Despite the central role of the androgen receptor (AR)
transcription factor in prostate cancer, little is known about the
contribution of epigenetics to observed racial disparities. We
performed AR chromatin immunoprecipitation sequencing on
primary prostate tumors from AA and EA men, finding that sites
with greater AR binding intensity in AA relative to EA prostate
cancer are enriched for lipid metabolism and immune response
genes. Integration with transcriptomic and metabolomic data
demonstrated coinciding upregulation of lipid metabolism gene
expression and increased lipid levels in AA prostate cancer. In a
metastatic prostate cancer cohort, upregulated lipid metabolism
associated with poor prognosis. These findings offer the first

insights into ancestry-specific differences in the prostate cancer
AR cistrome. The data suggest amodel whereby increased androgen
signaling may contribute to higher levels of lipid metabolism,
immune response, and cytokine signaling in AA prostate tumors.
Given the association of upregulated lipogenesis with prostate
cancer progression, our study provides a plausible biological expla-
nation for the higher incidence and aggressiveness of prostate
cancer observed in AA men.

Significance:With immunotherapies and inhibitors ofmetabolic
enzymes in clinical development, the altered lipid metabolism and
immune response in African-American men provides potential
therapeutic opportunities to attenuate racial disparities in prostate
cancer.

Introduction
African-American (AA) men are more likely to be diagnosed with

prostate cancer, to bediagnosed at a younger age, to havemore aggressive
disease, and to die from prostate cancer compared with European
American (EA) men (1, 2). While socioeconomic and psychosocial
factors contribute, a growing body of literature also supports biological
differences underlying these disparities, including ancestry-specific
genetic risk and somatic variants, RNA expression, tumor microenvi-
ronment, and androgen levels between AA and East Asian (EA)
men (3–7). Comparatively less is known about the role of epigenetics.

Several studies suggest that aberrant DNAmethylation, a repressive
epigenetic mark, may contribute to prostate cancer aggressiveness in
AA men (8–10). Transcription factors, proteins that bind specific
DNAsequences to dynamically regulate gene transcription, are strong-
ly implicated in prostate cancer development (11–14). We previously
demonstrated that the androgen receptor (AR) cistrome is extensively
reprogrammed in prostate cancer tumorigenesis and disease progres-
sion (11, 12). These findings provided important insights into events
that drive normal prostate epithelium to transform into prostate
cancer and established epigenetic reprogramming of the AR cistrome
as central to prostate tumorigenesis. These data, however, were
generated exclusively in samples from EAmen. How or if the prostate
cancer AR cistrome differs in AAmen and whether this contributes to
observed racial disparities is not known.

In this study, we present the first description of the AR cistrome
in primary prostate cancer from AA men. Our data suggest that
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differential AR binding in AA and EA prostate cancer may contribute
to distinct transcriptional programs, including biological processes
known to be dysregulated in prostate tumors in AAmen, such as lipid
metabolism, immune response, and cytokine signaling.

Materials and Methods
Tissue cohort

Fresh-frozen radical prostatectomy specimens were selected
from the Dan L Duncan Comprehensive Cancer Center Human
Tissue Acquisition and Pathology Core at Baylor College of Medicine
(Houston, TX) and the Dana-Farber Cancer Institute (Boston, MA)
Gelb Center biobank. A genitourinary pathologist reviewed slides
stained with hematoxylin and eosin from each case and isolated areas
enriched for prostate tumor tissue (≥50% tumor cellularity) or normal
prostate epithelium. 23 subjects were selected for chromatin immu-
noprecipitation sequencing (ChIP-seq) analysis. Informed consent
was obtained from all subjects whose samples were included in the
study. This study was approved by the Baylor College of Medicine and
the Dana-Farber Cancer Institutional Review Boards (IRB).

ChIP-seq data generation and analysis
Using a 2-mm2 core needle, one core was extracted from frozen

regulatory potential (RP) tissue blocks in the areas marked on the
corresponding slide. Frozen cores were pulverized using the Covaris
CryoPrep system. The tissue was then fixed using 2 mmol/L disucci-
nimidyl glutarate (DSG) for 10 minutes followed by 1% formaldehyde
buffer for 10 minutes and quenched with glycine. Chromatin was
sheared to 300 to 500 bp using the Covaris E220 ultrasonicator. The
resulting chromatin was incubated overnight with 5 mg of antibody to
AR (RB Anti-AR PAb, Spring Bioscience, REF: E2724, REF:
05300886001, LOT: 170118LVA) bound to protein A and protein
G beads (Life Technologies). Five percent of the sample was not
exposed to antibody and used as control. The samples were then
de–cross-linked, treated with RNase and proteinase K, and DNA was
extracted (Qiagen). DNA sequencing libraries were prepared using the
ThruPLEX-FD Prep Kit (Rubicon Genomics). Libraries were
sequenced on an Illumina HiSeq 4000 to generate 150-bp paired-
end reads (Novogene).

ChIP-seq reads were aligned to the human genome build hg19
using the Burrows-Wheeler Aligner (BWA) version 0.7.15 (15).
Nonuniquely mapped/redundant reads were discarded. MACS
v2.1.1.20140616 was used for ChIP-seq peak calling (q < 0.01)
and for the generation of the BigWig and BED files (16). ChIP-seq
data quality was evaluated by a variety of measures, including total
peak number, fraction of reads in peak (FRiP) score, number of
high-confidence peaks, and percent of peak overlap with DNase I
hypersensitive site peaks derived from the ENCODE project. ChIP-
seq peaks were assessed for overlap with gene features and CpG
islands using annotatr (17). IGV was used to visualize normalized
ChIP-seq read counts at specific genomic loci (18).

Heatmap clustering, principal component analysis, and identifica-
tion of subgroup-specific binding sites were performed using Map-
maker (https://bitbucket.org/cfce/mapmaker), a ChIP-seq analysis
pipeline implemented with Snakemake (19). Read counts for each
peak were normalized to the total number of mapped reads for each
sample. Quantile normalization was applied to this matrix of nor-
malized read counts. Using DESeq2 (20), tumor-specific peaks (T-
ARBS) and normal tissue-specific peaks (N-ARBS) were identified at
the indicated FDR-adjusted P and log2 fold change cut-offs (Padjusted <
0.01, log2 fold change > 1) in the AA prostate samples. The same

DESeq2 comparison was applied to compare AA and EA prostate
tumors (Padjusted < 0.01, log2 fold change > 1).

Unsupervised hierarchical clustering was performed based on
Spearman correlation between samples. Principal component analysis
was performed using the prcomp R function. Enriched de novomotifs
in differential peaks were detected using HOMER version 4.11 (21).
The top nonredundant motifs were ranked by adjusted P. The GREAT
tool was used to assess for enrichment of and MSigDB perturbation
annotations among genes near differential ChIP-seq peaks, assigning
each peak to the nearest gene within 500 kb (22). CISTROME-GO (23)
was used to assess the gene-level regulatory potential scores and
enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways inAA tumor-specific ARBS (comparedwith EA tumors). All
differential peaks identified by DESeq2 were used as input (Padjusted <
0.01, log2-fold change > 1). A half-decay distance of 10.0 kb was set.
Single-sample gene set enrichment analysis (ssGSEA; ref. 24) was
applied to the quantile normalized matrix of AR ChIP-seq read counts
to compute Hallmark (h) and KEGG (c2.cp.kegg) gene set enrichment
in each individual AR ChIP-seq sample. Pathway-level z-scores were
calculated and used for heatmap plotting.

RNA sequencing data generation and analysis
Tissue samples were obtained from the Human Tissue Acquisition

and Pathology Core of the Dan L. Duncan Comprehensive Cancer
Center at Baylor College of Medicine and were collected from fresh
radical prostatectomy specimens after obtaining informed consent
under an IRB-approved protocol. Cancer samples contained a min-
imum of 70% cancer and benign tissues were free of cancer on
pathologic examination. RNAs were extracted using Qiagen DNA/
RNA Mini kit according to manufacturer’s instruction. The isolated
total RNAwas assessed for quantity and degradation on an RNA 6000
Nano chip ran on a 2100 BioAnalyzer (Agilent). RNAs with RIN
number ≥7 were chosen for RNA sequencing (RNA-seq) analysis.
Sequencing libraries are prepared using the TruSeq Stranded Total
RNA Library Prep Kit (Illumina, Inc). Briefly, rRNA was depleted
from total RNA and the remaining RNA purified, fragmented
appropriately, and primed for cDNA synthesis. Blunt-ended cDNA
was generated after first and second strand synthesis. Adenylation
of the 30 blunt-ends was followed by adapter ligation prior to the
enrichment of the cDNA fragments. Final library quality control
was carried out by evaluating the fragment size on a DNA1000 chip
ran on a 2100 BioAnalyzer (Agilent). The concentration of each
library was determined by qPCR by the KAPA Library Quantifi-
cation Kit for Next Generation Sequencing (KAPA Biosystems)
prior to sequencing.

Libraries were normalized to 2 nmol/L in 10mmol/L Tris-Cl, pH8.5
with 0.1% Tween 20 and then pooled evenly. The pooled libraries were
denatured with 0.1N NaOH and diluted to 20 pmol/L. Cluster genera-
tion of the denatured libraries was performed according to the manu-
facturer’s specifications (Illumina, Inc) utilizing the appropriate HiSeq
paired-end cluster chemistry and flow cells. Libraries were clustered
appropriately with a 1% PhiX spike-in. Sequencing-by-synthesis (SBS)
was performed on a HiSeq2500 utilizing the appropriate chemistry
with paired-end 101-bp reads. Sequence read data were processed and
converted to FASTQ format for downstream analysis by Illumina
BaseSpace analysis software, FASTQ Generation v1.0.0.

FASTQ files were processed using the VIPER workflow (25). Read
alignment to human genome build hg19 was performed with
STAR (26). Cufflinks was used to assemble transcript-level expression
data from filtered alignments (27). Differential gene expression anal-
ysis was performed using DESeq2 (20). For downstream analyses
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(GSEA), the RNA-seq matrix was further trimmed mean of M-values
(TMM)-normalized using the edgeR package.

RNA-seq/ChIP-seq correlation analysis
To check for concordance betweenRNA-seq andARChIP-seq data,

GSEA was used to run the following two analyses (24):
First, the top 500 most genes with the highest DESeq2 log-fold

change in AA versus EA prostate tumors were used as a custom
reference gene set. The normalized ARChIP-seqmatrix of AA and EA
prostate tumors was used as “expression dataset” input after assigning
every peak to the gene with the closest transcriptional start site.
Enrichment of AA differential expression genes in regions of
AA-specific AR ChIP-seq signal was tested. Permutation analysis
(1,000 permutations) was used to generate FDR-corrected P.

Second, the top 500 most differentially marked genomic regions
based on DESeq2 log–fold change (AA versus EA prostate tumors)
were used as a custom gene set, after being assigned to the gene
with the closest transcriptional start site. The TMM-normalized
RNA-seq matrix of AA and EA prostate tumors was used as
“expression dataset” input. Enrichment of AA differentially marked
AR ChIP-seq sites around AA differential expression genes was
tested. Permutation analysis (1,000 permutations) was used to
generate FDR-corrected P values.

Ancestry score calculation
Genetic ancestry was inferred using commonpolymorphisms called

from off-target and on-target sequencing reads. Germline variant
imputation was performed using the STITCH imputation software
applied to AR ChIP-seq BAM files for the immunopreciptiation
product (merged with the corresponding input control BAMs when
available) across all tumor samples (28). This method leverages
ultralow coverage read data together with the 1000 Genomes reference
panel to infer probabilistic germline calls for the autosomal chromo-
somes. Analysis was restricted to variants with imputation INFO > 0.4
and variant allele frequency (VAF) > 0.01. Ancestry components were
inferred for each individual by linear projection using publicly avail-
able weights computed by the SNPWEIGHTS software (29), which
had been trained on European, AA, and EA individuals in the 1000
Genomes project (30). The projection was performed using the
imputed dosages and the PLINK2--score function to compute the
African ancestry component in each sample.

Tissue microarrays
Tissue microarrays (TMA) were previously described (31). Briefly,

TMA were constructed from radical prostatectomy tissues from AA
and EA patients operated on at the Michael E. DeBakey VA Medical
Center between 1995 and 2013. Patients provided written informed
consent for the use of tissues under an IRB-approved protocol. Areas
of cancer and benign tissue were identified by pathologic examination
and 1mm cores of cancer and matched benign tissues from each
prostatectomy were used to construct TMAs.

IHC
IHC for FAS was carried out on a Leica BOND III autostainer using

online heat treatment with ER1 antigen retrieval solution (citrate
pH 6.0) for 20minutes. Primary antibody incubation was carried out
using anti-FAS rabbit mAb (Cell Signaling Technology C20G5) at 1:50
dilution for 30 minutes. Detection was carried out using a Bond
Polymer Refine Detection Kit (Leica) for 16minutes followed by
chromogen for 5minutes. Counterstain was hematoxylin.

Metabolomic profiling
The study cohort has been described previously (32). Briefly,

samples from the Dana-Farber Cancer Institute/Harvard Cancer
Center SPORE Prostate Cancer Cohort were used. Fresh-frozen
radical prostatectomy specimens from 124 patients were used, with
matched normal prostate tissue for 105 out of the 124. Specimens
were received fresh from the operating room, inked, sliced, forma-
lin-fixed, paraffin embedded (FFPE), and embedded in optimal
cutting temperature (OCT) compound and stored in liquid nitro-
gen. A total of 5-mm–thick sections cut from FFPE and OCT blocks
were stained with hematoxylin and eosin and examined histolog-
ically. Gleason score was assigned based on a representative tumor
focus in the corresponding tissue block.

For each individual in the study, approximately 1 mg of tissue was
sent toMetabolon, Inc.Metabolon prepared the frozen tissue cores and
serum samples for analysis using their proprietary solvent extraction
method and internal standards were added to each sample for nor-
malization and quality control. Additional details are described
previously (33).

Metabolites with more than 50% missing values were excluded
from the analysis. Data were further corrected for batch effects
using median-scaling, normalized using the probabilistic quotient
approach (34), and log2-transformed. Missing values were imputed
using a knn-based approach (35). The preprocessed data included 273
metabolites measured in 124 samples (110 EA and 14 AA). For the
differential analysis, only tumor samples from EA and AA patients
were used. Differential metabolite abundances were estimated using a
linear model (met � Race), and the corresponding p-values were
corrected for multiple testing using the Benjamini–Hochberg method
(FDR < 0.2).

Clinical cohort
We used publicly available data on patients with metastatic

prostate adenocarcinoma treated with AR signaling inhibitors
(ARSI; ref. 36). We restricted the analysis to patients who had both
clinical and transcriptomic data available (81 patients). We applied
ssGSEA to normalized RNA-seq data and extracted sample-level
enrichment scores for the Hallmark Fatty Acid Metabolism gene set.
The cohort was then split into two groups: top quartile, and lower
three quartiles based on ssGSEA enrichment scores. Overall survival
(OS) and time to treatment failure (TTF) were compared between
the two groups. For OS, patients who were alive were censored at
the date of last follow-up. For TTF, patients who were alive without
progression and were still on treatment with the same ARSI were
censored at the date of last follow-up. The distributions of OS and
TTF were estimated with the Kaplan–Meier method along with the
corresponding HRs between the two groups, as well 95% confidence
intervals (CI). All tests were two-tailed; statistical significance was
defined as P < 0.05. Survival analyses were performed using the
“survival” and “survminer” R packages.

Cell culture
LNCaP cells were cultured in RPMI (Gibco #11875-093) medium

supplemented with 10% FBS (Gibco #10483) and 1% Pen-Strep.
PCa2b Cells were cultured with BRFF-HPC1media (Athenaes, catalog
no. 0403) supplemented with 20% FBS (Gibco #10483) and 1% Pen-
Strep. Cell lines were authenticated by short tandem repeat (STR)
fingerprinting and routine PCR-basedMycoplasma testing was carried
out using Mycoplasma detection kit, Alfa Aesar (VWR, catalog no.
10067-040).
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qRT-PCR
For qRT-PCR experiment, 350K LNCaP cells /well were seeded in a

12-well plate with RPMI 1640 phenol-red free media supplemented
with 10% charcoal stripped FBS and 1% Pen-Strep. For PCa2b cells,
350K cells/well were seeded in a 12-well plate in BRFF-HPC1 media
with 20% FBS and 1 x Pen-Strep with fibronectin, collagen, and
albumin coating. After 48 hours of seeding, cells were transferred to
DMEM (Gibco #11965-092)þ 0.1% FBSþ 1 X Pen-Strep and treated
after 24 hours of culturing cells inDMEMþ 0.1%FBSþ 1XPen-Strep.
After 24 hours of seeding, cells were treatedwith 10 nmol/L of R1881 or
EtOH (as vehicle control) and after 48 hours of seeding, a subset was
treated with 20 mmol/L of enzalutamide. Cells were harvested 48 hours
later and processed for RNA isolation using RNeasy Micro Kit
(Qiagen #74004). cDNA was made from 500 ng of total RNA using
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher
Scientific #4368814). Gene expression of specific target genes were
analyzed using the primers mentioned below and Power SYBR Green
PCR Master Mix (Applied Biosystems #4367659) with Quantstudio3
Real-Time PCR System (Applied Biosystems). qPCR data were ana-
lyzed by the 2–ΔΔCt method using 18S rRNA as the reference transcript
and gene expression of the treatment groups were represented as
the fold change in comparison with the vehicle treated cells. Primer
sequences were as follows: 18S (forward: ACCGCAGCTAGGAA-
TAATGGA; reverse: GCCTCAGTTCCGAAAACCA), KLK3 (for-
ward: ACCTGCACCCGGAGAGCT; reverse: TCACGGACAGGGT-
GAGGAAG), FASN (forward: TTCTACGGCTCCACGCTCTTCC;
reverse: GAAGAGTCTTCGTCAGCCAGGA). To examine expres-
sion of FASNmRNA in patient tumor tissues, we carried out qRT-PCR
(Q-RT-PCR on an Applied Biosystems StepOne; Life Technologies).
Following total RNA extraction, cDNA was synthesized using an
iScript cDNA Synthesis kit (Bio-Rad) with OligodT in a PTC-200
thermocycler (5 minutes at 25�C; 30 minutes at 42�C; 5 minutes at
85�C). FASN, and b-actin TaqMan probes (ABI) were utilized. PCR
conditions were set using standard two-step manufacturer’s protocol.
Differences inmRNA levels were analyzed using the 2�DDCTmethod
normalized to b-actin expression. Each measurement point was
repeated at least in duplicate.

Data availability
The ChIP-seq data for patient samples has been deposited in Gene

Expression Omnibus (GEO; GSE181440 and GSE181441). The RNA-
seq, and metabolomic data for patient samples that support the
findings of this study are available upon request from the correspond-
ing authors (M.L. Freedman and S. Kaochar) to comply with institu-
tional ethics regulations to protect patient privacy. All requests for raw
and analyzed data will be promptly reviewed to verify if the request is
subject to any intellectual property or confidentiality obligations. Any
data and materials that can be shared will be released via a Data
Transfer Agreement.

Results
The AR cistrome is reprogrammed in prostate tumorigenesis in
AA men

We generated and analyzed AR ChIP-seq data on 23 human
prostate tissue specimens including 9 prostate cancer and histologi-
cally normal prostate samples from AA men and 5 prostate cancer
samples from EA men (Materials and Methods; Supplementary
Table S1). Self-reported ancestry was confirmed through genotyping
(Supplementary Fig. S1). The AA prostate AR cistrome undergoes
extensive reprogramming during tumorigenesis, similar to what we

previously observed in EA men (Fig. 1A; ref. 11). As expected, AR
binding sites (ARBS) with greater intensity across AA tumors relative
to normal specimens were highly enriched for genes upregulated in
prostate cancer (Fig. 1B and C).

Differences in the prostate cancer AR cistrome between AA and
EA men associate with distinct RNA expression programs

To interrogate whether tumor AR binding patterns differ by
ancestry, we performed an unsupervised analysis of the prostate cancer
AR cistromes, which clustered clearly into AA and EA groups
(Fig. 2A). 118,467 and 115,584 ARBS were identified in AA and EA
prostate cancer, respectively. Although the total number of ARBS was
similar, 16,678 demonstrated significantly greater binding intensity in
AA relative to EA prostate cancer (AA-ARBS), while only 1,655
demonstrated greater binding intensity in EA prostate cancer (EA-
ARBS; Fig. 2B; Materials and Methods).

We next sought to evaluate whether ancestry-enriched AR binding
associates with differential RNA expression. We performed RNA-seq
on an independent set of paired tumor-normal prostate specimens
from 30 AA men and 19 EA men, identifying 466 genes upregulated
and 729 downregulated in AA relative to EA prostate cancer (Fig. 2C;
Supplementary Tables S2–S4). We observed a strong overall correla-
tion between epigenomic and transcriptomic data. Using GSEA,
transcripts nearest AA-ARBS were enriched for genes upregulated in
AA relative to EA prostate cancer in the RNA-seq data [normalized
enrichment score (NES) ¼ 1.96; P < 0.001; Fig. 2D]. Likewise, genes
with higher expression in AA than EA tumors were enriched for
AA-ARBS (NES¼ 2.04; P < 0.001; Fig. 2E), suggesting that a significant
portion of differential gene expression between AA and EA prostate
cancer may be driven by ancestral differences in AR binding.

The AR prostate cancer cistrome associates with lipid
metabolism and immune response

To investigate biological processes associated with ancestral differ-
ences in the prostate cancer AR cistromes, we first performed motif
analysis on the EA-ARBS and AA-ARBS (Fig. 3A). Motifs for the
transcription factors (TF) HOXD13, FOXA1, and progesterone recep-
tor (PGR) were enriched in EA-ARBS. HOXB13, which shares a nearly
identical motif with HOXD13, and FOXA1 are known to colocalize to
ARBS in prostate cancer in EA men (11). Motifs for Sp1, Elk4, and
NRF1 were enriched in AA-ARBS. Sp1 is a TF reported to colocalize
with AR and regulate de novo lipogenesis and proliferation in prostate
cancer cells (37, 38). NRF1 is a TF reported to be a coactivator of AR
and regulates key metabolic genes to cellular growth (39). Elk4 is an
ETS family TF that is highly expressed in a subset of prostate cancer
and is involved in promoting cell growth (40).

We next analyzed the AA-ARBS using CISTROME-GO, a tool
that performs functional enrichment analysis of TF ChIP-seq
peaks (23). Three of the top 10 most enriched gene sets, including
the top overall gene set, pertained to lipid metabolism (Fig. 3B).
Using ssGSEA, we observed greater and more consistent AR
binding intensity at KEGG lipid metabolism gene sets across AA
compared with EA prostate cancer samples (Fig. 3C). Consistent
with the strong global correlation between ancestry-enriched ARBS
and RNA expression, we observed that greater AR binding intensity
at lipid metabolism genes was associated with transcriptional
upregulation of these pathways in our independent RNA-seq data-
set (Fig. 3D; Supplementary Tables S3 and S4). Notably, immune
response and cytokine signaling were also strongly represented in
the list of pathways enriched in AA-ARBS, comprising 12 of the 20
top gene sets (Fig. 3B). ssGSEA demonstrated greater and more
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consistent AR binding intensity at KEGG immune gene sets across
AA compared with EA prostate cancer samples (Fig. 3E). In our
independent RNA-seq dataset, several immune response gene sets
were significantly upregulated in AA versus EA prostate cancer
(Fig. 3F). Further, applying TIMER2.0, which provides quantitative
estimates of six tumor-infiltrating immune subsets, to our RNA-seq
demonstrated a significantly higher signal for B cells (P ¼ 0.01) and
macrophages (P ¼ 0.003), and a trend towards CD8þ T cells
(P ¼ 0.051; Fig. 3G; ref. 41). These findings are concordant with
previously published differential gene expression analyses comparing
AA and EA prostate tumors, most of which identified upregulation of
lipid metabolism, immune response, and/or cytokine signaling gene
sets in AA versus EA prostate cancer (4, 42–48). Our data implicate
differential AR binding as a potential driver of these distinct
transcriptional programs. Results of CISTROME-GO analysis of
the EA-ARBS are shown in Supplementary Table S5.

Multiomic analysis demonstrates upregulated lipid metabolism
in AA prostate cancer

We next assessed differential AR binding at individual genes. Each
gene was assigned a RP score: a quantitative value reflecting the
likelihood that a set of TF ChIP-seq peaks are a direct regulator of
a given gene (23). The genewith the secondhighest RP score in theAA-
ARBS was FASN, which encodes fatty acid synthase (FAS), a critical
catalytic enzyme in fatty acid synthesis whose expression is associated
with aggressive prostate cancer (Fig. 4A; Supplementary Table S6;
refs. 49–51). The gene with the highest RP score was SNORD134, an
uncharacterized small nucleolar RNA embedded in intron 11 of the
FASN gene. Visualization of AR binding at the FASN locus in the 14
prostate tumors clearly demonstrates greater binding intensity at the
FASN promoter in prostate tumors from AA men (Fig 4B). Notably,
several additional genes encoding key lipid metabolism proteins,
including sterol regulatory element binding transcription factor 1
(SREBF1), stearoyl-CoA desaturase (SCD), citrate transport protein
(SLC25A1), ATP citrate lyase (ACLY), and acetyl-CoA carboxylase

alpha (ACACA) exhibited greater AR binding intensity at their gene
promoters in AA versus EA prostate cancer (Fig. 4B).

Consistent with published transcriptomic data and greater AR
binding intensity at the FASN promoter in AA prostate cancer, an
independent cohort of 48 samples demonstrated higher FASN expres-
sion inAA (n¼ 24) than EA tumors (n¼ 24;P¼ 0.022;Fig. 4C; ref. 4).
FASN expression was higher in prostate cancer compared with normal
prostate tissue in both ancestral groups. To evaluate the regulatory
relationship between AR and FASN expression, we treated two cell
lines–LNCaP and PCA2b, the only AA-derived prostate cancer cell
line–with or without the synthetic androgen R1881. As expected, we
observed R1881-mediated upregulation of KLK3, a canonical AR-
regulated gene, in both cell lines (Fig. 4D). In response to androgen
stimulation, FASN mRNA levels also increased in both cell lines.
Subsequent treatment with the AR antagonist enzalutamide abrogated
androgen-induced upregulation of both genes (Fig. 4D), confirming
that AR regulates FASN gene expression in vitro.

Whether enhanced FASN expression translates into higher FAS
protein expression inAAprostate cancer is not known. To characterize
FAS protein levels, we performed IHC on an independent set of 492
prostate tissue samples, including 102 tumor and 112 normal speci-
mens from AA men and 150 tumor and 128 normal specimens from
EA men. We observed significantly greater FAS protein levels in
tumors compared with normal specimens for both ancestral groups
(Fig. 4E). Comparison of AA versus EA tumors demonstrated signif-
icantly higher FAS protein levels in AA prostate cancer (P ¼ 0.0011).
Notably, there was no difference in FASNRNAor FAS protein levels in
normal prostate tissue from AA and EA men.

Based on results of this integrated analysis, we speculated that
upregulation of FAS would translate to higher lipid levels in AA
prostate cancer. We therefore performed metabolic profiling in an
independent cohort of 14 AA and 110 EA prostate tumors. 65 (69%) of
94 lipids, including 26 (79%) of 33 fatty acids, demonstrated numer-
ically higher levels in AA than EA prostate cancer; 9 lipids, including 4
fatty acids, were present at significantly higher levels (Fig. 4F). These

Figure 1.

TheARcistrome is reprogrammed inprostate tumorigenesis inAAmen.A,Unsupervisedpairwise correlationof theARcistromes fromAAprostate tumor andnormal
specimens. Hierarchical clustering demonstrates the relatedness of each AR cistrome. B, Volcano plot of ARBS enriched in AA tumor versus normal specimens
(T-ARBS; N ¼ 28,810) and normal versus tumor specimens (N-ARBS; N ¼ 11,736) with an FDR-adjusted P < 0.01 and log2-fold change > 1. C, MSigDB perturbation
pathways enriched in the 28,810 T-ARBS using the GREAT tool (22).
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data add to a growing literature demonstrating an altered lipid
metabolic profile in AA prostate cancer (52, 53). This may be biolog-
ically and clinically relevant as prostate cancer cells upregulate de novo
lipogenesis to support rapid cellular division, increased uptake of
exogenous lipids is linked to prostate cancer aggressiveness, and
high-fat diets and obesity are associated with prostate cancer incidence
and progression (54).

Upregulated lipid metabolism is associated with aggressive
prostate cancer

While previous studies have demonstrated an association between
altered lipid metabolism and prostate cancer aggressiveness in pre-
clinical models, its relation to clinical outcomes in men with prostate
cancer is not well defined (55, 56). To investigate the clinical implica-
tions of upregulated lipogenesis, we analyzed publicly available

Figure 2.

Differences in the prostate cancer AR cistrome between AA and EA men associate with distinct RNA expression programs. A, Unsupervised pairwise
correlation of the AR cistromes from AA and EA prostate tumors. Hierarchical clustering demonstrates the relatedness of each AR cistrome. B, Volcano plot of
ancestry-enriched ARBS. The 16,678 ARBS were enriched in AA relative to EA (AA-ARBS) prostate tumors and 1,655 ARBS in EA relative to AA prostate tumors
(EA-ARBS) with an FDR-adjusted P < 0.01 and log2-fold change > 1. C, Differential gene expression analysis of 30 AA and 19 EA paired tumor-normal prostate
specimens. The 466 genes were upregulated in AA and 729 genes were upregulated in EA prostate tumors with an FDR-adjusted P < 0.05 and log2-fold
change > 1.5. D, GSEA of AA-ARBS are enriched for genes upregulated in AA relative to EA prostate tumors (NES ¼ 1.96; P < 0.001). E, GSEA of genes
upregulated in AA prostate tumors are enriched for AA-ARBS (NES ¼ 2.04; P < 0.001). ES, enrichment score.
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transcriptomic and clinical data from men with metastatic prostate
cancer. We applied ssGSEA to normalized RNA-seq data and
extracted sample-level enrichment scores for the Hallmark Fatty Acid
Metabolism gene set in 81 men with metastatic prostate cancer (36).
Greater expression of the 160 genes in the Hallmark Fatty Acid
Metabolism gene set was associated with significantly shorter pro-
gression-free survival to first-line ARSIs, abiraterone or enzalutamide,
(HR¼ 1.8; 95% CI, 1.0–3.2; P¼ 0.04) and OS (HR¼ 2.8; 95% CI, 1.5–
5.2; P ¼ 0.0005; Fig. 5A and B). This is the first demonstration in a
contemporary metastatic prostate cancer cohort that high expression
of lipid metabolism genes is associated with poor response to ARSIs
and shorter survival.

Discussion
This study presents the first description of the AR cistrome in

primary prostate cancer from AA men, resulting in important bio-
logical and clinical observations. There are three key findings of the

present research. First, we demonstrate clear differences in the prostate
cancerAR cistrome betweenAAandEAmen. Second, our data suggest
that these epigenetic differences may contribute to distinct RNA
expression programs in AA and EA prostate cancer. The third key
finding is that sites with greater AR binding intensity in AA prostate
cancer are enriched for lipid metabolism genes with concomitant
upregulation of lipogenic activity. Given the substantial association of
upregulated lipid metabolism with prostate cancer aggressiveness, this
provides a plausible role for differential AR binding in contribution to
prostate cancer disparities.

Epigenetics provide a potential link between ancestry, environ-
ment, and cancer biology. The finding that approximately 75% of
variation in DNA methylation is explained by genomic ancestry
suggests that environmental factors not captured by ancestry also
contribute to epigenomic variation (57). Indeed, compelling data
supports that factors experienced differently across ancestral groups,
such as diet, can modify the epigenome (58). The evolving under-
standing of epigenetics at the intersection of ancestry, environment,

Figure 3.

The AR prostate cancer cistrome associates with lipid metabolism, immune response, and cytokine signaling. A, Three most significantly enriched nucleotide motifs
present in AA-ARBS and EA-ARBS by de novo motif analysis. B, Pathway enrichment of the AA-ARBS identified using CISTROME-GO (23). C and E, AR binding
intensity in each AA and EA prostate tumor for Hallmark lipidmetabolism (C) and immune response and cytokine signaling (E) gene sets using ssGSEA analysis (24).
D andF,Differential expression analysis in ourRNA-seqdata identifies upregulationofHallmark lipidmetabolism (D) and immune response andcytokine signaling (F)
gene sets in AA (n¼ 30) versus EA (n¼ 19) prostate tumors. G, Estimation of tumor infiltrate immune populations demonstrates greater signal for B cells (P¼ 0.01)
and macrophages (P ¼ 0.003), and a trend towards CD8þ T cells (P ¼ 0.051) in AA versus EA prostate cancer (41). NK, natural killer.
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and biology highlights the importance of understanding epigenetic
differences across ancestral groups formitigating prostate cancer racial
disparities.

The role of the AR in prostate cancer initiation and progression is
well-established, yet how the prostate cancer AR cistrome differs
across men of different ancestry is not known. We previously dem-
onstrated that the AR cistrome is extensively reprogrammed in
prostate cancer tumorigenesis and disease progression (11, 12). Fur-
ther, differences in the AR cistrome across states generated novel
mechanistic insights into events driving normal prostate cells to
undergo malignant transformation. Reflective of a broader issue of
underrepresentation of samples from minority populations in molec-
ular cancer research, this data was generated exclusively in EA men.
Herein, we report that the prostate cancer AR cistrome is also
extensively reprogrammed inAAmen. This finding has two important
implications. First, it solidifies epigenetic reprogramming as central to
human prostate tumorigenesis, irrespective of ancestry. Second, it
provides a novel opportunity to identify differences in prostate cancer
biology betweenAA and EAmen. Comparative analyses across several

molecular features have identified ancestry-specific genetic risk and
somatic variants, and differences in RNA expression, tumor micro-
environment, and androgen levels between AA and EA men (3–7).
This paper provides the first insights into how differences in AR
binding may contribute to observed racial disparities and identify
novel therapeutic strategies to improve prostate cancer outcomes for
AA men.

We observed that differences in AR binding between AA and EA
men is associated with distinct RNA expression programs. Consistent
with its known role as a direct regulator of gene transcription, we
observed global upregulation of genes in AA prostate cancer near AA-
ARBS as well as greater AR binding intensity near genes upregulated in
AA prostate cancer. These results imply that a significant portion of
differential gene expression between AA and EA prostate cancer may
be driven by ancestral differences in AR binding. This novel finding
provides the first suggestion that divergence in the AR cistrome, and
likely other epigenetic features, may underlie differences in prostate
cancer biology betweenAAandEAmen. This idea is further supported
by the observation that the top two biological processes enriched

Figure 4.

AR binding associates with FASN and other lipid metabolism genes, which are regulated by AR in vitro. A, Gene-level RP score in the 16,678 AA-ARBS identifies
FASN as the gene with the greatest difference in AR binding intensity in AA versus EA prostate cancer (23). B, AR binding intensity is greater in AA than EA
prostate tumors at the FASN promoter, as well as several other genes that encode key lipid metabolism enzymes. Each track depicts ChIP-seq AR binding
intensity in each sample. C, Normalized FASN mRNA expression in paired normal prostate tissue and prostate cancer from 24 AA and 24 EA men. Error bars,
SE. D, RNA expression for FASN and KLK3 in LNCaP cells and PCA2b cells treated with vehicle, R1881 for 72 hours, or R1881 72 hours and enzalutamide for
48 hours. Expression values for cells treated with R1881 or R1881 plus enzalutamide were relative to vehicle-treated cells (black). Error bars, SE. E, FAS protein
expression in 492 prostate tissue specimens from AA (102 tumor and 112 normal) and EA men (150 tumor and 128 normal) demonstrating significantly higher
FAS expression in AA than EA prostate tumors. Error bars, SE. F, Metabolomic analysis of 94 lipids in 14 AA and 110 EA prostate tumors identified lipids
and fatty acids present at significantly higher levels in AA prostate tumors. Box plots are displayed with a median center line, box range from the 25th to
75th percentile and whiskers extending to the most extreme observation within 1.5 times the interquartile range. NS, not significant; Padj, Padjusted.
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in AA-ARBS, lipid metabolism and immune response/cytokine
signaling, are upregulated in AA versus EA prostate cancer in prior
comparative transcriptomic analyses (4, 42–48). Notably, a recent
study reported greater expression of genes involved in adipogenesis
in EA than AA prostate cancer (43). However, the effect size was
modest and this report comprised a single dataset. In comparison, we
observed evidence of upregulated lipid metabolism in AA prostate
cancer across independent epigenomic, transcriptomic, and metabo-
lomic datasets.

Higher expression of lipid metabolism genes in our RNA-seq
dataset and lipids and fatty acids in our metabolomic dataset in
prostate cancer from AA versus EA men adds to the literature
supporting an altered lipid metabolic profile in prostate cancer in AA
men (4, 52, 53). Further, we report three novel findings that add to our
understanding of differences in the lipid metabolism pathway in AA
prostate cancer and its potential clinical implications. The first is that
AA prostate cancer exhibits greater AR binding intensity at lipid
metabolism genes. The role of AR in upregulating aberrant lipogenesis
is supported by our in vitro experiments demonstrating a regulatory
relationship between AR signaling and FASN expression in an AA
prostate cancer cell line. The second discovery pertains to FASN, which
encodes FAS, a critical catalytic enzyme in lipid metabolism that is
associated with aggressive prostate cancer (49–51). FASN has been
previously shown to be upregulated in prostate cancer inAA versus EA
men, but whether this correlates with increased FAS protein expres-
sion was not known (4). We show for the first time that FAS protein
levels are significantly elevated in prostate cancer in AA versus EA
men. It’s notable that while FASN RNA and FAS protein levels were
significantly higher in AA than EA prostate cancer, there was no
difference in either in normal prostate tissue between ancestral groups.
The absence of difference in normal prostate tissue suggests that FAS
upregulation in AA prostate cancer is likely independent of external
factors, such as differences in diet, that may be experienced differently
by AA and EA men.

The third observation in this study pertains to the clinical implica-
tions of upregulated lipid metabolism. While preclinical models
demonstrate its association with aggressive prostate cancer, upregu-
lated lipid metabolism is not known to impact clinical outcomes in
men with prostate cancer (55, 56). Our data suggest that higher
expression of lipid metabolism genes is associated with poor response

to ARSIs and shorter survival in a contemporary metastatic prostate
cancer cohort. This finding further strengthens the rationale for
inhibiting lipid metabolism as a novel therapeutic approach in men
with prostate cancer and suggests that AA men may be more likely to
benefit from these drugs. We previously demonstrated that the selec-
tive FAS inhibitor IPI-9119 reduces tumor growth in castration-
resistant prostate cancer (CRPC) preclinical models and human
organoids (49). With drugs targeting FAS and other lipid metabolism
enzymes in clinical development, we urge clinical trials to enroll
diverse patient populations. In addition, correlative studies to identify
biomarkers, such as FAS protein levels and/or lipid metabolism gene
expression, will be critical to identify patients most likely to benefit
from this treatment approach.

In addition to lipid metabolism, ARBS with greater intensity in
prostate cancer in AA men demonstrated a strong enrichment for
immune response and cytokine signaling genes. While epigenetic
regulation of immune response is well-established, our data is the first
to suggest that differences in the prostate cancer tumor microenviron-
ment betweenAA and EAmenmay be driven in part by differential AR
binding (59).This novelfindingwas concordantwith greater expression
of immune response and cytokine signaling gene sets in our indepen-
dent RNA-seq dataset, which is consistent with results of several
comparative transcriptomic analyses (4, 42–48). Provocative data
suggests a potential clinical correlation of this differential immune
response between AA and EA men with prostate cancer. Sipuleucel-T
is an autologous cellular immunotherapy demonstrated to prolong
survival in men with metastatic prostate cancer (60). Analysis
of the PROCEED Registry demonstrated that AA men treated
with Sipuleucel-T lived significantly longer than EA men (61). Our
RNA-seq data also demonstrated greater intratumoral activity
of macrophages, B cells, and CD8þ T-cells, all of which are
involved in the immune response to Sipuleucel-T (62). The prostate
tumor microenvironment may have clinical implications beyond
response to immunotherapy. A recent report suggests that tumor-
associated macrophages promote castration-resistance by contrib-
uting cholesterol for intratumoral androgen production (63). In
light of our findings, further studies are warranted to explore the
relationship between tumor microenvironment, lipid metabolism,
and androgen signaling in prostate cancer across men of different
ancestry.

Figure 5.

Upregulated lipid metabolism is associated with worse prostate cancer outcomes. Kaplan–Meier survival curves for time to treatment failure (A) and OS (B) on
abiraterone or enzalutamide for 81 men with metastatic castration-resistant prostate cancer based on lipid metabolism activity (36). Lipid metabolism scores were
generated by applying ssGSEA to normalized RNA-seq data and extracting sample-level enrichment scores for the Hallmark Fatty Acid Metabolism gene set.
Outcomes were compared between men in the top quartile versus the lower three quartiles based on ssGSEA enrichment scores.
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While the present results strongly support the conclusions discussed
herein, it is appropriate to recognize potential limitations. First, the
small sample size of the AR ChIP-seq cohort is modest. In addition,
due to limitations in tissue availability, we were unable to perform
DNA-seq or RNA-seq on the same samples that underwent AR ChIP-
seq analysis. This precluded our ability to correlate the AR ChIP-seq
results with other molecular features that can alter AR signaling, such
as ERG fusion status and CAG repeats, which are known to differ
between AA and EA men. However, the results of the differential AR
binding analysis identified biological processes corroborated by our
independent RNA-seq and metabolomic cohorts, as well as published
data, strongly supports the epigenetic findings. Another limitation is
that AR was the only epigenetic feature evaluated in this study. Other
TFs, such as FOXA1 and HOXB13, and histone modifications clearly
play a role in prostate cancer development (13, 14). It will be important
that future studies integrate comprehensive epigenetic profiling with
RNA-seq andDNA sequencing data. Performing these analyses within
the same samples will provide clarity on how genomic alterations
influence epigenetics, the regulatory relationship between epigenetic
features and RNA expression, and how these differences contribute to
prostate cancer racial disparities.

In summary, our data suggest amodel whereby differential androgen
signaling may contribute to higher levels of lipid metabolism, immune
response, and cytokine signaling in AA prostate tumors. Given the
substantial association of upregulated lipogenesis with prostate cancer
progression, our study provides a plausible biological explanation of the
higher incidence and aggressiveness of prostate cancer observed in AA
men (1, 2, 64, 65). With inhibitors of key lipid metabolism enzymes as
well as immunotherapies in clinical development, ourfindings suggest a
potential therapeutic opportunity to target and attenuate racial dispa-
rities in prostate cancer. Further exploration of these treatment
approaches in preclinical AA prostate cancer models and enrollment
of diverse patient populations in future clinical trials is warranted. In
conclusion, this study offers the first insights into ancestry-specific
differences in the prostate cancer AR cistrome.More broadly, our study
demonstrates the utility of epigenomic approaches to gain insight into
the biological differences underlying cancer disparities.
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