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Abstract

Kidney pathophysiology is often complex, nonlinear and heterogeneous, which limits the utility 

of hypothetical-deductive reasoning and linear, statistical approaches to diagnosis and treatment. 

Emerging evidence suggests that artificial intelligence (AI)-enabled decision support systems — 

that use algorithms based on learned examples —may have an important role in nephrology. 

Contemporary AI applications can accurately predict the onset of acute kidney injury before 

notable biochemical changes occur; identify modifiable risk factors for chronic kidney disease 

onset and progression; match or exceed human accuracy in recognizing renal tumors on imaging 

studies and may augment prognostication and decision-making following renal transplantation. 

Future AI applications have the potential to make real-time, continuous recommendations for 
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discrete actions and yield the greatest probability of achieving optimal kidney health outcomes. 

Realizing the clinical integration of AI applications will require cooperative, multidisciplinary 

commitment to ensure algorithm fairness, overcome barriers to clinical implementation, and build 

an AI-competent workforce. AI-enabled decision support should preserve the preeminence of 

wisdom and augment rather than replace human decision-making by anchoring intuition with 

objective predictions and classifications, and should favor clinician intuition when it is honed by 

experience.

Introduction

The complex, nonlinear, and heterogeneous nature of kidney pathophysiology limits the 

utility of hypothetical-deductive reasoning and linear, statistical approaches for disease 

diagnosis and treatment. Many off the ~68,000 diagnostic codes in the 10th revision of 

the International Statistical Classification of Diseases (ICD) system represent manifestations 

of kidney disease or systemic diseases that interact with kidney function. Moreover, an 

individual patient may have a combination of diseases, each influenced by behavioral, 

social, environmental, and genetic determinants of health. Thus, the complexity of kidney 

disease can reache or exceed the limits of human cognition and additive modeling.

Artificial intelligence (AI)-enabled decision support has the potential to mitigate these 

challenges and improve clinical care and research in nephrology. Whereas traditional clinical 

decision support systems conform to rules, AI models learn from examples and may 

therefore more accurately identify complex processes, such as kidney disease.1, 2 However, 

high-level evidence that supports the efficacy of AI-enabled decision support in nephrology 

is scarce, and few AI models have been deployed in the clinical setting. Realizing the 

potential of AI to transform nephrology care and research requires a robust understanding 

of AI fundamentals, the promises and perils of algorithm fairness, barriers and solutions 

to its clinical implementation, and pathways toward the development of an AI-competent 

workforce. This Review endeavors to impart understanding of these elements by providing 

an overview of the state-of-the-art of AI-enabled decision support systems in nephrology.

Fundamentals of AI in health care

“[AI is] about making computers that can help us — that can do the things that 

humans can do but our current computers can’t.”  —  Dr. Yoshua Bengio, deep 

learning pioneer and recipient of the Turing Award (2018)3

Scientific foundation for AI algorithms in health care

In 1966, Warner Slack used a transistorized computer, called the Laboratory INstrument 

Computer (LINC), to conduct the very first direct patient interview using a computer,4 — 

in this instance, regarding the patients’ history of allergy-related conditions. Among the fifty 

patients interviewed, physicians did not detect any allergic condition that was missed by 

LINC, whereas LINC detected 22 conditions that were missed by a physician. Remarkably, 

among the 30 patients who expressed a preference in the approach used to obtain their 
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medical history, 18 preferred the computer-based approach over the physician. This system 

is one of the earliest successful examples of AI in medicine.

Broadly, the types of challenges that AI research aims to address include knowledge 

reasoning, planning, machine learning, natural language processing, computer vision, and 

robotics. The LINC system developed by Slack and colleagues reflects early efforts in 

AI to capture and encode expert knowledge within computer systems — referred to as 

“expert systems.” However, advances in machine learning — the subfield of AI that uses 

algorithms to learn rules and relationships among variables derived directly from data — 

have largely displaced other AI subfields given the superior ability of machine learning to 

effectively solve challenges that previously required expert systems. Thus, modern use of the 

term “AI” is almost synonymous with machine learning.5 The ability of AI algorithms to 

learn rules and relationships directly from data has highlighted the potential of AI and data 

mining in health care. Similarly, deep learning —a subfield of machine learning in which 

computer systems learn to represent data by adjusting the weights of associations among 

input variables across a multi-layered hierarchy of nodes that together comprise an artificial 

neural network —has also demonstrated utility in the health-care space, most notably 

in enabling computer vision analyses of medical images. In the 1980s, the development 

of convolutional neural network (CNN) that mimicked human sight inspired substantial 

advances in computer vision that are now embedded in imaging applications in fields such 

as pathology, ophthalmology, cardiology, radiology and nephrology.6 For example, computer 

vision can survey X-rays and stratify their priority for radiologist review according to 

the severity of findings.7 Similarly, computer vision can prioritize specimen reviews by 

pathologists by identifying normal and abnormal cells and tissues.8

Although newer deep learning methods have proven to be particularly effective in many 

health-care contexts, they have several drawbacks. Specifically, they are most beneficial in 

the context of a high signal-to-noise ratio (that is, when the outcome can be consistently 

predicted by experts); they require a much larger sample size than traditional statistical 

approaches, and high-level evidence that supports their efficacy in the clinical setting 

is currently sparse.9 However, greater adoption of electronic health records (EHRs),10 

genomic sequencing11 and wearable devices12 has led to broader availability of multimodal 

health-oriented data. Thus the application of AI approaches may become more feasible for 

in-hospital and community health-care settings, and offer opportunities to build a stronger 

evidence base for AI-enabled decision support.

The common tasks for which AI can be applied in health care fall into three broad 

categories: unsupervised, supervised, and reinforcement learning (Box 1). An unsupervised 

learning algorithm learns the underlying relationships between variables in a dataset. These 

relationships can be used to assign groups of observations to clusters, or to reduce high-

dimensional data, such as genomic data for which there are hundreds or thousands of 

variables representing single cells or patients, to lower-dimensional representations. These 

algorithms are considered to be unsupervised as there is typically no “gold standard” against 

which the algorithms are trained or judged. By contrast, supervised learning involves the 

training of models to predict one or more outcomes using a set of predictor variables or 

features. The goal of supervised learning is to learn generalizable relationships between 
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predictors and the outcome without overfitting the model to the training dataset. Although 

models that are flexible and highly parameterized can often better fit complex relationships 

than supervised learning approaches that are less flexible, they often underperform in health-

care settings.13 A model that establishes excellent fit to complex relationships in training 

data by leveraging high parameterization (overfitting) may perform poorly when applied 

to another dataset in which the data are slightly different, as often occurs in health-care 

settings.

Problems to which supervised learning approaches are applied are commonly divided into 

regression problems (with continuous outcomes) and classification problems (with binary or 

multinomial outcomes). In reality, however, many distinct combinations of these problems 

exist. As a consequence, problems to which supervised learning approaches are applied 

are often considered from the viewpoint of a loss function that quantifies the quality of a 

model’s predictions by calculating differences between model predictions and the ground 

truth.

Reinforcement learning is a process that can be used to learn optimal actions from data. 

The researcher defines rewards for desirable actions and costs for undesirable ones. The 

algorithm is designed to learn an optimal strategy that maximizes the overall rewards. In 

some settings, such as robotics, reinforcement learning often involves physical actions (for 

example, moving the robot) to learn the consequences of the action in real-time. However, 

the implementation of such actions is often impossible or unethical in health-care settings 

when the proposed action (or inaction) lacks equipoise. Thus, reinforcement learning in 

health care is often used to learn optimal actions from retrospective data alone.

Although generalized linear models continue to have a major role in tabular biomedical 

data (for example, sets of laboratory and vital sign values), modelling of unstructured data 

(for example, natural language or imaging data) particularly benefits from deep learning 

approaches, Hence, deep neural networks have emerged as the dominant mechanism by 

which unstructured data are modelled. In this approach, information from the variables being 

used to predict the outcome enters an input layer of neurons, whereupon it is assigned initial, 

arbitrary weights that change over time as the model learns associations between inputs 

and the outcome. The information moves forward through hidden layers to the final output 

layer that represents the outcome of interest. After calculating the loss function, weights are 

optimized with backpropagation to optimize the association between inputs and the outcome 

of interest. Such network architectures have been developed for specific types of data. For 

example, CNNs are useful for modelling imaging data, recurrent neural networks (and its 

variants) are useful for modelling sequential data, and generative adversarial neural networks 

are useful for modelling synthetic data.

Examples of AI algorithms in health care

Unsupervised, supervised, and reinforcement learning algorithms have been applied 

effectively in many health-care settings. For example, unsupervised hierarchical clustering 

has been used to discover patient behavioral and clinical trajectory patterns.14, 15 

Supervised algorithms have demonstrated efficacy in estimating probabilities of researcher-

defined outcomes such as physiologic deterioration, sepsis, diabetic retinopathy, and 
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pathologic imaging findings,demonstrating the potential of this approach to augment 

clinical diagnostics and decision-making.16–22 Reinforcement learning approaches based 

on retrospective analyses have demonstrated the potential to facilitate medication and 

intravenous fluid dosing decisions.23–25 In resource-limited settings, AI systems may prove 

useful when alternative means of diagnosis are unavailable.26 In resource-rich settings, 

AI systems might help physicians to make diagnoses more quickly and miss fewer rare 

abnormalities.27

AI and the learning health system

AI-driven clinical interventions can be viewed through the lens of a learning health systems 

approach that uses cycles of learning to assess and improve care (Figure 1). To support 

health-care decisions, AI models must integrate within EHRs and prospectively generate 

patient data that can be used to assess the impact of the intervention to the health problem 

of interest (that is, a practice to data approach). Models that are trained on the gathered data 

must then be evaluated for their ability to generate accurate predictions and classifications 

according to a specific clinical context (that is, converting data to knowledge). Finally, 

accurate predictions should be linked to interventions that are tailored to the patient 

needs (that is, converting knowledge to practice). The efficacy of AI-driven interventions 

is evaluated through the analysis of prospective data and through clinical trials;28 these 

implementations often follow a continuous lifecycle (Figure 2).

Despite evidence that the implementation of AI-driven tools has improved clinical outcomes 

in some areas of medicine,29 the evaluation of AI models in the field of nephrology remains 

mainly in silico. This incremental progress largely reflects challenges in integrating AI 

models within EHRs and in the linking of model results to meaningful interventions.30 

However, the maturation of AI-enabled decision-support systems in nephrology could be 

facilitated by the initiating greater numbers of AI-driven clinical trials that are conducted in 

accordance with relevant guidelines to ensure that findings are robust and reproducible.31, 32

State-of-the-art of AI in nephrology

AI techniques have the potential to enable earlier detection and define more granular, 

patient-specific representations of kidney diseases and their treatments while avoiding the 

inherent risks of invasive testing. The scope of AI applications in nephrology will expand 

as data standardization, integration practices and workflows evolve alongside advances 

in AI techniques. To date, emerging AI technologies have demonstrated potential for 

the early detection and accurate representation of acute kidney injury (AKI) and chronic 

kidney disease (CKD), renal cell carcinoma (RCC) and renal allograft dysfunction (Table 

1), although most applications to date have been described in retrospective studies and 

require prospective validation.33 Below we summarize sentinel articles that highlight the 

state-of-the-art of AI in nephrology by disease area.

Acute kidney injury

AI may be particularly useful for time-sensitive applications in nephrology, such as in 

diagnosing, forecasting, and suggesting treatments for AKI.34, 35 Patients with AKI often 
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present with non-specific symptoms, suggesting there may be utility in AI tools that can 

automatically extract AKI-associated patterns from high-throughput patient data to predict 

the onset of AKI.36 Indeed, the development of such AI algorithms has demonstrated 

efficacy in several clinical contexts, including in patients with hospital-acquired AKI,37 

postoperative AKI,38–41 and in patients who develop AKI as a consequence of cancer,42 

traumatic injury,43 or critical illness settings.44–48 To optimize their clinical efficacy, AKI 

prediction tools must represent temporalities, such as the time span of the input data and/or 

prediction horizons. For example, one study developed logistic regression and random forest 

models from EHR data from 1 year prior to hospital admission to 48 hours after admissionto 

stratify the risk of developing multi-stage hospital-acquired AKI more than 48 hours after 

admission37. This approach identified features early in disease progression — such as use of 

nonsteroidal anti-inflammatory drugs — that were associated with AKI risk. Use of causal 

inference models or randomized control trials are needed to determine whether such features 

are causative and could represent preventative or therapeutic targets.

In attempts to develop tools that enable earlier, more dynamic AKI prediction and 

monitoring, several studies have implemented models that output AKI predictions 

periodically (for example, every 15 minutes,49, 50 one hour,51 six hours,52 or twelve 

hours,53, 54) or whenever a particular clinical descriptor (for example, serum creatinine 

level) changes in value.42, 55, 56 One study53 used nonoverlapping 12-hour intervals of EHR 

data with gradient boosted machine learning algorithms to continuously predict the onset of 

stage 2 AKI within the following 24 hours (area under the receiver operating characteristic 

curve (AUROC) 0.90; 95% CI: 0.90–0.90) and 48 hours (AUROC 0.87; 95% CI: 0.87–

0.87), and the receipt of kidney replacement therapy within 48 hours (AUROC 0.96; 95% 

CI: 0.96–0.96). The clinical implementation of such AKI monitoring tools therefore also 

requires a careful balance between sensitivity and specificity for maximizing the discovery 

of positive cases and minimizing alarm fatigue. Indeed, a comparison of these critical 

predictive metrics at various predicted probability thresholds, ranging from 0.004 (18,932 

patients; sensitivity 0.96; specificity 0.61; positive predictive value (PPV) 0.043; negative 

predictive value (NPV) 0.998) to 0.125 (2,362 patients; sensitivity 0.44; specificity: 0.98, 

PPV: 0.327, NPV: 0.992) demonstrated that different predicted probability thresholds have 

substantial effects on model performance.53 Nonetheless, the ability to predict AKI onset 

prior to notable elevations in serum creatinine level — a metric that is commonly used 

to identify AKI —implies potential clinical benefits for the real-time implementation of 

time-sensitive AKI forecasting.

Most AI-enabled AKI prediction systems involve conventional classifiers, such as logistic 

regression,55, 56 random forests,41, 45, 49 gradient boosting,51, 53, 54 k-nearest neighbors,43 or 

a comparison of multiple such algorithms. Alternatively, deep learning methods derive more 

hierarchical and robust health representations that may yield greater accuracy and clinical 

utility than conventional classifiers.50, 52 For example, the development of a continuous AKI 

prediction framework using variations of recurrent neural networks to predict AKI every 

6 hours after hospital admission, enabled AKI events to be predicted up to 48 hours in 

advance of an AKI episode, with an AUROC of 0.92.52 This approach correctly forecasted 

subsequent increases in biochemical laboratory measurements of renal function with 88.5% 

probability. These studies indicate that identifying imminent AKI before biochemical 
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changes occur is feasible and could enable early preventative and therapeutic measures that 

may improve patient outcomes.

Chronic kidney disease and kidney failure

Worldwide,CKD and kidney failure are associated with approximately 1.2 million deaths 

per year, and substantial health-care costs, suggesting a need for earlier detection and 

more accurate prediction of CKD trajectory. In response to this need, researchers57 have 

used CNNs to develop an automated, noninvasive screening tool for the detection of 

CKD from two-field retinal photographic images. Internal validation demonstrated superior 

classification performance (AUROC: 0.938 [95% CI 0.917 – 0.959], Sensitivity: 0.84, 

Specificity: 0.85) when retinal images were combined with existing clinical risk factors, 

compared with the use of risk factors (AUROC: 0.916 [0.891 – 0.941], Sensitivity: 

0.82, Specificity: 0.84) or retinal images (AUROC: 0.911 [0.886 – 0.936], Sensitivity: 

0.83, Specificity: 0.83]) alone. However, the added value of retinal photography was not 

replicated in two external validation experiments. Of note, NPV for the hybrid approach 

was high (0.96 – 0.99); however, PPV was low (0.09 – 0.57), with wide variance partially 

attributable to population and CKD prevalence differences, suggesting that the model was 

effective in identifying the absence of CKD, but not its presence. Nevertheless, this study57 

remains an important step towards the goal of AI-enabled CKD screening. A second 

study58 developed a similar autonomous deep learning framework using a residual Network 

(ResNet)59 CNN architecture to predict estimated glomerular filtration rate (eGFR) — a 

key component for the diagnosis and staging of CKD — from kidney ultrasonography 

images at a single institution. CKD prediction performance varied across eGFR thresholds 

of 30 ml/min/1.73m2 (AUROC: 0.8036, Sensitivity: 0.7027, Specificity: 0.7791), 45 

ml/min/1.73m2 (AUROC: 0.8326, Sensitivity: 0.8077, Specificity: 0.7321), and 60 ml/min/

1.73m2 (AUROC: 0.9036, Sensitivity: 0.9213, Specificity: 0.6061), with superior accuracy, 

precision, recall, and F1 score compared with that of four experienced nephrologists. The 

observed lower performance at lower eGFR may be attributable to an uneven distribution of 

eGFRs in the dataset, limitations in ultrasonography in detecting all pathophysiologic factors 

affecting CKD, or a combination of these factors. Another study60 that analyzed insurance 

claims data from more than 20 million patients used a gradient boosting tree61 algorithm 

to predict the probability of an individual developing kidney failure six months later. Their 

model implemented a code embedding procedure inspired by natural language processing 

techniques, resulting in excellent predictive performance (AUROC: 0.930 [95% CI: 0.916 – 

0.943], Sensitivity: 0.715, Specificity: 0.958, PPV: 0.517, NPV: 0.981). The most important 

predictors of kidney failure were age, high CKD stage, number of hypertensive events, 

and newly diagnosed hypertension, consistent with clinical experience. A separate study of 

patients receiving kidney replacement therapy62 demonstrated that random forest modeling 

performed similarly or better in predicting mortality than existing scoring systems, such 

as the sequential organ failure assessment (SOFA) score and the acute physiology and 

chronic health evaluation (APACHE) II score. Thus AI-enabled prediction of CKD onset and 

progression to kidney failure offers the potential for accurate screening and prognostication 

without the need for invasive testing.
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Diabetic kidney disease

Diabetic kidney disease affects approximately 1 in 3 patients living with type 1 or type 

2 diabetes in the USA; early diagnosis has important implications for treatment success. 

One study developed a deep learning approach based on integrated EHR data from 

64,059 patients with diabetes that comprised longitudinal time series of laboratory tests, 

structured billing codes, and disease concepts extracted from unstructured clinical notes 

to predict worsening diabetic kidney disease six months prior to clinical diagnosis63. This 

work used convolutional autoencoders to extract information from multivariate longitudinal 

time series and implemented disease name matching and topic modeling to convert text 

notes into a structured format. This multi-modal approach yielded greater predictive 

performance compared with that achieved by an approach that used patient characteristics 

only (AUROC: 0.743 versus 0.562, accuracy: 0.701 versus 0.548). A separate study64 

approached the diagnosis of diabetic kidney disease from a pathology and computer vision 

perspective, using glomerular immunofluorescent images (of IgG, IgA, IgM, C3, C1q and 

fibrinogen staining) from 885 patients to train a CNN to diagnose kidney disease. The 

tool demonstrated high accuracy (98.23 +/− 2.81) on a limited test dataset of six patients. 

Although these studies are in their early stages, findings to date suggest an important role for 

early, AI-enabled diagnosis and prognostication of diabetic kidney disease.

Renal cell carcinoma

RCC is the most common form of renal cancer, with forecasts of more than 55,000 new 

diagnoses per year by 2050.65 Automated computer vision approaches based on computed 

tomography, magnetic resonance and histopathology images have potential to aid the 

diagnosis and characterization of RCC, to enable earlier and more accurate non-invasive 

screening and diagnosis. One study66 developed an ensemble deep learning model that 

integrated clinical variables and magnetic resonance images to distinguish benign from 

malignant renal tumors, yielding diagnostic accuracy comparable to that achieved by 

four expert radiologists (0.70 vs. 0.60, respectively, P=0.053), demonstrating the utility 

of this imaging-based approach in diagnosing renal cell carcinoma. Similar to computer 

vision models developed for CKD screening, the framework used in this study was also 

based on the ResNet deep learning architecture. An internally validated retrospective study 

highlighted the importance of integrating data derived from clinical variables such as age, 

gender, and tumor volume with imaging data from T1C-weighted and T2-weighted magnetic 

resonance images, with an integrated approach demonstrating better performance (AUROC: 

0.73, Sensitivity: 0.92, Specificity: 0.41, PPV: 0.67) than that achieved by clinical variables 

alone (AUROC: 0.43, Sensitivity: 0.83, Specificity: 0.12, PPV: 0.55), T1C-weighted images 

alone (AUROC: 0.62, Sensitivity: 0.87, Specificity: 0.35, PPV: 0.63), or T2-weighted images 

alone (AUROC: 0.70, Sensitivity: 0.90, Specificity: 0.41, PPV: 0.66). Furthermore, the fully 

automated deep learning ensemble outperformed conventional machine learning techniques 

that used handcrafted radiomic features such as shape, intensity, and texture (AUROC: 0.59, 

Sensitivity: 0.79, Specificity: 0.39), highlighting the power and potential of deep learning for 

accurate, autonomous renal tumor classification applications.
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Renal allograft function

AI harbors potential to augment prognostication and decision-making following renal 

transplantation. One study67 developed an AI framework for predicting allograft survival, 

using clinical variables and immunological factors as inputs to generate a survival decision-

tree model. The model demonstrated high predictive accuracy (AUROC: 0.77 – 0.82) 

and establishedimportant associations between early rejection and eventual graft failure. 

Another preduction system, called the iBox risk score68 integrates functional, histological 

and immunological features, such as HLA antibody profiles, to predict renal allograft 

failure using a multivariate Cox proportional hazards regression model. The inclusion of 

histology information improved the overall discrimination of the model compared with that 

achieved by individual feature subsets. iBox was validated at several time points after kidney 

transplantation and in three randomized clinical trial datasets, suggesting that this model 

represents a state-of-the-art tool for predicting allograft survival.

Algorithm fairness

Generating fair datasets

AI-enabled decision support can exacerbate implicit bias and discrimination if trained 

on data that mirrors the health-care disparities experienced by groups defined by race, 

ethnicity, gender, sexual orientation, socioeconomic status or geographic location.69 Unfair 

datasets can potentiate minority bias (for example, by failing to include representative 

data from a sufficient number of patient groups to enable the model to learn accurate, 

representative patterns that serve all patients) and potentiate missing data bias (for example, 

if a dataset lacks data from select groups in a non-random fashion). To mitigate these 

pitfalls, AI algorithms must be trained on fair datasets that include and accurately represent 

social, environmental, and economic factors that influence health. Gaps created by missing 

sociodemographic informationfrom the EHRs that are used for algorithm training, can be 

filled by linking to publicly available datasets.70, 71 This approach can improve adherence to 

FAIR principles (https://www.go-fair.org/fair-principles/),72 but cannot account for systemic 

and structural bias that arises from two sources: label bias in which a subpopulation is 

misdiagnosed frequently, and the nonexistence of training data representing individuals with 

inadequate access to health-care resources.73 Models themselves can identify and correct 

label bias. However, other than data simulations guided by census data and expert opinion, 

we are unaware of any robust, data-driven solution for developing models that represent 

individuals who have no opportunity to leave a data trail.74

Implications of including race and social determinants of health in training data

Including race in training data must be done with care to avoid inadvertent harm from the 

modelling of racial inequities, which are common among patients with kidney disease. Black 

individuals are at increased risk of developing more severe and rapidly progressive CKD. 

The vast majority of this risk may be largely a consequence of structural racism, resulting 

in suboptimal access to high-quality health care, housing, education, and employment 

opportunities.75 These associations have important implications for the inclusion of race 

in AI algorithms. For example, incorporating the observation that Black patients are at 

increased risk of mortality after coronary artery bypass in a decision-making algorithm 
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could reduce the likelihood that Black patients will garner the benefits of an indicated 

procedure, especially if the observed mortality risk is mainly attributable to inadequate 

access to health-care resources.69, 76, 77, 78 Thus, associations between race and health-care 

outcomes often reflect inequitable social conditions rather than genetic differences. For 

predictions or classifications in which a plausible biologic mechanism exists by which race 

is associated with the outcome of interest – for example, the higher risk of kidney disease 

attributable to APOL1 risk variants, which are most often seen in people of West African, 

excluding race could reduce model accuracy. However, in the absence of a plausible biologic 

mechanism, the inclusion of race as a variable in an AI algorithm may introduce implicit 

bias. The Kidney Donor Risk Index (KDRI) evaluates organ quality of potential donor 

kidneys using ten variables, one of which is race. Black kidney donor race is associated with 

increased risk of allograft loss by as much as 20%.78 This increased risk may be partially 

attributable to the higher incidence of APOL1 variants among Black donors compared to 

white donors in the USA, and may be partially attributable to more general structural racial 

inequities in health-care. However, the inclusion of race in the KDRI may decrease the 

predicted quality of organs from Black donors and could contribute to disparities in kidney 

transplant donation by Black donors, even though the prevalence of APOL1 among Black 

individuals is only 10–22%.79

For some applications, it may be preferable to exclude race from AI learning algorithms. For 

example, although Black and non-Black categories have long been included in commonly 

used eGFR equations, a growing academic consensus has questioned the biological rationale 

for the inclusion of race in these equations and highlighted the potential for harm from this 

approach. These events have led to the development of. new eGFR equations that do not 

include race.80,81,82

Race also has important interactions with social determinants of health (SDOH) that 

represent non-medical factors (that is, the conditions under which we live, grow and 

work) that contribute to health outcomes.83 SDOH are classified into five, key elements: 

health-care access and quality; education access and quality; social and community 

context; economic stability; and neighborhood and built environment.84 These elements 

are associated with disparities in the incidence, progression, and treatment of CKD.84–87 

Information about these five SDOH elements are often missing from EHRs of patients from 

vulnerable populations, and the absence of this information can potentiate bias in algorithms 

that attempt to include SDOH elements and race in the model.88 Even when information 

on SDOH is collected uniformly across populations, differences in access to health care 

across social groups may worsen the under-representation of SDOH data for vulnerable 

populations. Finally, SDOH derived from census data are subject to inaccuracies from the 

infrequent collection of census data (every 10 years in the USA).

Best practices for fair algorithms

To mitigate potential harms of algorithm bias, we recommend several best practices. The 

multiple etiologies of bias in AI-decision support require a comprehensive, multi-faceted 

approach to ensuring algorithm fairness.across the phases of algorithm design; training 

and development; and assessment and deployment (Figure 3). These best practices for the 
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development of fair algorithms are consistent with American Medical Association policy 

recommendations that aim to promote the development of high-quality, clinically validated 

AI support systems that are transparent, can identify and mitigate bias, and that avoid 

introducing or exacerbating health disparities, particularly for new AI tools that are tested or 

deployed in vulnerable populations.89

Study design phase—Researchers must ensure that patients included in studies for 

AI model development are representative of the patients for whom the model will be 

applied. For example, models that are trained and tested on a cohort in which women 

are under-represented — as might be expected in studies that use US Department of 

Veterans Affairs datasets, in which approximately 6% of participants are female — may 

not produce effective decision support applications for use in female patients.52 Researchers 

who use retrospective data for AI model development should consider the possibility that 

training data may be affected by systemic and structural health-care disparities that could 

introduce bias, and communicate these weaknesses to the patients and providers who might 

use the resulting AI-enabled decision support. In addition, researchers must ensure that 

data collection occurs uniformly across patient subpopulations to avoid scenarios whereby 

training data disproportionately represent certain sociodemographic groups, which could 

compromise the efficacy of the decision support system when applied to under-represented 

populations.

Training and development phase—Incorporating information about person context-

level SDOH is essential to ensure equity in AI tools, methods and health-care applications. 

Careful consideration of each input feature is needed to minimize bias in model outputs. 

Researchers should consider whether the associations between input features, including 

race and SDOH, are the result of true biologic mechanisms or bias. In the absence of 

knowledge about biologic mechanisms, excluding those SDOH from model feature sets 

may promote fairness. In addition, researchers must consider the effect of confounding on 

associations between SDOH and the health-care outcomes that are forecasted by AI-enabled 

decision support. For example, if an AI model “learns” that low socioeconomic status is 

associated with poor outcomes after an otherwise effective disease-specific treatment but 

the association is actually driven by interactions between SDOH and outcomes rather than 

interactions between the treatment and outcomes, then the AI model may recommend 

against providing an effective treatment for patients with low socioeconomic status. 

Use of different cut-off values for different patient subgroups has been proposed as a 

strategy to adjust for such confounders; however, this approach raises questions as to the 

identification of an equitable means to determine the optimal cut-off value and requires 

further investigation.90

Assessment and deployment phase—Following the development of a model, 

researchers should ensure that the deployment phase variables represent the same concepts 

and values as their training phase counterparts. For example, a urine output variable 

must use the same measurement units and time interval in both the training and 

deployment phases. Standardized reporting guidelines can promote transparency in the 

training process by documenting the association of SDOH variables with model outputs 

Loftus et al. Page 11

Nat Rev Nephrol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and recommendations that correspond to model outputs.91 Before their deployment, models 

should be assessed with validated tools — such as the Prediction model Risk Of Bias 

ASsessment Tool (PROBAST) — to determine their risk of bias,. Following deployment, 

researchers and independent oversight committees should ensure that the models provide 

equal clinical benefit, predictive performance, and resource allocation for all patient 

subgroups.74, 92

Clinical implementation

Despite great potential for AI-enabled decision support systems to augment care, few have 

been implemented clinically.93, 94 However, as described below, solutions for the various 

barriers to clinical implementation are often available (Table 2).

Data standardization

Dissemination and clinical implementation of AI models across health-care systems 

requires data structures to be standardized across centres. For example, serum creatinine 

measurements must have a single, common variable name or label. We suggest that variables 

used in AI algorithms should be mapped to a single, interoperable scheme, such as the 

open-source OMOP (Observational Medical Outcomes Partnership) or PCORnet (National 

Patient-Centered Clinical Research Network) common data models. An advantage of AI 

decision support models that are built using standardized labels is that they can be shared 

between different institutions by translating the model into an interoperable programming 

language (for example, Predictive Model Markup Language) followed by retraining and/or 

testing of the model on interoperable data from different practice settings. Such sharing 

of an interoperable model obviates the need for data sharing and the ensuing potential 

for compromising the security of patients’ private health data. Alternatively, collaborative 

modelling without data sharing can be accomplished by federated learning in which local 

models train separately and send gradients or coefficients to a centralized, global model. 

This approach — privacy by design — ensures that the models can be generalized across 

participating institutions without the need to share patient data, and offers the potential 

advantage of learning from a greater number of rare scenarios that are represented sparsely 

in smaller, single-institution datasets. Accurate representation of these rare scenarios is 

critical for building AI-enabled decision-support for rare kidney diseases.

Uncertainty and mistrust

Mistrust hinders clinical implementation of AI-enabled decision support through skepticism 

regarding opaque, “black box” model outputs and recognition that AI models can 

make egregious errors.95–97 Such skepticism can in part bemitigated by the adoption of 

mechanisms that aid interpretation of the model output by communicating the relative 

importance or weight of input variables that determine the model outputs and describe 

objectively what the model has learned. Such mechanisms are most useful when their results 

correlate with logic, scientific evidence, domain knowledge and effective interventions.98, 99 

For example, a model that predicts the development of AKI could also identify the most 

important modifiable risk factors for individual patients, such as nephrotoxic medications 

that could be discontinued, contrast imaging studies that could be avoided, or renal perfusion 
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deficits that could be corrected with intravascular volume expansion. These techniques, 

while potentially useful, fail to address valid concerns regarding model uncertainty. Among 

model types, computer vision models are, arguably, the most successful in performing 

health care prediction and classification tasks. Yet, even computer vision models can 

fail catastrophically at seemingly simple tasks.97, 100 For an AI model that yields 95% 

accuracy, one may — and perhaps should — fear that a particular output is among the 

5% that are incorrect. This fear may be alleviated by conveying the probability that a 

given model output is inaccurate, termed here as model uncertainty.99 Common statistical 

measures of spread, such as standard deviations and interquartile ranges, cannot convey 

model uncertainty because they are undefined for point predictions, which are the outputs 

of a risk prediction model. Instead, one proposed approach to estimate uncertainty in deep 

learning prediction models is to generate sets of predictions using a series of models that 

are modified slightly by dropping different sets of neurons each time data are passed101. 

In this scenario, high variance (that is, poor precision) across predictions made by the 

model variants suggests high overall model uncertainty, incicating that any single prediction 

made by the model is likely to be inaccurate. Mechanistic models that use mathematical 

expressions of pathophysiology or pragmatic, clinical truths (for example, patients requiring 

mechanical ventilation or vasopressor support require admission to an intensive care unit) 

can simulate data to account for unique, heterogeneous patient populations and practice 

patterns, and can infer causal relationships by changing individual variables and appraising 

their effects on outcomes. Of note, further exploration of these approaches is required to 

establish efficacy for medical applications.102, 103

Technology readiness

Clinical application of AI-enabled decision support in nephrology should occur only after 

high-level evidence of safety and efficacy has been validated by a robust peer-review 

process. To avoid harm, models should be subjected to assessments of technology readiness, 

similar to those adopted by the National Aeronautics and Space Administration (NASA) 

after the Challenger tragedy.104 Following the development and validation of models 

using datasets that are sufficiently large to contain an adequate number of patients with 

and without the medical condition being modeled, the implementation of AI models 

should mimic Phase 1 and 2 clinical trials. That is, small, prospective studies should be 

performed under close surveillance and high scrutiny.105 Approaches to mimic traditional 

phase 3 and 4 clinical trials for definitive validation of AI decision support are typically 

hindered by their cost and requirement for substantial research infrastructure resources. An 

alternative approach to understand the performance of a model in different clinical practice 

environments and with different patient populations may require investigators to determine 

how their models respond to simulations of different and rare input data structures. For 

example, the open-source What-If Tool allows investigators to vary input features, such 

as patient age or proportions of vulnerable populations, and perform interactive model 

reassessments under these simulated, hypothetical circumstances.106 These technology 

readiness assessments could avoid large-scale failures and facilitate realistic expectations 

regarding real-world model performance, before AI-enabled decision support is deployed in 

clinical settings.
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Integration with clinical and digital workflows

Within six years of the Health Information Technology for Economic and Clinical Health 

Act of 2009,107 which incentivized adoption of EHR systems, more than four of five 

US hospitals had adopted EHRs. This large-scale adoption of EHR systems is largely 

responsible for the massive volumes of data available today that are necessary for optimal 

AI algorithm training.107–109 Of note, contemporary data management systems allow the use 

of automated, real-time EHR data as model input features, obviating the manual data entry 

requirements that incite apathy toward clinical decision support systems.110 In practical 

terms, the automated inputting of real-time EHR can be achieved by linking EHR data with 

census data to incorporate data representing SDOH information, and by passing the merged 

dataset through validated preprocessing algorithms for handling outliers, missing values, 

normalization, and resampling. For large-scale real-time data, we suggest implementing a 

modular platform using open-source tools (for example, Spark Streaming or Cassandra), 

that dynamically scale computing resources according to real-time workloads by linking and 

coordinating multiple computer servers.110, 111

The integration of AI models with clinical and digital workflows may also decrease 

deployment costs associated with the organizational effort and resources required for clinical 

implementation.111 Finally, the clinical integration process should reflect the reality that AI 

models describe relationships and associations rather than causality, with the caveat that in 

silico randomized trials can infer causality. When causal relationships and uncertainty have 

not yet been established, which is true of nearly all contemporary AI-enabled decision 

support models, outputs that are provided to patients, caregivers or clinicians should 

represent estimations and recommendations that enrich rather than replace human decision-

making and preserve the pre-eminence of human wisdom and intuition.

Heuristics and intuition

Under time constraints and uncertainty, human decision-making is influenced by heuristics 

(cognitive shortcuts), that can lead to cognitive errors and patient harm.112–114 For example, 

incorrect drug doses are the most common cause of adverse drug events; patients with 

kidney dysfunction are particularly vulnerable to drug dosing errors.115, 116 AI models 

have the theoretical advantages of objectivity and formality grounded in mathematical 

expressions of logic, suggesting utility for AI-enabled decision support systems to serve as a 

bulwark against cognitive errors. For experienced clinicians, heuristics can be advantageous. 

When rewards or penalties follow life experiences, limbic system neuronal architectures 

adapt so intuitive positive or negative emotions are recalled when similar experiences are 

subsequently encountered.117, 118 Intuition yields performance advantages in controlled 

settings and can identify life-threatening medical conditions that are underrepresented 

by objective clinical parameters alone.119–121 Therefore, clinical applications of AI-

enabled decision-support should seek to anchor intuition with objective predictions and 

classifications, and should favor clinician intuition when it is honed by experience.

Legal governance

Unlike ethical considerations, legal governance is explicit and audited externally.122 From 

a medico-legal perspective, in the USA, AI-enabled decision support in nephrology fits 
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the Software as Medical Device (SaMD) category generated and maintained by the US 

Food and Drug Administration.121 Guidelines proposed by the SaMD Working Group 

provide frameworks for aiding health care software developers in creating, evaluating 

and implementing SaMD safely and effectively in clinical settings. Judicial oversight and 

precedents for SaMD are not defined rigidly. Hence, assigning accountability for medical 

errors and complications associated with SaMD remains challenging, especially when legal 

governance overlaps with ethical considerations. For example, an AI model that predicts 

the short-term and long-term utility of continuous renal replacement therapy (CRRT) for 

a critically ill patient may support the decision to use CRRT resources for that patient, 

which decreases CRRT resource availability for other patients, regardless of whether they 

have or will develop a greater need for CRRT relative to the index patient. The dynamic, 

complex nature of these dilemmas hinders the development of universal rules and policies 

for legal governance of medical AI. Instead, we suggest that AI-enabled decision support 

in nephrology is guided by altruism, creativity and clinical expertise towards the greatest 

possible and most equitable net social benefit.

Workforce development

Experiences from non-medical industries

AI has transformed non-medical industries by automating repetitive, time-consuming tasks 

and providing decision support. Automation enables human workers to shift their focus from 

mundane tasks toward higher-level critical thinking and problem-solving. AI can organize 

data into information, and translate information into knowledge; presently, applying 

that knowledge to complex decision-making paradigms requires the wisdom of human 

experience. In non-medical contexts, developments in AI-enabled automation have shifted 

workforce expertise away from assembly-line type skillsets toward the skills necessary 

to interpret and leverage AI applications in achieving work-related objectives. Businesses 

are reframing multidisciplinary teams to include domain experts, business experts, and 

AI experts. To fuel these initiatives, such businesses are providing reskilling, upskilling, 

cross training, and mentorship programs to bridge knowledge gaps between subgroups in 

multidisciplinary teams.123 These programs, often delivered online by large corporations 

such as Amazon, AT&T, and Microsoft, generate customized learning paths from digital 

knowledge assessments.124–127 Experiences from non-medical industries in AI workforce 

development can inform the development and implementation of similar programs in 

medical fields.

Deficiencies in current medical training paradigms

Medical training is perhaps one of the longest and most extensive of all professional training 

pathways. The field of medicine is undergoing extensive transformation as a consequence of 

digitization. However, medical education has not kept pace with these transformations and 

remains largely based on traditional curricula that lack adequate exposure to the concepts 

and applications of AI.128 The Accreditation Council for Graduating Medical Education 

(ACGME) in the USA focuses medical education on the following domains: patient care; 

medical knowledge; interpersonal and communication skills; practice-based learning and 

improvement; professionalism; and systems-based practice.129 However, in practice this 
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approach often translate into participants memorizing medical facts and then applying them 

to patient care.130 There is almost no systematic commitment to the teaching of probabilistic 

thinking or the basics of AI, and little motivation to addend these traditions since they are 

not tested in medical training or professional licensing exams.131 The lack of curricula to 

ensure that emerging AI technologies are part of routine medical education, means that 

AI skillsets are disproportionately available to individuals who seek training or to select 

institutions with contemporary training programs that introduce medical AI concepts and 

applications.131

The second major deficiency in the current paradigm is a lack of education relating to the 

quality assessment and optimization of EHR data at both graduate and postgraduate levels. 

Training on the use of EHRs often consists of brief introductory courses that teach the 

basic skills necessary for clinical work and rarely address data quality, the impact of biased 

EHR data, and methods for maximizing EHR use for enriching – rather than encroaching 

– the patient-physician relationship.132 This gap in training is a major problem, since most 

medical AI systems use EHR data and physicians are a primary source of EHR data entry. 

Fortunately, deficiencies in current medical training paradigms are somewhat self-limited, 

as many high schools and colleges in the USA and elsewhere now offer courses in AI and 

data science. Similarly, postgraduate training should adapt toward building an AI-competent 

medical workforce.

Building an AI-competent medical workforce

An understanding of data-driven medicine, probabilistic thinking, and key aspects of AI 

applications should be an integral part of graduate, postgraduate, and continuing medical 

education. Although a comprehensive set of recommendations for achieving these goals 

is beyond the scope of this Review, we suggest a framework for the creation of an 

AI-competent medical workforce. First, both didactic and practical education should be 

embedded throughout all phases of medical education and standardized testing (Figure 

4). Second, multidisciplinary teams with expertise in data and implementation science 

should integrate with learners at all levels. Finally, we must collaborate with our ethics and 

humanity colleagues to ensure that computational skills are balanced with and complement 

person-centered aspects of medicine, including communication, empathy, creativity and 

shared decision-making. In the data-driven age of medicine, the personal aspects of 

medicine will take even greater precedence as we ask patients to trust not the algorithms, but 

rather the clinicians using the algorithms.

Conclusions

Artificial intelligence (AI)-enabled decision support offers opportunities to understand and 

manage the complex, non-linear, and heterogeneous pathophysiology of kidney disease by 

learning from examples rather than conforming to rules. AI models can already predict 

the onset of AKI before biochemical changes occur, identify modifiable risk factors for 

CKD development and progression, and match or exceed human accuracy in recognizing 

renal tumors on imaging studies. In the future, decision support applications could leverage 

reinforcement learning technologies to offer real-time, continuous recommendations for 
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discrete actions that yield the greatest probability of achieving optimal kidney health 

outcomes. Realizing these potential advantages will require that clinicians, data scientists 

and administrators work together to build an AI-competent workforce and overcome 

substantial barriers to ensure the efficient and effective clinical implementation of fair 

algorithms while preserving the preeminence of wisdom and intuition by augmenting rather 

than replacing human decision-making.
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Glossary

Nodes
Computational units in a neural network. Each node has a weight that is influenced by other 

nodes and affects predictions made by the neural network

Computer vision
An AI subfield in which deep models use pixels from images and videos as inputs

Convolutional neural networks
A type of neural network that assembles patterns of increasing complexity to avoid 

overfitting (fitting too closely on inputs), which can compromise predictive performance 

when the model is applied to new, previously unseen data. Convolutional neural networks 

are commonly used in imaging applications

Loss function
A mathematical function that calculates errors. AI algorithms are typically designed to 

minimize loss as the algorithm learns associations between input variables and outcomes

Deep neural networks
Neural networks with several layers of nodes between the input layer and final output layer

Generative adversarial neural networks
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Two neural networks that compete with and learn from one another, offering the ability to 

generate synthetic data

Hierarchical clustering
Forming groups of elements that are similar to one another and different than others by 

iteratively merging points according to pair-wise distances

Random forest
A type of AI model that assembles outputs from a set of decision trees and uses the majority 

vote or average prediction of the individual trees to produce a final prediction

Gradient boosting
An AI technique for iteratively improving predictive performance by ensuring that the 

next permutation of the AI model, when combined with the prior permutation, offers a 

performance improvement

Sensitivity
The true positive rate; the percentage of patients with a disease for whom a model or test 

predicted a positive result, also known as recall. Sensitivity indicates the ability of a model 

or test to identify subjects who have a condition

Specificity
The true negative rate; the percentage of patients without a disease for whom a model or 

test predicted a negative result. Specificity indicates the ability of a model or test to identify 

subjects who do not have a condition

Positive predictive value
The probability that a positive prediction made by a model or test is correct according to the 

gold standard or ground truth. Positive predictive value is also known as precision

Negative predictive value
The probability that a negative prediction made by a model or test is correct according to the 

gold standard or ground truth

K-nearest neighbors clustering
Forming groups of elements that are similar to one another and different than others by 

using distances between points to assign elements to one of “K” groups, where “K” is the 

total number of groups and is assigned by the investigator

F1 score
A measurement of accuracy that considers both precision, which is also known as positive 

predictive value, and recall, which is also known as sensitivity

Convolutional autoencoder
A convolutional neural network variant that learns which filters should be used to detect 

features of interest among model inputs, which are usually imaging data

Topic modeling
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An AI technique for detecting groups of text data that are similar to one another and 

different than others

Ensemble model
A model that assembles outputs from multiple algorithms to achieve predictive performance 

that is greater than that of individual algorithms

FAIR principles
The findability, accessibility, interoperability, and reuse principles of digital assets for 

scientific investigation are intended to optimize the reuse of data

Prediction model Risk Of Bias ASsessment Tool
An instrument for assessing the risk of bias associated with a prediction model that provides 

diagnostic or prognostic information

Observational Medical Outcomes Partnership (OMOP)
An organization that designed a common data model that standardizes the way medical 

information is captured across health-care institutions and provides metadata tables 

describing relationships among data elements

National Patient-Centered Clinical Research Network (PCORnet)
An organization that designed a common data model that standardizes the way medical 

information is captured across health-care institutions and is widely adopted by institutions 

participating in the Patient Centered Outcomes Research Institute

Predictive Model Markup Language
A programming language that standardizes methods for describing predictions models, 

which may facilitate sharing models among investigator groups

Federated learning
A technique for generating a central AI model that is built with information from several 

local AI models that train on local data. This approach has the potential advantage of 

training AI models on data from multiple centers without sharing data across centers, 

thereby promoting data security and privacy
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Related links

FAIR principles: https://www.go-fair.org/fair-principles/

Observational Medical Outcomes Partnership: https://www.ohdsi.org/

National Patient-Centered Clinical Research Network: https://pcornet.org

What-If Tool: https://pair-code.github.io/what-if-tool/

Spark Streaming: https://spark.apache.org/streaming/

Cassandra: https://cassandra.apache.org/_/index.html
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Key points

• Hypothetical-deductive reasoning and linear, statistical approaches to 

diagnosis and treatment often fail to adequately represent the complex, non-

linear, and heterogeneous nature of kidney pathophysiology.

• Artificial intelligence (AI)-enabled decision support systems use algorithms 

that learn from examples to accurately represent complex pathophysiology, 

including kidney pathophysiology, offering opportunities to enhance patient-

centered diagnostic, prognostic, and treatment approaches.

• Contemporary AI applications can accurately predict kidney injury before 

the development of measurable biochemical changes, identify modifiable 

risk factors, and match or exceed human accuracy in recognizing kidney 

pathology on imaging studies.

• Advances in the past few years suggest that AI models have potential to 

make real-time, continuous recommendations for discrete actions that yield 

the greatest probability of achieving optimal kidney health outcomes.

• Optimizing the clinical integration of AI-enabled decision-support in 

nephrology will require multidisciplinary commitment to ensure algorithm 

fairness and the building of an AI-competent medical workforce.

• AI-enabled decision support should preserve the preeminence of human 

wisdom and intuition in clinical decision-making by augmenting rather than 

replacing interactions between patients, caregivers, clinicians, and data.
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Box 1.

Summary of common AI algorithms and applications in healthcare.

Types of Health Data Types of AI Algorithms Applications

Structured data
- Demographics
- Laboratory tests
- Medications
- Diagnoses
- Procedures
Unstructured data
- Clinical notes
- Waveform data
- Images
- Videos

Unsupervised 
learning
Supervised 
learning
Reinforcement 
learning

Generalized linear 
models
Discriminant analysis
Naive Bayes
Support vector 
machine
Decision trees
Random forest
Gradient boosting 
machines
Neural networks
- Convolutional neural 
networks
- Recurrent neural 
networks

Biomarker discovery
Drug discovery
Disease diagnosis
- CheXNet
- Diabetic retinopathy
- Skin cancer
- Breast cancer nodal 
metastasis
Patient risk stratification
Treatment 
recommendation 
systems
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Fig. 1: Artificial intelligence systems through the lens of a learning healthcare system.
From: Artificial intelligence-enabled decision support in nephrology

The learning cycle framework describes how communities learn. Communities use data to 

generate locally relevant knowledge and use that knowledge to inform changes in practice. 

This process generates data that is used to assess changes in the quality of care.
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Fig. 2: Lifecycle of artificial intelligence for decision support.
From: Artificial intelligence-enabled decision support in nephrology

The lifecycle of artificial intelligence (AI) for clinical decision support is an integrated, 

iterative and complex series of processes. Building a model for clinical decision support 

often relies on the use of retrospective data. First, the cohort of interest must be investigated 

using inclusion and exclusion criteria. Second, relevant data elements must be extracted 

and their quality and conformation to modelling requirements ensured. Training a model 

to predict or classify an outcome between cases and controls requires several steps. 

Internal validation refers to the process of refining a model on a training subset of the 

cohort through such processes such as cross-validation. During the model refinement stage, 

model parameters (such as weights and biases) are altered to optimize the associations 

between inputs and outputs. Model explainability or interpretability can be explored at this 

stage to elucidate the relative importance of inputs. External validation is then performed 

to assess the generalizability and reproducibility of the model. Model fairness, or its 

equity in performance across sociodemographic factors, is critical for safe and effective 

implementation. Operationalizing a model requires attention to implementation science best 

practices. It is imperative that the performance of an established model is continually 

monitored in prospective deployment to safeguard against population drifts or data shifts that 

may result in deteriorating performance over time.
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Fig. 3: Key elements in algorithm fairness.
From: Artificial intelligence-enabled decision support in nephrology

To ensure that the algorithms used in artificial intelligence (AI)-enabled decision support 

represents and serves all patients equitably, several potential sources of bias must be 

considered and mitigated at each phase of algorithm development and deployment. 

PROBAST, Prediction model Risk Of Bias ASsessment Tool.
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Fig. 4: A framework for building an AI-competent medical workforce.
From: Artificial intelligence-enabled decision support in nephrology

Didactic and practical training activities apply at various stages of pre-medical, medical, 

graduate and continuing medical education, building on previous stages of development. 

Theoretical and practical exposure to applications of artificial intelligence (AI) in healthcare 

has the potential to develop and sustain an AI-competent medical workforce.
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Table 1.

Examples of artificial intelligence applications in major domains of nephrology

Domain Patient Data Sample Size Models Findings Ref

AKI

Demographics, 
diagnoses, procedures, 
laboratory results, 
medications, orders, 
vital signs, health 
factors, clinical note 
titles

703,782 
patients

Recurrent neural 
network

Deep learning predicted 55.8% of 
inpatient AKI episodes and 90.2% of 
all AKI requiring dialysis up to 48 h 
in advance with two false alerts for 
every true alert (AUROC 0.921)

Tomašev et al. 
(2019)52

CKD

Risk factors (age, 
sex, ethnicity, diabetes, 
hypertension); retinal 
images

11,758 
patients; 
23,516 retinal 
images

Convolutional 
neural network

CKD prediction using risk factors 
alone outperformed retinal images 
alone (AUROC 0.916 vs. 0.911). 
Hybrid models integrating both data 
sources yielded maximum accuracy 
(AUROC 0.938).

Sabanayagam et 
al. (2020)57

eGFR and 
CKD US images

1,299 patients; 
4,505 US 
images

Convolutional 
neural network 
pre-trained with 
ImageNet, 
gradient boosting 
trees

The model predicted CKD status 
with accuracy greater than that of 
experienced nephrologists (0.86 vs. 
0.60–0.80)

Kuo et al. 
(2019)58

Kidney 
failure

Demographics, 
chronic conditions, 
diagnoses, procedures, 
medications, medical 
costs, episode counts

550,000 CKD 
patients; 
10,000,000 
medical 
insurance 
claims

Word embeddings 
(Word2Vec), 
gradient boosting 
trees

Accurate prediction of kidney failure 
diagnosis within 6 months (AUROC 
0.93).
Influential factors included chronic 
and ischemic heart disease 
comorbidities, age, and number of 
hypertensive episodes

Segal et al. 
(2020)60

Mortality in 
CRRT 

patients

Demographics, 
mechanical ventilation, 
comorbidities, vital 
signs, laboratory 
results

1,571 CRRT 
patients Random forest

Random forest modeling had 
similar or greater performance in 
predicting mortality compared with 
existing illness severity scoring 
systems (AUROC 0.784 vs. 0.722 
[Mosaic score], 0.677 [SOFA], 0.611 
[APACHE II]).

Kang et al. 
(2020)62

DKD

Laboratory tests, 
profiles, medications, 
diagnoses, free text 
(medical examinations, 
nutrition consultations)

64,059 
patients with 
T2DM

Convolutional 
autoencoder, 
logistic regression

The model accurately predicted 180-
day DKDaggravation (AUROC 0.743; 
accuracy 71%)

Makino et al. 
(2019)63

Renal cell 
carcinoma

Clinical variables 
(gender, age, tumour 
volume); MRI (T1C, 
T2WI)

1,162 MRI

Convolutional 
neural network 
pretrained with 
ImageNet

Model performance was similar to 
or greater than experts for accuracy 
(0.70 vs. 0.60, P=0.053), sensitivity 
(0.92 vs. 0.80, P=0.017), and 
specificity (0.41 vs. 0.35, P=0.450)

Xi et al. (2020)66

Kidney 
transplant 

graft 
survival

Demographics, kidney 
failure cause, KRT 
modality, ABO 
type, comorbidities, 
immunologic factors

3,117 kidney 
transplant 
patients

Decision tree 
bagging ensemble

A decision tree ensemble had a 
superior prediction of 1-year graft 
failure; serum creatinine levels 3 
months after transplant were an 
important risk factor

Yoo et al. 
(2017)67

AKI, acute kidney injury; APACHE: acute physiology and chronic health evaluation; AUROC: area under the receiver operating characteristic 
curve, CKD: chronic kidney disease, CRRT: continuous renal replacement therapy, DKD, diabetic kidney disease; eGFR: estimated glomerular 
filtration rate, ESRD: end-stage renal disease, KRT; ICU: intensive care unit; kidneyl replacement therapy, SOFA: sequential organ failure 
assessment; T2DM, type 2 diabetes mellitus; US, ultrasound.

Nat Rev Nephrol. Author manuscript; available in PMC 2023 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Loftus et al. Page 35

Table 2.

Barriers and solutions to clinical implementation of AI-enabled decision support

Challenges Solutions

Lack of data standardization impairs multi-centre validation and 
dissemination

Use common data models or federated learning to maintain data security 
while sharing models

Patients and clinicians mistrust “black-box” models and fear the 
possibility of egregious errors

Implement model interpretability, explainability and uncertainty 
estimation mechanisms

Models applied outside of their training environment and patient 
population could cause harm

Perform technology readiness assessments, perform model stress testing 
with simulated data

Manual data entry requirements and additional work drive 
clinician apathy

Integrate automated decision-support systems with existing clinical and 
digital workflows

AI models cannot incorporate some subjective finding and the 
wisdom of experience

Preserve human intuition in decision-making processes that are 
augmented by recommendations from AI models

Accountability for errors associated with AI-enabled decision 
support remains challenging

Guide the development and implementation of AI models toward social 
benefit with altruism, creativity and clinical expertise

AI, artificial intelligence.
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