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Background
Proteins [1, 2] are important structural and functional components of cells, they play 
many critical functions of living organisms, including carrier transport, antibody immu-
nity, hormone regulation and so on. Among all, essential proteins are those indispensable 
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Background:  Essential proteins are indispensable to the development and survival 
of cells. The identification of essential proteins not only is helpful for the understand-
ing of the minimal requirements for cell survival, but also has practical significance in 
disease diagnosis, drug design and medical treatment. With the rapidly amassing of 
protein–protein interaction (PPI) data, computationally identifying essential proteins 
from protein–protein interaction networks (PINs) becomes more and more popular. Up 
to now, a number of various approaches for essential protein identification based on 
PINs have been developed.

Results:  In this paper, we propose a new and effective approach called iMEPP to 
identify essential proteins from PINs by fusing multiple types of biological data and 
applying the influence maximization mechanism to the PINs. Concretely, we first 
integrate PPI data, gene expression data and Gene Ontology to construct weighted 
PINs, to alleviate the impact of high false-positives in the raw PPI data. Then, we define 
the influence scores of nodes in PINs with both orthological data and PIN topological 
information. Finally, we develop an influence discount algorithm to identify essential 
proteins based on the influence maximization mechanism.

Conclusions:  We applied our method to identifying essential proteins from saccharo-
myces cerevisiae PIN. Experiments show that our iMEPP method outperforms the exist-
ing methods, which validates its effectiveness and advantage.
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to the development and survival of cells. It was also shown that the pathogenic genes are 
closely related to the essential proteins. Therefore, the identification of essential proteins 
not only is helpful for the understanding of the minimal requirements for cell survival, 
but also has great practical significance for the study of pathogenic biology [3] and drug 
design [4].

Wet lab experiments are firstly used to identify essential proteins, including single 
gene knockouts [5], RNA interference and anti-sense RNA [6] etc. Though these meth-
ods are very accurate, they are expensive and time-consuming. With the rapid devel-
opment of high-throughput experimental technology, it is very convenient to obtain 
large amounts of protein-protein interaction (PPI) data. This inspires the development 
of computational methods [7–9] to identify essential proteins. Most existing computa-
tional methods are based on PPI networks (PINs), which are graphic representations of 
PPI data. A PIN can be modeled as a graph denoted by G(E, V), where V is the set of 
nodes representing the proteins, and E is the set of edges representing the interactions 
between the proteins. From graph theory perspective, essential proteins can be seen as 
the important or key nodes in a PIN. So essential protein identification turns to finding 
important nodes in a PIN.

Jeong et  al. [10] proposed the centrality-lethality rule, which indicates that essential 
proteins tend to be more important to the survival of cells than the other proteins. Thus, 
the deletion of essential proteins is more lethal than the deletion of the other proteins. 
Based on the centrality-lethality rule, various centrality measures are proposed to iden-
tify essential proteins, including degree centrality (DC) [10], betweenness centrality 
(BC) [11], closeness centrality (CC) [12], subgraph centrality (SC) [13]), and eigenvector 
centrality (EC) [14] etc.

Following that, more sophisticated metrics that exploit deep topological information 
of PINs have also been proposed to identify essential proteins from PINs, which can 
achieve better performance than the centrality based methods. Furthermore, consider-
ing of high false-positives in PINs, some methods use additional biological data to boost 
performance. Li et al. proposed the PeC [15] algorithm by combining gene expression 
data and the topological information of PINs. Zhang et al. developed the CoEWc [16] 
method that uses local clustering coefficient and Pearson correlation coefficient (PCC) 
of gene expression data. Later, Zhang et al. introduced the TEO [17] method to integrate 
gene expression data, Gene Ontology (GO) and orthology data for essential protein 
identification. Recently, Xu et  al. [9] proposed a random walk based method EssRank 
that exploits gene expression data, functional annotations, domain interactions and 
phylogenetic profiles to improve the quality of PINs and subsequently to achieve better 
identification accuracy.

In this paper, inspired by the influence maximization (IM) mechanism in social net-
works for viral marketing, we propose a novel method called iMEPP to identify essential 
proteins from PINs. On the one hand, we use PPI data, gene expression data and GO 
to construct weighted PINs for reducing the impact of high false-positives in raw PPI 
data. On the other hand, we adapt the IM mechanism in social networks to the essential 
protein identification problem. To this end, we define the influence scores (IS) of nodes in 
PINs with both orthological data and PIN topological information, and develop an influ-
ence discount (ID) algorithm to identify essential proteins from PINs. Our experiments 
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on saccharomyces cerevisiae data show that the proposed iMEPP method can achieve 
better performance than the existing methods.

Results
In this section, we first introduce the PPI data and gene expression data of saccharomy-
ces cerevisiae. Then, we give the experimental settings. Finally, the experimental results 
are reported.

Datasets

PPI data and gene expression data of saccharomyces cerevisiae are used in our exper-
iments. PPI data come from the BioGRID database [18], including 4860 proteins and 
22138 interactions between proteins. Essential protein data are collected from the SGD 
[19], DEG [20] and SGDP [21] databases, totally 1194 essential proteins. Orthology data 
are from the InParanoid (version 7) database [22], containing 100 genomes where 99 are 
eukaryotes and 1 is prokaryote.

Experimental settings

� is a tradeoff parameter to balance the the contribution of topology and orthology. 
When � = 0 , the identification of essential proteins is totally determined by the influ-
ence of PIN topology; and if � = 1 , it is only determined by protein orthology. By setting 
p = 0.001 [23] and the value of � to 0, 0.1, 0.2, ..., 1 respectively, we check the number of 
essential proteins correctly identified by our method.

To show the advantage of our method, we compare it with several existing methods, 
including five centrality based methods (BC [11], CC [12], DC [10] and EC [14], SC [13]), 
three methods integrating multiple types of biological information (PeC [15], CoEWc 
[16] and TEO [17]). Furthermore, we also implement another influence maximization 
algorithm degree discount (DD) [24] for comparison. We let each method output top-
k (k is taken from 100 to 1000) essential protein candidates, from which we count the 
number of correctly identified ones.

Experimental results

The impact of �

Table  1 gives the numbers of correctly identified essential proteins for different � and 
k values. We set k from 100 to 600, and for each k value, we increase � from 0 to 1.0. 
From Table 1, we can see that given the k value, neither � = 0 nor � = 1.0 can get the 

Table 1  The numbers of correctly identified essential proteins for different � and k values

Each bold number in the table indicates the largest number of identified essential proteins for a given k value

k\λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100 72 83 85 86 88 89 88 83 80 75 68

200 133 162 168 168 162 154 152 146 143 139 133

300 192 229 236 228 218 219 215 209 204 197 192

400 240 279 285 282 280 273 272 271 266 264 251

500 278 333 337 332 327 325 322 314 311 309 307

600 317 381 382 375 370 367 364 361 359 358 350
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best result. This means that combining PIN topology and protein orthology is benefi-
cial to essential protein identification. When � falls between 0.2 and 0.5, we can get bet-
ter result. This indicates that PIN topology is more important than protein orthology in 
essential protein identification. Furthermore, in most cases we get the best result when 
� = 0.2 , so in the remaining experiments we set � = 0.2 in our method.

Comparison with existing methods

First, we examine the top 100, 200, 300, 400, 500, 600 output candidates respectively, and 
count the corresponding numbers of correctly identified essential proteins. The compar-
ison results are shown in Fig. 1. We can see that our method can correctly identify more 
essential proteins than the other methods.

Figure 2 illustrates the comparison results in a large scale of k value: from top-1 to top-
1000. We can see that when k < 667 , our method clearly outperforms the other meth-
ods. And when k falls in [667, 764], our method performs similarly to TEO. However, 

Fig. 1  Comparison results when top-k (k is from 100 to 600) candidates are output

Fig. 2  Comparison results when top-k (k is from 1 to 1000) candidates are output
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when k > 764 , TEO surpass our method, and our method lies in the 2nd place in these 
methods.

Discussion
PIN based computational methods have achieved great success in essential protein 
identification. Due to the similarity of topological property between PINs and social 
networks, the IM mechanism of social network is applied to PINs, and then the iMEPP 
method is proposed to identify essential proteins. First, the PPI data, gene expression 
data and GO are collected to construct weighted PINs. Then, by using PIN topology and 
protein orthology, the IS of each protein is calculated to quantify the probability that 
it is an essential protein. Finally, an ID algorithm is designed to enumerate the candi-
date essential proteins one by one in an iterative way. Though experimental results on 
saccharomyces cerevisiae data set have shown the effectiveness of the iMEPP method, 
and its advantage over the existing computational methods, there are still some possi-
ble improvements on the method. On the one hand, in iMEPP only one essential pro-
tein candidate is identified in each iteration, and totally k iterations are done to mine 
all k essential protein candidates. In other words, the time complexity O(k ∗ |V | + |E|) 
is related to the number k of iterations. It is possible to reduce the iteration number by 
selecting more than one essential protein candidate in each iteration. Therefore, we can 
speed up the method while maintaining its performance. On the other hand, in social 
network filed, there are a number of impact maximization algorithms, we are consider-
ing to adopt more advanced IM methods to boost essential protein identification from 
PINs. Furthermore, we will apply iMEPP to the PIN data of other species to identify 
essential proteins to demonstrate its applicability.

Conclusion
This paper introduces a novel method for identifying essential proteins from PINs based 
on IM, which was originally used in social networks for viral marketing. To this end, we 
define the influence score for nodes in PINs with both orthology data and PIN topo-
logical information, and devise an influence discount algorithm to identify essential pro-
teins from PINs. Furthermore, we combine PPI data, gene expression data and GO to 
construct weighted PINs, which can effectively enhance the quality of PINs. Our experi-
mental results show that the iMEPP method outperforms the existing methods, which 
demonstrates its effectiveness and advantage.

Methods
In this section, we present the iMEPP method to identify essential proteins from PINs. 
First, we introduce the basic concepts of IM, and then give an overview of the iMEPP 
method. Following that, we give the technical details of the proposed method. Finally, we 
present the algorithm and the complexity analysis.

Preliminaries

IM is an important and extensively studied algorithmic problem in social networks, 
originally motivated by viral marketing [25]. Essentially, it is to select a small number of 
seed nodes from a social network such that the selected nodes can spread their influence 
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to as many other nodes as possible in the network. Up to now, a large number of algo-
rithms have been proposed for the IM problem, such as greedy algorithms [23] and DD 
algorithms [24] etc.

Definition of influence maximization

A social network can be modeled as a weighted graph G = (V ,E) , where V is the set of 
individuals (users) regarded as nodes, E is the set of connections between individuals 
(users) regarded as edges and each edge is associated with a weight. Influence spreads in 
the network based on a stochastic cascade model. There are three types of cascade mod-
els: 1) the independent cascade model [23], 2) the linear threshold cascade model, and 3) 
the weighted cascade model.

Given the social network G = (V ,E) , a influence cascade model and a number k of 
nodes, the problem of IM is to find k nodes from the network such that the expected 
number of nodes influenced by the k selected nodes is as large as possible in terms of 
the influence cascade model. Here, the k nodes are regarded as k seeds, and the expected 
number of nodes influenced by the k nodes is regarded as influence spread.

Degree discount algorithm

Here, we give a brief introduction to the degree discount (DD) algorithm, which is a 
typical IM algorithm and will be used in this paper. Generally, some greedy algorithms 
directly use degree to represent the influence of nodes, and tend to select nodes with the 
largest degree. Unlike these greedy algorithms, the DD algorithm will re-calculate the 
degrees of neighbors of a new seed node by a discount in each iteration.

Given the set of seed nodes already selected, in order to find a new seed node from the 
graph G, we first generate a subgraph of G without the seed set and the edges associated 
with the seeds, and then recalculate the degrees of nodes in the subgraph. Note that for 
these nodes that are not the neighbors of seeds, their degrees keep unchanged. That is, 
we re-calculate only the degrees of the neighbors of seeds. Suppose u is a seed node and 
v is a neighbor of u in the subgraph. we discount the degree of v by 1 intuitively. Actually, 
degree discount is not done so simply. Instead, it depends on the influence spread model 
and is modeled as an optimization problem.

Overview of the iMEPP method

Figure 3 shows the workflow of the iMEPP method. It consists of two major modules: 
weighted PIN construction (in the top dashed-rectangle) and essential protein identifi-
cation by IM (in the bottom dashed-rectangle).

To construct the weighted PIN, we use PPI data, gene expression data and GO. The 
PIN edges are weighted by PCC of gene expression and GO semantic similarity.

To identify essential proteins by IM, we first compute the initial IS of all proteins in 
the PIN. The initial IS value of each protein consists of two parts: one is derived from its 
orthological information, the other is derived from the weights of its connecting edges. 
Then, we enumerate the essential protein candidates one by one in an iterative way. In 
each iteration, there are three major steps: 
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1.	 Select a new seed snew with the largest IS value from the current remaining proteins 
(these do not include the nodes in seed set)

2.	 Compute the influence discount (ID) of the non-seed neighbors of snew , and update 
their IS values

3.	 Check whether the number of selected seeds reaches the desirable value (say k). If 
no, go to next iteration; Otherwise, the iteration is ended and all selected seeds are 
output as essential protein candidates.

In the following subsection, we will introduce the technical details of the process of 
identifying essential protein candidates by IM.

Technical details

Given the original PIN G(V, E), gene expression data, GO and orthology data, we first 
describe how to construct the weighted PIN, and then introduce how to evaluate the IS 
and the ID of a protein in the network.

Weighted PIN construction

To enhance the quality of PINs and thus to boost essential protein identification accu-
racy, we construct weighted PINs with gene expression data and GO. Given two proteins 

Fig. 3  The workflow of iMEPP
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u and v, their corresponding gene expression profiles pu and pv , we use Pearson cor-
relation coefficient (PCC) [26] to evaluate the level of gene co-expression of u and v as 
follows:

where m is the number of sampling points of gene expression profiles, pu(i) and pv(i) 
indicate the gene expression levels at the i-th sampling point of proteins u and v respec-
tively, p̄u and p̄v are the corresponding average values of expression levels, σu and σv are 
the corresponding standard deviations.

We then calculate the semantic similarity of two proteins u and v by GO. A protein is 
usually annotated by several GO terms, and the semantic similarity between proteins u 
and v is calculated as

where u and v are annotated by m GO terms {tiu|i = 1, . . . ,m} and n GO terms 
{t

j
v|j = 1, . . . , n} respectively. SimGO(t, P) is the semantic similarity between GO term t 

and protein P annotated by k terms:

Above, the semantic similarity of two GO terms t1 and t2 is as follows:

where Tt1 (or Tt2 ) is the set of ancestor GO terms of GO term t1 (or t2 ) and itself, and 
St1(t) (or St2(t) ) is the S-value [27] of GO term t related to t1 (or t2).

The weight of the edge connecting u and v is evaluated as

which measures the association degree of two proteins in the PIN.

Influence score (IS)

The influence of a node in a network means its importance in the network. In our sce-
nario, the IS of a protein indicates the probability that it is an essential protein. We con-
sider this from two perspectives: PIN topology and protein orthology.

From the perspective of PIN topology, the IS of protein u is as follows:

where Inftopo(u)= v∈Nu
w(u, v) , Nu is the set of neighbors of u.

(1)PCC(u, v) =
1

m− 1

m∑

i=1

pu(i)− p̄u

σu

pv(i)− p̄v

σv
,

(2)
SimGO(u, v) =

∑

1≤i≤m

SimGO(t
i
u, v)+

∑

1≤j≤n

SimGO(t
j
v ,u)

m+ n

(3)SimGO(t,P) = max
1≤i≤k

(SimGO(t, t
i
P)).

(4)SimGO(t1, t2) =

∑
t∈Tt1

⋂
Tt2

(St1(t)+ St2(t))
∑

t∈Tt1
St1(t)+

∑
t∈Tt2

St2(t)
,

(5)w(u, v) = SimGO(u, v) ∗ PCC(u, v),

(6)IStopo(u) =
Inftopo(u)

max{Inftopo(v)|v ∈ V }
,
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From the perspective of protein orthology, essential proteins usually have orthologs 
in more species than non-essential proteins. So the orthologous score (OS) [28] can be 
used to measure the essentiality of proteins. For protein u, OS(u) = nu/N where nu is the 
number of species that protein u has orthologs and N is the total number of reference 
species. Actually, we use normalized OS to measure the IS of a protein from orthology 
perspective. That is,

Combining IStopo and ISOS , the IS of protein u is evaluated as follows:

where � is a tradeoff parameter in [0,  1] to balance the contribution of topology and 
orthology.

Influence discount (ID)

When a protein is selected as seed, the influences of neighbors of this new seed will be 
discounted and updated. Note that 1) discount is performed only on the topological 
part of IS as only this part is related to the interaction between proteins. 2) The dis-
count operation depends on the employed influence spreading model. Here, we use the 
independent cascade model. 3) In each iteration, the discount operation on a protein is 
performed independently from those performed on it in the previous iterations, which 
considers all its seed neighbors up to the current iteration. We give the following theo-
rem to indicate how to calculate the ID of a protein.

Theorem 1  Given protein v, N(v) is its neighbors set, t(v) is the number of seed nodes 
in N(v), tt(v) is the sum of weights of edges connecting v and the seed nodes in N(v), and 
Star(v) is a subgraph consisting of all nodes in N(v) and the edges connecting to v. Under 
the independent cascade model with spread probability p, suppose the following equa-
tions hold:

The influence discount of v, denoted by ID(v), is the expected value of influence of node v, 
derived from the topological information between v and the non-seed nodes in Star(v). 
Formally,

Proof
The node v is not influenced by any seed node in N(v) with probability (1− p)t(v) . With the 
spread probability p, the value of influence of node v generating from the weights between 
v and the non-seed nodes in Star(v) is (Inftopo(v)− tt(v)) ∗ p . Thus, the ID of node v is 
(1− p)t(v) ∗ (Inftopo(v)− tt(v)) ∗ p . It derives that 

(7)ISOS(u) =
OS(u)

max{OS(v)|v ∈ V }
.

(8)IS(u) = � ∗ ISOS(u)+ (1− �) ∗ IStopo(u),

(9)Inftopo(v) = O(1/p), tt(v) = O(1/p), t(v) = o(1/p).

(10)ID(v) = (Inftopo(v)− tt(v)− (Inftopo(v)− tt(v)) ∗ t(v) ∗ p) ∗ p.
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 Above, the second equality is valid due to the equation t(v) ∗ p = o(1) , the third equality 
holds due to the equation (Inftopo(v)− tt(v)) ∗ p = O(Inftopo(v) ∗ p) = O(1) , and the last 
equality is valid because of the equation t(v) = o(1/p) . �

Note that we can guarantee the three equations in Eq.  (9) to hold by setting a small 
value of p in experiments. According to Theorem 1, we conclude that the IS of protein v 
in topology is updated as follows:

Algorithm

Algorithm  1 outlines the procedure of iMEPP. Line 1 initializes the set of essential 
protein candidates and the parameters. Lines 2–8 compute the initial IS values for all 
proteins in the PIN, among which Lines 3–5 evaluate the weight between any two inter-
acting proteins. Line 9 gets the maximal value of Inftopo . Lines 10–19 cover the iterative 
process of selecting seeds: Line 11 selects a new seed snew with the largest IS, Line 12 
updates the seed set, and Lines 13–18 are for computing the ID values for the non-seed 
neighbors of snew , and updating their IS values. Line 20 returns the seed set as essential 
protein candidates.

ID(v) = (1− p)t(v) ∗ (Inftopo(v)− tt(v)) ∗ p

= (1− t(v) ∗ p+ o(t(v) ∗ p)) ∗ (Inftopo(v)− tt(v)) ∗ p

= [Inftopo(v)− tt(v)− (Inftopo(v)− tt(v)) ∗ t(v) ∗ p] ∗ p+ o(t(v) ∗ p)

= [Inftopo(v)− tt(v)− (Inftopo(v)− tt(v)) ∗ t(v) ∗ p+ o(t(v))] ∗ p

= [Inftopo(v)− tt(v)− (Inftopo(v)− tt(v)) ∗ t(v) ∗ p] ∗ p.

IStopo(v) =
ID(v)/p

max{Inftopo(u)|u ∈ V }
.
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Complexity analysis

The time complexity of iMEPP consists of two parts. The first part is the calculation 
of initial IS values for all proteins in a PIN, which is totally determined by the number 
of edges. Thus, the time complexity of this part is O(|E|). The second part is related 
to the iterative procedure of seed selection. The time complexity for each iteration is 
O(log |V |) . Therefore, the time complexity of the second part is O(k ∗ log |V |) . In sum-
mary, the complexity of iMEPP is O(k ∗ log |V | + |E|).
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