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Abstract

Background: Platform trials can evaluate the efficacy of several experimental treatments compared to a control. The
number of experimental treatments is not fixed, as arms may be added or removed as the trial progresses. Platform
trials are more efficient than independent parallel group trials because of using shared control groups. However, for a
treatment entering the trial at a later time point, the control group is divided into concurrent controls, consisting of
patients randomised to control when that treatment arm is in the platform, and non-concurrent controls, patients
randomised before. Using non-concurrent controls in addition to concurrent controls can improve the trial’s efficiency
by increasing power and reducing the required sample size, but can introduce bias due to time trends.

Methods: We focus on a platform trial with two treatment arms and a common control arm. Assuming that the
second treatment arm is added at a later time, we assess the robustness of recently proposed model-based
approaches to adjust for time trends when utilizing non-concurrent controls. In particular, we consider approaches
where time trends are modeled either as linear in time or as a step function, with steps at time points where
treatments enter or leave the platform trial. For trials with continuous or binary outcomes, we investigate the type 1
error rate and power of testing the efficacy of the newly added arm, as well as the bias and root mean squared error of
treatment effect estimates under a range of scenarios. In addition to scenarios where time trends are equal across
arms, we investigate settings with different time trends or time trends that are not additive in the scale of the model.

Results: A step function model, fitted on data from all treatment arms, gives increased power while controlling the
type 1 error, as long as the time trends are equal for the different arms and additive on the model scale. This holds
even if the shape of the time trend deviates from a step function when patients are allocated to arms by block
randomisation. However, if time trends differ between arms or are not additive to treatment effects in the scale of the
model, the type 1 error rate may be inflated.

Conclusions: The efficiency gained by using step function models to incorporate non-concurrent controls can
outweigh potential risks of biases, especially in settings with small sample sizes. Such biases may arise if the model
assumptions of equality and additivity of time trends are not satisfied. However, the specifics of the trial, scientific
plausibility of different time trends, and robustness of results should be carefully considered.
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Background
Platform trials are multi-arm trials that allow new exper-
imental treatment arms to enter and leave the trial over
time [1, 2]. Such trials can improve the statistical effi-
ciency compared to separate trials because of the flexi-
ble features such as stopping treatments early for futility
or efficacy, adding new treatments to be tested during
the course of the trial, and sharing control groups [3].
One controversy in the analysis of such trials is the use
of non-concurrent controls in treatment versus control
comparisons. For an experimental treatment that enters
the platform trial at a later time point, we denote con-
trol patients who were recruited before the experimental
treatment entered the platform as non-concurrent controls
and patients who are recruited to the control when the
experimental treatment is part of the platform as concur-
rent controls for the specific treatment arm. Unadjusted
treatment-control comparisons that pool concurrent with
non-concurrent controls can be biased if there are time
trends in the control data, e.g., due to a change in standard
of care, change in the patient population, or other external
changes such as seasonal effects or a pandemic [4–8].
As two hypothetical trials where non-concurrent con-

trols could be incorporated in the analysis, consider the
settings of platform trials in depression and non-alcoholic
steatohepatitis with a continuous or binary outcome,
respectively.

Platform trial for Major Depressive Disorder. Major
Depressive Disorder (MDD) is a common psychiatric dis-
order and is a leading cause of burden of disease and
years lost due to disability worldwide [9]. While safe and
effective pharmacological treatments for depression are
available, they only achieve sufficient symptom reduc-
tions in about half of the patients [10]. Importantly, the
major drug classes in this area were discovered and devel-
oped decades ago and there have been very few successful
attempts to develop novel drugs since. More recently,
however, a number of candidate drugs with different
putative mechanisms of action have been evaluated in
pre-clinical and early stage clinical studies. Thus, plat-
form trials that allow for assessing multiple medications
simultaneously have the potential to substantially speed
up drug development in this area [11]. Blinding is par-
ticularly critical in this indication because of the types of
outcomes used (e.g. interview-based ratings and patient-
reported outcomes), expectation bias and typically large
placebo responses inMDD trials. Consider a platform trial
in MDD where experimental treatment arms are com-
pared with a common control. The primary endpoint is
the change in a continuous clinical rating scale, such as the
Montgomery-Åsberg Depression Rating Scale (MADRS),
from baseline to six weeks post randomization. To reduce
the sample size and the number of patients assigned to

the control group, the use of non-concurrent controls
could be considered. However, time trends in the placebo
response cannot be excluded in this setting. A specific
source of such time trends can be expectation bias, which
may vary, depending on the allocation probability to con-
trol and the number and type of treatments currently in
the platform. Especially, if the allocation probability to
control is low and treatments that are perceived as very
promising enter the platform, the expectation bias may
increase. Therefore, adjusting for potential time trends
would be essential to obtain robust results.

Platform trial for Non-Alcoholic Steatohepatitis. Non-
Alcoholic Steatohepatitis (NASH) is currently an area of
high unmet medical need with no approved therapies in
Europe and the United States [12]. To facilitate and accel-
erate the identification of themost effective and promising
novel treatment options for participants with NASH, mul-
tiple potential novel therapies and combinations thereof
can be tested in platform trials. As example consider a
Phase 2b platform trial where the primary efficacy end-
point is a binary endpoint indicating whether the patient
responded or not to treatment at 48 weeks. As the deter-
mination of response requires paired biopsies at baseline
and at the end of the study, there is a high patient bur-
den and limiting the sample size is important, especially
from a patients perspective. Therefore, the use of non-
concurrent controls can be considered in the analyses to
reduce the number of patients required in the clinical trial.
However, also in this setting time trends can occur, e.g.,
due to changes in the patient population or standard of
care, but also due to variability in the assessment of the
endpoint [13].
Lee andWason [14] investigated linear regression mod-

els to estimate the treatment effect of interest in trials
with continuous data that include a factor corresponding
to time to adjust for potential time trends. They demon-
strated in a simulation study that using regression models
that adjust for time trends by means of a step-wise func-
tion leads to unbiased tests, even if the true time trend
is linear rather than step-wise. This holds if the linear
regression model is fitted to data of the tested experimen-
tal treatment group and the control group as well as to the
data of all other trial arms. However, only if the model is
fit based on data of all trial arms, the inclusion of non-
concurrent controls improves the power compared to an
analysis using concurrent controls only.
In this article, we derive the conditions under which

model-based time trend adjustments control the type 1
error rate and increase the statistical power for treatment-
control comparisons. In particular, we consider the simple
setting of a two-period platform trial that starts with a sin-
gle treatment and a control to which another treatment
arm is added in the second period.
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We consider the regression model fitted with data from
all arms and modelling a common step-wise time trend.
For this model we show that treatment effect estimates
are unbiased if the time trends in all arms are equal and
additive in the model scale. This holds, regardless of the
specific functional form of the time trends. For the asso-
ciated hypothesis tests, we show that for binary endpoints
and logistic regression models they asymptotically con-
trol the type 1 error rate under the above assumptions.
For continuous data analysed with the standard linear
model, type 1 error control holds asymptotically, if block
randomisation is used. We show that, under the above
conditions, the model-based analysis incorporating non-
concurrent controls increases the power of the trial as well
as the precision of treatment effect estimates compared to
analyses based on concurrent controls only.
We also investigate the properties of methods when

time trends differ across treatment arms or are not addi-
tive on the model scale. We show through simulations
that heterogeneous time trends across groups can lead to
an inflation of the type 1 error rate and biased treatment
effect estimates. Furthermore, for binary data and logis-
tic regression models, where the validity of the testing and
estimation procedures relies on the assumption of equal
time trends on the log odds scale of the regression model,
we demonstrate that equal time trends in other scales do
not guarantee type 1 error control. In addition, we con-
sider alternative regression models, as models allowing
for different step-wise time trends between treatments,
or regression models fitted with data of the tested treat-
ment arm only. However, they only marginally increase
the power of hypothesis tests (only due to larger degrees
of freedom for linear models).
Objectives and requirements for confirmatory clinical

trials (mainly phase III) and early phase trials are differ-
ent. This extends to early and late phase platform trials. In
spite of these differences, however, the issues we address
in this paper are all related to the handling of potential
time trends in the accumulating data. We chose to illus-
trate them using a framework of type 1 error control,
but also investigate the bias in treatment effect estimates.
These considerations are of different importance in dif-
ferent phases of drug development, but should not be
ignored in any phase.

Methods
To capture the principles of the use of non-concurrent
controls, it is sufficient to analyze a simplified model. We
therefore consider a randomised, parallel group platform
trial, initially comparing a single experimental treatment
(k = 1) to a control (k = 0), as in [14]. After N1 patients
have been recruited, a new experimental treatment arm
(k = 2) is added to the trial with the intention of com-
paring this new added arm 2 with the common control.

Thus the trial is divided into two periods (s = 1, 2) before
and after the addition of the new arm. See Fig. 1 for an
illustration of the design. Furthermore, let N2 denote the
total sample size in period 2 and N = N1 + N2 the overall
sample size.
We focus on the hypothesis tests and treatment effect

estimates comparing treatment 2 to control. We assess
the impact of time trends on the validity of inference
when incorporating non-concurrent controls according to
different adjustment methods. We estimate and test the
treatment effect of treatment 2 compared to control based
on regression models where the time trend is modelled as
a step function. We consider the regression model inves-
tigated in [14] for continuous data, fitted to data from all
treatment arms and the control. In addition, we also inves-
tigate a model including an interaction between treatment
and time period to allow for a different time trend in treat-
ment arm 1 compared to the other groups. Furthermore,
we investigate the extension to binary data. Let Yj denote
the response (binary or continuous) for patient j, where
j = 1, ...,N is the patient index corresponding to the order
in which patients have been enrolled into the trial, and let
kj be the treatment patient j received (kj = 0, 1, 2).

Model-based time trend adjustments
To estimate the treatment effect of treatment 2 against the
control, we fit a regression model, adjusting for time by a
step function, based on data from all treatment arms

g(E(Yj)) = η0 +
∑

k=1,2
θk · I(kj = k) + ν · I(j > N1) (1)

where η0 is the response in the control group in the first
period, θk is the effect of treatment k compared to con-
trol, and ν denotes a step-wise time effect between periods
1 and 2. For continuous data, g(·) is the identity func-
tion and we fit a standard linear model as specified in

Fig. 1 Platform trial scheme. Example platform trial with initially a
treatment group (arm 1) and a control group in period 1; and with a
new treatment (arm 2) starting in period 2. Light grey represents
non-concurrent controls with respect to the new treatment, dark grey
represents concurrent controls
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(1) and perform the corresponding t-test to test the one-
sided null hypothesis H02 : θ2 ≤ 0 (assuming that larger
values correspond to better outcomes). For binary data,
g(·) is the logit link function and H02 is tested based on a
logistic regression. Also note that the step-wise function,
I(j > N1), amounts to a stratified model with time periods
as strata and a common treatment effect across strata.
Model (1) fits a common time trend across all treatment

arms. To relax this assumption, we consider an additional
model that includes an interaction effect, allowing for a
different effect of time in treatment arm 1 compared to
control and treatment 2. The resulting model is given by

g(E(Yj)) =η0 +
∑

k=1,2
θk · I(kj = k) + ν · I(j > N1)

+ η · I(kj = 1) · I(j > N1) (2)

Because a common time trend in the control and treat-
ment 2 is modelled, also in this model the treatment effect
of treatment 2 is given by θ2. Also note that in the above
models the effect of time on the response is assumed to
be additive for continuous data, and multiplicative on the
odds ratio scale for binary data.

Tests based on concurrent controls only and based on
naively pooling controls
For comparative purposes, we additionally consider the
pooled test that does not account for time trends and the
test based on concurrent controls only comparing treat-
ment 2 to control using a t-test for continuous and a
logistic regression (with factor treatment) for binary data.
We apply these tests using data of treatment 2 and pooling
concurrent and non-concurrent controls (pooled analysis)
or using concurrent control data only (separate analysis).

Results
In this section, we report results on the properties of the
model based estimation and testing procedures based on
model (1). In “Estimation under model-based period-wise
adjustments” section, we rewrite the treatment effect esti-
mator for treatment 2 of the linear model as a weighted
sum of period-wise per-group means. Based on this rep-
resentation, we derive the reduction in variance of this
estimator compared to the estimator based on concurrent
controls only.
In “Analytical results on the properties of estimators

and hypothesis tests” section, we discuss further proper-
ties of the model-based estimators and tests under the
assumption that the time trends are equal across treat-
ment groups and additive on the model scale. We show
that the model based treatment effect estimator is unbi-
ased, even if the shape of the time effect is mis-specified
and deviates from the step function. In addition, we give
conditions on the randomisation or testing procedure,

that guarantee control of the type 1 error rate of the model
based hypothesis test.
Finally in “Evaluation of methods through simulations”

section, we illustrate the procedures in a simulation study
and quantify the potential inflation of type 1 error in the
model based hypothesis tests if time trends are not equal
across treatment groups or not additive on the model
scale.

Testing and estimation in model-based approaches
Estimation undermodel-based period-wise adjustments
To illustrate how the models (1) and (2) estimate the treat-
ment effect of treatment 2 compared to the control when
adjusting for potential time trends, we write the regression
model estimators as a weighted sum of the period-wise
per-group estimates [14, 15]. Let nk,s and ȳk,s be the sam-
ple sizes and sample means of the observations per arm
and period (k = 0, 1, 2 and s = 1, 2). Thus, in our setting,
nk,s ≥ 1 except for n2,1 = 0, and Ns = ∑

k=0,1,2 nk,s. The
estimate of θ2 is given by

θ̂2 =
∑

k=0,1,2,s=1,2
wk,sȳk,s,

with weights wk,s defined below. The derivation of the
weights can be found in the supplementary material
(Section A).
First note that for model (2) based on all data and

including an interaction effect, the matrix wk,s is given by

k\s 1 2
0 0 −1
1 0 0
2 0 1

so that θ̂2 = ȳ2,2 − ȳ0,2, and therefore the non-concurrent
controls do not contribute to the treatment effect estima-
tor. Hence, we do not consider this model further in this
section.
For model (1), based on data from all treatment arms

and adjusting for time by a step function, the matrix of
weights wk,s is given by

k\s 1 2
0 −� � − 1
1 � −�

2 0 1

where � =
1

n0,2
1

n0,1
+ 1

n0,2
+ 1

n1,1
+ 1

n1,2

and thus

θ̃2 = (ȳ2,2 − ȳ0,2) + �
[
(ȳ1,1 − ȳ0,1) − (ȳ1,2 − ȳ0,2)

]

= ȳ2,2 − {
(1 − �)ȳ0,2 + �

[
ȳ0,1 + (ȳ1,2 − ȳ1,1)

]}
.

Thus, the treatment effect is estimated by the difference
in the mean of treatment group 2 and a model-based
estimate of the control response in period 2, given by

ỹ0,2 = (1 − �)ȳ0,2 + �
[
ȳ0,1 + (ȳ1,2 − ȳ1,1)

]
. (3)
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Note that this estimate is a weighted average of the
mean control response in period 2 and the mean control
response in period 1, adjusted by the time trend estimated
from treatment 1. The weight of the non-concurrent con-
trols is given by �. The relative reduction in variance of
this estimate compared to the estimator based on concur-
rent controls only is given by

1 − Var(ỹ0,2)
Var(ȳ0,2)

= �.

Thus, reduction in variance is increasing in the num-
ber of non-concurrent control patients, in the number of
concurrent patients on arm 1, and in the number of non-
concurrent patients on arm 1. In particular, keeping the
number of concurrent controls fixed and assuming that
n0,1 → ∞, n1,1 → ∞, and n1,2 → ∞, we have � → 1.
On the other hand, increasing the number of concurrent
control patients but keeping the other sample sizes fixed
we have � → 0 as n0,2 → ∞, and thus asymptotically no
reduction takes place.
Consider now a specific example, with equal randomi-

sation for arms 0 and 1 in each period, that is, n0,1 = n1,1
and n0,2 = n1,2, but possibly different for arm 2, so that
n2,2 ≥ 1 is arbitrary. Then, the reduction in variance is
� = 1

2 · n0,1
n0,1+n0,2 and thus proportional to the proportion

of non-concurrent controls over the total number of con-
trols. Especially, the reduction is delimited above by 1/2
(as n0,1 → ∞). For instance, in the example n0,1 = n0,2 =
n1,1 = n1,2 = n2,2/2 considered by [14] the weights and
the treatment effect estimator are given by

k\s 1 2
0 −0.25 −0.75
1 0.25 −0.25
2 0 1

,

and

θ̃2 = (ȳ2,2 − ȳ0,2) + 0.25
[
(ȳ1,1 − ȳ0,1) − (ȳ1,2 − ȳ0,2)

]
.

Themodel based estimate of the period 2 control response
has 25% lower variance than the estimator based on con-
current controls only. An example of how weights are
defined in the case of equal randomisation also for arm
2, that is, n0,2 = n1,2 = n2,2, can be found in the
supplementary material (Section B).
So what we are actually estimating when we use models

in (1) and (2) is a weighted average of the treatment effect
of treatment arm 2 over the control in period 2 and the
treatment-time interactions between periods.

Analytical results on the properties of estimators and
hypothesis tests
We derive the properties of tests and estimators of
the linear and logistic regression model (1) under the

assumption that time trends are equal across groups
and additive on the model scale such that the data are
generated according to the model

g
(
E(Yj)

) = η0 +
∑

k=1,2
θk · I(kj = k) + f (tj), (4)

where Yj, g(), η0 and θkj refer to the continuous or binary
response, the link function (identity and logit functions
for continuous or binary responses, respectively), the con-
trol response and treatment effects, respectively, as in (1)
and (2). For continuous data, we furthermore assume that
the error terms in the responses are identically and inde-
pendently normally distributed with zero-mean and equal
variances. The term f (·) represents the time trend func-
tion and tj is the calendar time when patient j is enrolled
in the trial. Note that when f (·) is a step function with a
step at the end of period 1, then model (1) is correct. Oth-
erwise, (1) is a misspecified model because the functional
form of the time trend is not correctly modelled.
For continuous data, the model estimate θ̂2 is an unbi-

ased estimate for θ2, even under mis-specification of the
time trend pattern, i.e., if f (·) is not a step function (see
Section C in the supplementary material for a proof).
Moreover, as shown in “Estimation under model-based
period-wise adjustments” section, the model-based esti-
mate based on all data reduces the variance of the treat-
ment effect estimator as compared to separate analysis,
and therefore leads to a gain in power. But, by inspection
of (3) it is clear that if the time trend in treatment 1 differs
from the trend in the control, the estimate will be biased.
As regards testing, for continuous endpoints and given

the functional form of the time trend pattern is correctly
specified, we first notice that the weight � in (3) is chosen
such that variance of θ̂2 is minimised. However, if the time
trend pattern is mis-specified and simple randomisation
or random allocation is used, the residual variances of the
fitted model (1) will depend on the specific shape of the
time trend in the data generating model (4). Especially, the
residual variance may not be constant over time such that
the overall variances in the two periods may differ. As the
linear model assumes homoscedaticity, this may lead to
an underestimation of the standard error of θ̂2 and there-
fore to a type 1 error rate inflation of the corresponding
test. See Section F.1 in the supplementary material for an
example, where the type 1 error rate is inflated.
In order to obtain unbiased testing procedures for trials

with continuous endpoints, we propose two approaches.
The first consists of choosing a randomisation procedure
that controls the variability over time. We can achieve
this by stratifying for calendar time in the randomisa-
tion process by means of block randomisation. Then,
since patients randomised in the same block are enrolled
approximately at the same calendar time, asymptotically,
the time trend does not introduce additional variation



Bofill Roig et al. BMCMedical ResearchMethodology          (2022) 22:228 Page 6 of 16

in the estimate. Block randomisation is an equivalent
of stratified randomisation, where one stratifies for an
important risk factor. In this case, block randomisation
coincides with stratifying randomisation by time intervals.
However, it is well known that stratified randomisation
followed by an analysis that does not adjust for the strati-
fication factor, leads to an overestimation of the variance
[16]. Thus, the resulting tests will be conservative. If the
time trends are very strong, this may result in overly con-
servative tests. An alternative approach to this one is to
allow for different variances between periods and estimate
them separately.
On the other hand, when using binary endpoints,

the variance estimators are consistent even under mis-
specification of the trend pattern, f (·). So, in this case, the
treatment effect estimators are asymptotically unbiased
and so are the hypothesis tests.

Evaluation of methods through simulations
We conducted a simulation study to quantify the gains in
efficiency and potential biases of the considered methods
under a wide range of scenarios. We investigated settings
where model assumptions are met, as well as settings with
a mis-specified model where the time trend does not have
a step-wise shape or the time trends differ between treat-
ment arms. Especially, we investigated the performance of
the aforementioned analysis approaches with respect to
the type 1 error rate and statistical power for the test of
H02 : θ2 = 0, as well as the bias and mean squared error of
the estimator of the effect of treatment 2, θ2.

Design
We simulated data of a platform trial as described in
Section 2, considering the data generating model (4). We
consider that patient index corresponds to the order in
which patients are enrolled and that at each unit of time
one and only one patient enters in the trial, so that, tj =
j for j = 1, ...,N . We assume equal sample sizes per
arm and allocations to arms 1:1 and 2:1:1 in periods 1
and 2, respectively. Furthermore, patients were assigned
to arms following block randomisation, as proposed in
“Analytical results on the properties of estimators and
hypothesis tests” section. In the first period, we used a
block size of 4, while, in the second, a block size of 12. We
consider three patterns for the time trend function:

• a linear time trend f (j) = λkj
(j−1)
(N−1) ;• a step-wise time trend f (j) = λkj I(j > N1);

• and an inverse-U time trend:
f (j) = λkj

(j−1)
(N−1)

(
I(j ≤ Np) − I(j > Np)

)
;

where λkj quantifies the strength of the time trend in
arm kj and I(·) the indicator function. Note that if λkj
takes different values depending on the treatment arm,
then we have different time trends between arms. For the

inverse-U time trend, Np denotes the point at which the
trend turns from positive to negative. We consider three
different values for this point, it can be either when half
of the patients in period 1 have been recruited (Np =
N1/2), after the patients were recruited in period 1 and
before the start of the second period (Np = N1), or
when half of the patients in period 2 have been recruited
(Np = N1 + N2/2). In the main manuscript, we show
the results for the scenarios with Np = N1 + N2/2. The
results for Np = N1/2,N1 can be found in the supple-
mentary material. Note that negative λkj correspond to a
U-shaped (instead of inverse-U shaped) trend. Figure 2
illustrates the changes of means according to these pat-
terns. In the supplementary material we also show that
considering random instead of fixed entry times tj does
not noticeably change the results.
For treatment 1 and the control group the sample size

per group was set to 125 in each period. The sample size
for treatment 2 in period 2 is 250 (such that its sample
size matches the overall sample size of treatment 1). For
continuous endpoints, we assumed normally distributed
residuals with equal variances σ 2 = 1 across treatment
arms, zero mean for control arm (η0 = 0), simulated trials
under the null hypothesis, θ2 = 0, as well as the alterna-
tive hypothesis θ2 = 0.25. In both cases, we considered
an effect of θ1 = 0.25 for treatment 1. For these effect
sizes, the pooled t-test has 80% power at 2.5% one-sided
significance level. For binary endpoints, we considered
control response rates of 0.7, non-effect of treatment 2
under the null hypothesis θ2 = 0 (in terms of the odds
ratio OR2 = 1) or a positive effect under the alternative
hypothesis (OR2 = 1.8), and scenarios where treatment
1 has either a positive or a negative effect (i.e., θ1 > 0
and θ1 < 0, respectively). With the aforementioned con-
figuration for these scenarios, the power to detect an odds
ratio OR2 = 1.8 is 80% assuming a probability p0 = 0.7
at 2.5% significance level using the pooled z-test. Finally,
we simulated the three time trends patterns mentioned
before assuming equal time trends across all treatment
groups (λk = λ, for k = 0, 1, 2), and equal time trends
between treatment 2 and control arms and different from
treatment 1 arm (λ0 = λ2 �= λ1). We simulated 100,000
replicates for each scenario to obtain estimates of the type
1 error, power and bias of the treatment effect.

Simulation results
In settings where the time trends are equal across treat-
ment arms (i.e., scenarios with λk = λ for k = 0, 1, 2), all
regression models that fit time trends as a step function
control the type 1 error rate for the test of H02 and lead
to unbiased effect estimates in the examples we investi-
gated. This holds, if the true time trend is a step function
as well as if it is linear or U-inverted. For the model
without interaction term (1) this confirms the theoretical
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Fig. 2Means for continuous endpoints with respect to patient enrolment to the trial in the presence of equal time trends across arms, depending
on the time trends’ pattern (linear, step-wise and inverted-U time trends) and for λ0 = λ1 = λ2 = 0.15

considerations in the above section as well as the sim-
ulation results of [14]. Furthermore, the test based on
(1) leads to an improved power compared to the sepa-
rate analysis using only concurrent controls (see Fig. S1 in
the supplementary material). Similarly, for binary data we
note that in settings where the time trends are equal across
arms and given by (4), the tests and estimators of the cor-
responding logistic regressionmodel control the error rate
and we see an improved power compared to the separate
analysis using only concurrent controls. (Figure S7 in the
supplementary material.).
In contrast, if the time trend in treatment 1 differs from

the trend in the control arm, control of the type 1 error
is no longer guaranteed. For example, suppose a setting
as in Table 1 where the mean outcome in the control arm
increases by 0.1 from period 1 to period 2. Then, the type 1
error rate for the test ofH02 depends on the increase in the
mean outcome of treatment 1. Let us consider different
values of the mean outcome of arm 1 in period 2 as in
Fig. 3. If the increase in the mean outcome of treatment
arm 1 from period 1 to period 2 is lower than in the
Table 1 Example for continuous endpoints. Mean responses for
continuous endpoints according to the arm and the period in
the presence of step-wise trends for scenarios presented in
“Design” section and for λ0 = λ2 = 0.1. Here X represents the
mean response of arm 1 in period 2, which we vary in Fig. 3

Period 1 Period 2

Control Arm 1 Arm 2 Control Arm 1 Arm 2

H0 0 0.25 – 0.1 X 0.1

H1 0 0.25 – 0.1 X 0.35

control, the type 1 error rate may be substantially inflated,
reaching type 1 error rates larger than 0.05%. If it is larger
than 0.1 the procedure becomes strictly conservative,
obtaining type 1 error rates below 0.01, and the power is
adversely affected (see Fig. 3). Indeed, the treatment effect
estimates will be positively or negatively biased depending
on the time trend in treatment 1. Furthermore, if instead
of step-wise time trends, the time trends’ patterns are lin-
ear or inversed-U, the same behaviour is observed, as is
shown in Fig. 4 when varying the strength of the time
trend in arm 1 and fix the time trends of control and arm 2.
A similar result can be found for binary data when

considering a fixed increment in the response rate from
period 1 to period 2 of the control arm and varying the
response rate of the treatment arm 1 assuming to have a
beneficial effect (see Table 2). If the time trend in treat-
ment 1 is smaller than in the control arm on a multiplica-
tive odds ratio scale the type 1 error rate may be inflated. If
the time trend is larger, the test becomes strictly conserva-
tive (and loses power) (see second column in Fig. 5). Note
that this implies that - given for treatment 1 the alternative
holds - when time trends are equal between control and
treatment 1 on a risk ratio or risk difference scale (vertical
lines in blue and green colors in Fig. 5, respectively), the
type 1 error of the test for treatment 2 is not maintained.
If we consider the same situation as above, but instead

of having a beneficial effect in treatment 1, this shows a
negative effect as compared to the control (see Table 3),
the same behaviour is observed but inflation is much
higher, even reaching levels above 0.10 (see first col-
umn in Fig. 5). Moreover, similar results are observed
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Fig. 3 Type 1 error rate and power of rejecting H02 for continuous endpoints in the presence of step-wise trends with respect to the mean in the
treatment arm 1 in the second period and according to the model used (see “Methods” section) for scenarios presented in “Design” section and
described in Table 1. ALLTC-step refers to models using all treatment data and control and adjusting for time by a step function (see (1)), ALLTCI to
models using all treatment data and control with interaction between time and treatment arm and adjusting for time by a step function (see (2)),
and pooled and separate approaches refer to t-tests comparing treatment 2 to control using concurrent and non-concurrent control data, and
concurrent control data only, respectively. Note that lines for ALLTCI-Step and the separate approach are overlapping

when trends are linear or inversed-U rather than piece-
wise as shown in Fig. 6. Note, however, that since in
our simulations the strength of the trend (λ1) takes
the same value in all three patterns, it has a greater
impact on the piece-wise trend, since changes are
more gradual in the two cases with continuous time
trends.

An option to address the type 1 error inflation is to
apply the extended model (2) including an interaction
term between period and treatment 1. Indeed, as shown
in Figs. 4 and 6, for the above example the extended model
controls the type 1 error rate, both for continuous as well
as binary data. However, applying this model does not
lead to a relevant improvement in power compared to
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Fig. 4 Type 1 error rate and power of rejecting H02 for continuous endpoints in the presence of linear, step-wise and inverted-U time trends (for
λ0 = λ2 = 0.1) with respect to the strength of the time trend in treatment arm 1 (λ1) according to the model used (see “Methods” section) for
scenarios presented in “Design” section. ALLTC-step refers to models using all treatment data and control and adjusting for time by a step function
(see (1)), ALLTCI refers to models using all treatment data and control with interaction between time and treatment arm and adjusting for time by a
step function (see (2)), and pooled and separate approaches refer to t-tests comparing treatment 2 to control using concurrent and non-concurrent
control data, and concurrent control data only, respectively. Lines for ALLTCI-Step and the separate approach are overlapping

Table 2 Example for binary endpoints. Responses rates for binary
endpoints according to the arm and the period in the presence
of step-wise trends for scenarios presented in “Design” section
with λ0 = λ2 = 0.25. Here X represents the observed response
rate of arm 1 in period 2, which we vary in Fig. 5. Arm 1 is
assumed to have a beneficial effect in period 1, corresponding to
OR1 > 1 (OR1 = 1.8)

Period 1 Period 2

Control Arm 1 Arm 2 Control Arm 1 Arm 2

H0 0.7 0.81 – 0.75 X 0.75

H1 0.7 0.81 – 0.75 X 0.84

the analysis based on concurrent data only. Indeed for
both, the linear and the logistic regression models, data
of non-concurrent controls do not contribute to the treat-
ment effect estimate. For the linear model, however, they
contribute to the variance estimate.
Note that in this simulation study we focused on how

time trends affect the operating characteristics when
using model-based adjustments. However, also other
deviations from the model assumptions not considered
in the simulation study (as, e.g., heteroscedasticity) can
affect the type 1 error rate. Especially, for unequal sam-
ple sizes in the control and treatment groups and unequal
variances between groups or periods, the pooled variance
estimator of the linear model is biased. Depending on
the scenario, this can lead to an increased type 1 error
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Fig. 5 Type 1 error rate and power of rejecting H02 for binary endpoints in the presence of step-wise trends (for λ0 = λ2 and varying λ1) with
respect to the response rate in the treatment arm 1 in the second period and according to the model used (see “Methods” section) for scenarios
presented in “Design” section and described in Tables 2 and 3. Vertical lines refer to those situations when time trends are equal across arms on
odds ratio (OR), risk difference (RD), and relative risk (RR) scales. ALLTC-step refers to models using all treatment data and control and adjusting for
time by a step function (see (1)), ALLTCI refers to models using all treatment data and control with interaction between time and treatment arm and
adjusting for time by a step function (see (2)), and pooled and separate approaches refer to logistic regression models without adjusting for time
comparing treatment 2 to control using concurrent and non-concurrent control data, and concurrent control data only, respectively. Lines for
ALLTCI-Step and the separate approach are overlapping
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Table 3 Example for binary endpoints. Responses rates for binary
endpoints according to the arm and the period in the presence
of step-wise trends for scenarios presented in “Design” section
with λ0 = λ2 = 0.25. Here X represents the observed response
rate of arm 1 in period 2, which we vary in Fig. 5. Arm 1 is
assumed to have a negative effect in period 1, corresponding to
OR1 < 1 (OR1 = 0.4)

Period 1 Period 2

Control Arm 1 Arm 2 Control Arm 1 Arm 2

H0 0.7 0.48 – 0.75 X 0.75

H1 0.7 0.48 – 0.75 X 0.84

rate but also strictly conservative testing procedures. To
account for heterogeneous variances, a model allowing for
different variances across periods and treatment groups
can be fitted.

Additional simulation results for trials with three periods
Above we considered platform trials starting with a single
treatment and a control, where a second treatment arm
enters later but ends at the same time as treatment arm
1. Consequently, the factor period in the regression model
for this platform trial has only two levels.
In addition, we performed a simulation study for tri-

als where recruitment to arm 1 ends before the end of
the platform trial. Then, the trial is divided into three
time periods, where the first and last only involve one
treatment and the control but in the second participants
are randomised to both treatment arms and the control
(see Fig. S16 in the supplementary material). Overall, we
find that the properties described for the two period trial
design also apply to the scenarios with three periods con-
sidered in the simulations. In particular, under equal time
trends, the type 1 error is controlled when modeling time
trends with step functions based on data from all arms
using a variant of model (1) where period has three lev-
els. If the time trend in treatment 1 differs from that in
treatment arm 2 and the control, the type 1 error rate may
be inflated. However, in the considered examples the type
1 error rate inflation is less pronounced than in the two-
period design because the overlap between arms 1 and 2
is smaller. As a consequence, the non-concurrent controls
have less weight in the test statistics computed from the
step function model. However, this implies that the power
gain compared to an analysis based on concurrent con-
trols only is smaller than in the design with two periods
(see the supplementary material for further details).

Further modeling approaches
In previous sections, we modeled time trends with step
functions, based on data from all arms. In this section, we
introduce some alternative methods and investigate their
properties. For the simulation results for these methods
see the supplementary material (see Figs. S4 and S12).

If rather than using data from all treatment arms as in
(1) and (2), one wants to compare the efficacy of treat-
ment 2 against control using data from the control arm in
both periods and data of treatment 2 (which is collected
in the second period, only), a regression model fitted by
the observations

{
Yj, j ∈ {1, . . . ,N}|kj = 0, 2

}
can be used.

This regression model is given by

g(E(Yj)) = η0 + θ2 · I(kj = 2) + ν · I(j > N1) (5)

where the period effect is fitted in themodel in a step-wise
way as before.
As noted by Lee and Wason [14], linear models that

only use data of treatment 2 and control arms (as in
(5)) maintain the type 1 error rate and lead to unbiased
estimators of the treatment effect. This holds, as long
as the variance of the residuals is the same in the two
periods. Furthermore, type 1 error rate control is main-
tained, even if there is a different time trend in treatment
arm 1. However, there is no relevant gain in power as
compared to the separate analysis. This holds, because
the non-concurrent control data do not contribute to the
treatment effect estimate. For the linear model, however,
the non-concurrent control data contribute to the vari-
ance estimator. Though, only for very small sample sizes,
this has an impact on the power. Therefore, the incor-
poration of the non-concurrent control by means of this
approach does not increase the trial’s efficiency.
Instead of assuming a step-wise effect of time over peri-

ods, models that linearly adjust for time can be used.
Here we assume that patients arrive at a uniform pace,
and patient index is proportional to time. Versions of the
regression models (1), (2) and (5) with linear trends for
time are obtained by replacing the step function term in
the models above by a linear effect function, and are as
follows:

g(E(Yj)) = η0 +
∑

k=1,2
θk · I(kj = k) + γ · j (6)

g(E(Yj)) = η0 +
∑

k=1,2
θk · I(kj = k)+γ ·j+η·j·I(kj=1)

(7)
g(E(Yj)) = η0 + θ2 · I(kj = 2) + γ · j (8)

Similarly to what was previously noted, models incorpo-
rating data from all treatment arms ((1) and (6)) control
the type 1 error rate and can substantially improve the
power under the assumption of equal time trends in all
treatment arms in the scale of the model. However, these
models in (6) additionally rely on the correct specifica-
tion of the time trend in the model. If correctly specified,
that is, when time trends are linear, such models achieve
higher power as compared to those modeling time as a
step function (as in (1)) while controlling the type 1 error
rate. But, error inflation occurs when the time trend is
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Fig. 6 Type 1 error rate and power of rejecting H02 for binary endpoints in the presence of linear, step-wise and inverted-U time trends (for λ0 = λ2)
with respect to the strength of the time trend in treatment arm 1 (λ1) and according to the model used (see “Methods” section) for scenarios
presented in “Design” section. ALLTC-step refers to models using all treatment data and control and adjusting for time by a step function (see (1)),
ALLTCI refers to models using all treatment data and control with interaction between time and treatment arm and adjusting for time by a step
function (see (2)), and pooled and separate approaches refer to logistic regression models without adjusting for time comparing treatment 2 to
control using concurrent and non-concurrent control data, and concurrent control data only, respectively. Lines for ALLTCI-Step and the separate
approach are overlapping

non-linear. Furthermore, when time trends differ between
arms, the inflation is even higher than when time is mod-
eled as a step function. In the same way, models (7) and
(8) also yield biased results and type 1 error inflation
when the parameterisation of the time in the model is
incorrectly specified.

Discussion
We investigated frequentist, model-based approaches to
adjust for time trends in platform trials utilizing non-
concurrent controls. We examined conditions under
which themodel-based approaches can successfully adjust
for time trends for the simple case of a two-period trial
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with two experimental treatments and a shared control.
The model-based approach including data from all arms
and fitting a common time trend as a step function, con-
trols the type 1 error rate and improves the statistical
power in all considered scenarios where the time trend is
equal across arms and additive in the model scale. This
holds asymptotically, even if the time trend is not a step
function but has a different shape and if block randomi-
sation is used. Suppose, in contrast, random allocation is
used, and the time trends are not step functions. In that
case, an inflation of the type 1 error in the linear model
can arise because the variance of the residuals may differ
across periods (but only a single variance term is esti-
mated by the model). A simple fix for this is to fit a model
that allows different residual variances per period. On the
other hand, type 1 error control is lost for the above step
function models if the time trends are different between
arms or not additive in the scale of the model. The amount
of potential type 1 error rate inflation depends on the size
of the differences between the time trends across arms. If
the differences are sufficiently small, the type 1 error rate
is not substantially affected (see Fig. 3).
Furthermore, we considered models, modelling time

trends as linear functions or as step functions with inter-
action terms for treatment arm and period. In addition,
we investigated a step function model fitted on the con-
trol group data and data of treatment arm 2 only.We show
that thesemodels do not lead to a noticeable gain in power
or are less robust with respect to the control of the type 1
error rate.
For the assessment of estimators in clinical trials, the

estimand framework [17] has become an important tool.
While the estimand, defined as the target of estimation,
is derived from the trial objective and is therefore not
directly affected by the use of non-concurrent controls,
the properties of estimators depend on if and how non-
concurrent controls are employed in the estimation of
treatment effects [18]. Time trends can affect estimators
through several aspects of the data generating process in
a clinical trial, such as the study population, the measure-
ment of endpoints, or the impact of intercurrent events.
Also, in the hypothetical platform trials in MDD and

NASH, considered in the introduction, time trends can
occur. The model-based analysis can fully adjust for time
trends only if the assumption of homogeneity and addi-
tivity of the time trends holds. While one can empirically
assess these assumptions based on the observed data, such
assessments may have limited sensitivity if trials are not
powered for this objective. On the other hand, experi-
ence from previous trials and subject matter knowledge
may provide justification for the assumption of equal
time trends. Heterogeneous time trends across treatment
armsmay occur in settings where several treatments show
an effect compared to control, but the external factors

causing the time trend do not equally affect the efficacy
of all considered treatments. Examples are vaccine trials,
where different variants of the targeted virus are pre-
dominant over time and vaccine efficacy depends on the
variant. Another example is shifts in the population in set-
tings, where treatment efficacy is not homogeneous across
the population. In particular, patients recruited early in a
trial may already be known by the investigator(s), while
newly diagnosed patients may enter later on. In addition,
time trends may not be additive in the scale considered
in the model, e.g., if there are ceiling effects in the out-
come scale (as it happens, for instance, in ADAS-COG in
Alzheimer’s disease), if the treatment effect is not additive
to the placebo effect [19] (as it may occur in the example
of MDD), or, for binary outcomes, when the time trends
are equal on different scales (as the risk ratio instead of the
odds ratio scale). However, even if there is a risk of bias,
the use of non-concurrent controls can lead to more pre-
cise estimates in terms of mean squared error because of
a bias-variance trade-off. Especially, in settings with small
sample sizes, the reduction in variability may outweigh
the potential bias introduced. The extent of time treat-
ment interactions in actual clinical trials will depend on
the specific context and it would be important to analyse
recent platform trials in this respect to better understand
the plausibility of different scenarios. The scenarios we
considered in the simulation study used thresholds for
type 1 and type 2 error control that are frequently used
in traditional confirmatory trials. In early phase platform
trials different choices would be made reflecting the dif-
ferent trade-offs involved. Furthermore, the trial may not
be designed with error rate control as a major focus.
While we considered only a simple scenario, these mod-

els can directly be extended to trials with more treatments
and periods. In this case, a period defines the time span
where the set of treatments in the platform trial does not
change. Also in this setting, the assumption of equal time
trends that are additive on the model scale is needed to
obtain unbiased estimators and conservative testing pro-
cedures. If time trends differ, the amount of bias and type
1 error rate inflation will depend on the weight the treat-
ment arms with deviating time trends have in the final
test statistics. In addition, if there are different deviat-
ing time trends across arms their impact may cancel out,
depending on the specific scenario.
In this paper, we focus on trials with no interim analysis,

where the sample size per arm is fixed. However, platform
trials often allow for interim analyses with the possibility
to stop an arm early, either due to futility or due to an early
rejection of the null hypothesis. In trials with such interim
analyses, the factor period, defined by the time periods
between an entry or exit of an arm, will depend on the
interim results. This introduces additional complexity as
it affects the joint distribution of the independent factor
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period and the dependent variable in the model and can
lead to biased treatment effect estimates and an increased
type 1 error rate.
We delimited our investigations to analyses based on

linear and logistic regression models. To extend the
approach to other types of data (e.g., time to event end-
points, counts and clustered data), the respective appro-
priate regression models, including time as a step func-
tion, could be applied. In addition, to address confounding
with measured baseline variables, the regression models
can be extended to adjust for other covariates.
Another extension are models that model time trends

with more general smooth functions such as splines.
Furthermore, non-parametric Bayesian approaches have
been proposed to estimate the effect of time, smooth-
ing estimates of time trends by borrowing information
between periods [20]. However, also these methods cor-
rectly adjust for time trends only if they are equal in all
arms.
A further approach that has been proposed to adjust for

time trends are randomisation tests. For two-armed tri-
als with covariate and response adaptive randomisation,
for example, they have been shown to robustly control
the type 1 error rate in the presence of time trends
[21]. These tests can be extended to multi-armed tri-
als [22] using conditional randomisation tests, where for
each treatment-control comparison, the re-randomisation
is limited to the respective treatment and control. How-
ever, this conditional re-randomisation is deterministic
for the non-concurrent controls in platform trials. There-
fore, including non-concurrent controls does not improve
the power of the conditional randomisation test compared
to a conditional randomisation test based on concurrent
controls only. Consequently, this approach would not be
beneficial in increasing the efficiency of platform trials by
incorporating non-concurrent controls.
Non-concurrent controls can be considered as the ideal

case of historical data, since they are borrowed from the
immediate past, randomised, and are part of the same
trial infrastructure [23]. It is an open question whether
the large array of dynamic modeling methods proposed
to incorporate historical data [24–28] can be adapted to
incorporate non-concurrent controls in platform trials.

Conclusions
Model-based analyses that make use of data from all
treatment arms including non-concurrent controls are a
powerful and fairly robust analysis strategy. If time trends
in the different arms have equal additive effects on out-
come on the model scale, a model that adjusts for time
as step function based on data from all arms controls the
type 1 error rate while increasing the power compared
to an analysis with concurrent controls only. For binary
data and logistic regression models, type 1 error control

is maintained, even if the functional form of the common
time trend deviates from the step function. For continu-
ous data, this holds if block randomisation is applied or
a model allowing for different variances across periods is
chosen. However, if time trends differ between arms or are
not additive to treatment effects in the scale of the model,
the type 1 error control may be lost and treatment effect
estimates can be biased.
If non-concurrent controls are included in the analysis

of platform trials, we recommend the use of step function
models to adjust for potential time trends. Only in trials
where the environment can be considered “stable" for the
duration of the trial and there is no time trend in the out-
comes (e.g., for short trials with objective endpoints and
homogeneous patient populations and in diseases with a
long-established standard of care and no recent changes
in treatment options), adjustment for time trends may
not be necessary, and, as in this scenario the distribution
of concurrent and non-concurrent controls are identical,
we can simply pool concurrent and non-concurrent con-
trols. In any case, if non-concurrent data are utilised as the
primary analysis, also the analysis using only concurrent
control data should be presented as sensitivity analysis.
Whether to use non-concurrent controls or not should

be a case by case decision based on the expected bias-
variance trade-off and subject-matter considerations such
as the duration of the trial and potential changes in the
standard of care during the trial. Especially in settings
with small sample sizes, the efficiency gained by using step
function models to incorporate non-concurrent controls
can outweigh potential biases. To assess the bias-variance
trade-off, the specifics of the trial, scientific plausibil-
ity of heterogeneous time trends across treatments, and
robustness of results should be carefully considered.
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