
Mashtree: a rapid comparison of whole genome sequence files

Lee S. Katz1,2, Taylor Griswold1, Shatavia S. Morrison3, Jason A. Caravas3, Shaokang 
Zhang2, Henk C. den Bakker2, Xiangyu Deng2, Heather A. Carleton1

1Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, 
USA

2Center for Food Safety, University of Georgia, Griffin, GA, USA

3Respiratory Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, 
GA, USA

Summary

In the past decade, the number of publicly available bacterial genomes has increased 

dramatically. These genomes have been generated for impactful initiatives, especially in the 

field of genomic epidemiology (Brown, Dessai, McGarry, & Gerner-Smidt, 2019; Timme 

et al., 2017). Genomes are sequenced, shared publicly, and subsequently analyzed for 

phylogenetic relatedness. If two genomes of epidemiological interest are found to be related, 

further investigation might be prompted. However, comparing the multitudes of genomes for 

phylogenetic relatedness is computationally expensive and, with large numbers, laborious. 

Consequently, there are many strategies to reduce the complexity of the data for downstream 

analysis, especially using nucleotide stretches of length k (kmers).

One major kmer strategy is to reduce each genome to split kmers. With split kmer analysis, 

kmers on both sides of a variable site are recorded, and the variable nucleotide is identified. 

When comparing two or more genomes, the variable sites are compared. Split kmers have 

been implemented in software packages such as KSNP and SKA (Gardner, Slezak, & Hall, 

2015; Harris, 2018).

Another major kmer strategy is to convert genomic data into manageable datasets, usually 

called sketches (Baker & Langmead, 2019; Ondov et al., 2016; Zhao, 2018). Most notably, 

an algorithm called min-hash was implemented in the Mash package (Ondov et al., 2016). In 

the min-hash algorithm, all kmers are recorded and transformed into integers using hashing 

and a Bloom filter (Bloom, 1970). These hashed kmers are sorted and only the first several 

kmers are retained. The kmers that appear at the top of the sorted list are collectively called 

the sketch. Any two sketches can be compared by counting how many hashed kmers they 

have in common.

Because min-hash creates distances between any two genomes, min-hash values can be used 

to rapidly cluster genomes into trees using the neighbor-joining algorithm (Saitou & Nei, 

1987). We implemented this idea in software called Mashtree, which quickly and efficiently 

generates large trees that would be too computationally intensive using other methods.

HHS Public Access
Author manuscript
J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

Published in final edited form as:
J Open Source Softw. 2019 December 10; 4(44): . doi:10.21105/joss.01762.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Implementation

Workflow

Mashtree builds on two major algorithms that are already implemented in other software 

packages. The first is the min-hash algorithm, which is implemented in the software Mash 

(Ondov et al., 2016). Mashtree uses Mash to create sketches of the genomes with the 

function mash sketch. We elected to keep most default Mash parameters but increased 

the sketch size (number of hashed kmers) from 1,000 to 10,000 to increase discriminatory 

power. Then, Mash is used to calculate the distances between genomes with mash dist. 

Mashtree records these distances into a pairwise distance matrix. Next, Mashtree calls the 

neighbor-joining (NJ) algorithm which is implemented in the software QuickTree (Howe, 

Bateman, & Durbin, 2002). The Mash distance matrix is used with QuickTree with default 

options to generate a dendrogram. The workflow is depicted in Figure 1.

Confidence values

Although Mashtree does not infer phylogeny, we have borrowed the ideas behind 

phylogenetic confidence values to yield confidence values for each parent node in the 

tree. There are two resampling methods implemented in Mashtree to assign support values 

to internal nodes: bootstrapping and jackknifing. Initially, both methods create a tree as 

depicted in Figure 1. Then, confidence values can be calculated for the tree using either the 

bootstrapping approach or the jackknifing approach (Figures 2 and 3).

Other features

Mashtree has several other useful features. First, Mashtree can read any common sequence 

file type and can read gzip-compressed files (e.g., fastq, fastq.gz, fasta). This is a major 

advantage in being compatible with a wide variety of databases and with space-saving 

file compression. Second, Mashtree takes advantage of multithreading. The number of 

requested threads is used to determine how many genomes are sketched at the same time 

and how many sketches can be compared at the same time. When the number of threads 

requested outnumbers the number of operations that it can parallelize, Mashtree uses the 

multithreading already encoded in Mash sketches and distances. Third, Mashtree uses an 

SQLite database which can be used to cache results between runs.

Installation

The Mashtree package is programmed in Perl, and is available in the CPAN repository. 

Documentation can be found at https://github.com/lskatz/mashtree.

Acknowledgements

This work was made possible through support from the Advanced Molecular Detection (AMD) Initiative at the 
Centers for Disease Control and Prevention. Thank you Sam Minot, Andrew Page, Brian Raphael, and Torsten 
Seemann for helpful discussions. The findings and conclusions in this report are those of the authors and do not 
necessarily represent the official position of the Centers for Disease Control and Prevention.

Katz et al. Page 2

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lskatz/mashtree


References

Baker DN, & Langmead B. (2019). Dashing: Fast and accurate genomic distances with hyperloglog. 
bioRxiv. doi:10.1101/501726

Bloom BH (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the 
ACM, 13(7), 422–426. doi:10.1145/362686.362692

Brown E, Dessai U, McGarry S, & Gerner-Smidt P. (2019). Use of whole-genome sequencing for food 
safety and public health in the united states. Foodborne Pathogens and Disease, 16(7), 441–450. 
doi:10.1089/fpd.2019.2662 [PubMed: 31194586] 

Gardner SN, Slezak T, & Hall BG (2015). KSNP3. 0: SNP detection and phylogenetic analysis 
of genomes without genome alignment or reference genome. Bioinformatics, 31(17), 2877–2878. 
doi:10.1093/bioinformatics/btv271 [PubMed: 25913206] 

Harris SR (2018). SKA: Split kmer analysis toolkit for bacterial genomic epidemiology. BioRxiv, 
453142. doi:10.1101/453142

Howe K, Bateman A, & Durbin R. (2002). QuickTree: Building huge neighbour-joining trees 
of protein sequences. Bioinformatics, 18(11), 1546–1547. doi:10.1093/bioinformatics/18.11.1546 
[PubMed: 12424131] 

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, & Phillippy AM (2016). 
Mash: Fast genome and metagenome distance estimation using minhash. Genome Biology, 17(1), 
132. doi:10.1186/s13059-016-0997-x [PubMed: 27323842] 

Saitou N, & Nei M. (1987). The neighbor-joining method: A new method for 
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. doi:10.1093/
oxfordjournals.molbev.a040454 [PubMed: 3447015] 

Timme RE, Rand H, Shumway M, Trees EK, Simmons M, Agarwala R, Davis S, et al. (2017). 
Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen 
surveillance. PeerJ, 5, e3893. doi:10.7717/peerj.3893

Zhao X. (2018). BinDash, software for fast genome distance estimation on a typical personal laptop. 
Bioinformatics, 35(4), 671–673. doi:10.1093/bioinformatics/bty651

Katz et al. Page 3

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The Mashtree workflow. Step 1) Sketch genomes with Mash. In this schematic, there is a 

green circle representing each genome in the analysis. Filled-in brown circles indicate the 

presence of a kmer. Missing circles represent true absence. After hashing with a sketch size 

of six (after the arrow), some kmers are not represented in the Mash sketch either because 

they are not present in the original genome or because only a finite number of kmers are 

sketched (e.g., six in this example). Henceforth, truly missing hashes or hashes not included 

in the Mash sketch are represented by empty circles. Step 2) Calculate distances with Mash 

dist. Distances in the figure are represented by Jaccard distances, which are calculated as 

Katz et al. Page 4

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the intersection divided by the union. In this example, the genomes are separated by Jaccard 

distances of 5/9, 4/9, and 3/9. These Jaccard distances are internally transformed into Mash 

distances (Ondov et al., 2016). Step 3) Create dendrogram with Quicktree using the Mash 

distance matrix.

Katz et al. Page 5

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The Mashtree bootstrap workflow. Step 1) Generate a tree with the normal workflow as in 

Figure 1. This is the main tree. Step 2) Run the normal workflow once per replicate but with 

a different random seed. In this example, the top right replicate differs from the main tree. 

All ten of these trees are the bootstrap tree replicates. Step 3) For each parent node in the 

main tree, quantify how many bootstrap tree replicates have the same node with the same 

children. Record that percentage next to each parent node. This percentage quantifies how 

confident the Mashtree cluster is, controlling for the random seed in the Mash program.

Katz et al. Page 6

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The Mashtree jackknife workflow. Step 1) Generate a tree with the normal workflow as in 

Figure 1. This is the main tree. Step 2) For each replicate, sample the half hashes without 

replacement for each query genome. Recalculate the Mash distance between the query 

genome and all other genomes, reducing the denominator to one half, rounding up, to reflect 

the smaller pool of hashes. After all genomes have been selected for query genomes, average 

the distances to create a new distance matrix. Create the dendrogram from the new distance 

matrix. For brevity, only one detailed replicate is shown. Step 3) For each replication, 

calculate the new tree from the new distance matrix. In this example, the top right replication 

differs from the main tree. All ten of these trees are the jackknife tree replicates. Step 4) 

For each parent node in the main tree, quantify how many jackknife tree replicates have the 

same node with the same children. Record that percentage next to each parent node. This 

percentage quantifies how confident Mashtree is at clustering, controlling for stochasticity in 

hashes.

Katz et al. Page 7

J Open Source Softw. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Implementation
	Workflow
	Confidence values
	Other features

	Installation
	References
	Figure 1:
	Figure 2:
	Figure 3:

