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ABSTRACT Modern medicine is threatened by the rising tide of antimicrobial resist-
ance, especially among Gram-negative bacteria, where resistance to B-lactams is most
often mediated by B-lactamases. The penicillin and cephalosporin ascendancies were,
in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-
spectrum B-lactamases. These class A B-lactamases have long been considered the
most important. For carbapenems, however, the threat is increasingly from the insidi-
ous rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past
20 years, OXA-48 and “OXA-48-like” enzymes have proliferated to become the most
prevalent enterobacterial carbapenemases across much of Europe, Northern Africa,
and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because
they often cause only low-level in vitro resistance to carbapenems, meaning that the
true burden is likely underestimated. Despite this, they are associated with carbape-
nem treatment failures. A highly conserved incompatibility complex IncL plasmid scaf-
fold often carries blagyas and may carry other antimicrobial resistance genes, leaving
limited treatment options. High conjugation efficiency means that this plasmid is
sometimes carried by multiple Enterobacterales in a single patient. Producers evade
most B-lactam-pB-lactamase inhibitor combinations, though promising agents have
recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular
machinery enabling global spread, current treatment options, and the development
pipeline of potential new therapies for Enterobacterales that produce OXA-48-like
B-lactamases form the focus of this review.

KEYWORDS OXA-48 B-lactamase, treatment, pharmacology, drug development,
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n estimated 4.95 million deaths associated with bacterial antimicrobial resistance
(AMR) in 2019 make it a leading cause of mortality worldwide and a serious threat
to modern medicine (1). The rise in resistance to carbapenems—until recently the last-
resort B-lactams—is a particular concern. OXA-48-like B-lactamases, including OXA-48
itself, are important because they hydrolyze carbapenems, readily transmit among a
wide range of Enterobacterales (2), frequently associate with other resistances, and
have recently (though rarely) been identified among Pseudomonas aeruginosa and
Acinetobacter baumannii (3, 4).
OXA-48-like B-lactamases are notoriously difficult to detect in the clinical labora-
tory, impeding implementation of infection control and facilitating their stealthy rise.
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TABLE 1 Proposed division of class D B-lactamases by Poirel et al. (19)

Antimicrobial Agents and Chemotherapy

Group Examples

Host

Acquired narrow-spectrum S-lactamases OXA-1, OXA-2, and OXA-10 subgroups; OXA-20,

OXA-21, OXA-22, OXA-29, and OXA-30

Acquired expanded-spectrum B-lactamases OXA-11, OXA-14, OXA-15, OXA-16, OXA-17, OXA-
18, OXA-19, OXA-28, OXA-31, OXA-32, OXA-35,

OXA-45, and OXA-53
Acquired carbapenem-hydrolyzing B-lactamases OXA-23, OXA-40, OXA-58, and OXA-97

OXA-48 and OXA-48-like
Naturally occurring types OXA-10

OXA-12

OXA-23

OXA-61

OXA-42 and OXA-43

OXA-50

OXA-51

OXA-54

OXA-57

Mainly identified from Enterobacterales

and P. aeruginosa

Mainly identified from P. aeruginosa

Mainly identified from Acinetobacter

spp.

Mainly identified from Enterobacterales

Acinetobacter baumannii
Aeromonas jandaei
Acinetobacter radioresistans

Campylobacter jejuni
Burkholderia pseudomallei
Pseudomonas aeruginosa

Acinetobacter baumannii

Shewanella oneidensis
Burkholderia pseudomallei

Since around 2010, nosocomial spread and outbreaks have increased worldwide
(5-12). This has merged into endemicity among a range of Enterobacterales across
much of Eurasia and Africa (13).

Therapeutic options remain limited (14), though promising agents have been
recently licensed (ceftazidime-avibactam and cefiderocol) or are progressing through
development (various B-lactam inhibitor combinations and monobactams). The utility
of older therapies remains debatable.

Here, we review the structure and function of OXA-48-like B-lactamases, how their
genetic support allowed proliferation engendering a serious threat to health care sys-
tems, their current epidemiology and, lastly, current and emerging treatment options.

CLASSIFICATION

OXA-48-like enzymes are serine B-lactamases (SBLs) (15, 16) belonging to molecular
class D. This family is the most diverse of the four B-lactamase classes defined by
Ambler et al., who divide these enzymes based on their amino acid sequences (17, 18).

SBLs hydrolyze their substrates by forming an acyl intermediate through the active-
site serine, and class D B-lactamases (DBLs) or “OXA types” have oxacillin as their pre-
ferred substrate in terms of k_,/K.,, which measures catalytic efficiency. DBLs vary greatly
in both sequence and substrate spectrum. Some (e.g., OXA-1 and -2) are primarily peni-
cillinases, others (e.g., OXA-11 and -14) have an extended spectrum (extended-spectrum
B-lactamases [ESBLs]), and a few, including OXA-48 and most OXA-48-like enzymes, are
carbapenemases. Each has a unique number assigned based on the chronological order
of first description.

Bush and Jacoby’s functional B-lactamase classification (18) places OXA-48 B-lacta-
mases, along with the carbapenemases of Acinetobacter spp. (OXA-23 and similar) in
group 2 (subgroup 2df), where the defining characteristics are the ability to hydrolyze
cloxacillin, oxacillin, and carbapenems, with no inhibition by EDTA. Alternatively, in 2010,
Poirel et al. (19) proposed a division of DBLs into four groups: (i) acquired narrow-spec-
trum B-lactamases, (i) acquired expanded-spectrum B-lactamases, (iii) acquired carbape-
nem-hydrolyzing B-lactamases, and (iv) naturally occurring (chromosomal) types (Table 1).
A complexity is that the “acquired” types are escaped chromosomal types from other spe-
cies, blurring that distinction. For example, OXA-23 originated from Acinetobacter radiore-
sistens (20) and OXA-48 from Shewanella spp. (see below). A second complexity is diversity
among acquired class D carbapenemases comprising group 3: OXA-48 types attack peni-
cillins but mostly not extended-spectrum cephalosporins, whereas the Acinetobacter OXA
types attack both penicillins and cephalosporins (19).
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Since OXA-48 enzyme was first described, several variants have been observed, col-
lectively forming the “OXA-48-like” subfamily. Variants differ from OXA-48 by one to
five amino acid substitutions and/or deletions (21). More-prevalent members include
OXA-181 (four substitutions at Thr104Ala, Asn110Asp, Glu168GIn, and Ser171Ala) (22),
OXA-232 (single substitution at Arg214Ser) (23), OXA-204 (two substitutions at
GIn98His and Thr99Arg) (24), OXA-162 (single substitution at Thr213Ala) (25), OXA-244
(single substitution at Arg214Gly), OXA-163 (four deletions at Arg214, lle215, Glu216,
and Pro217 and a single substitution at Ser220Asp) (26) OXA-245 (single substitution
at Glu125Tyr) (27), OXA-370 (single substitution at Gly220Glu) (28), and OXA-405 (four
deletions at Thr213 to Glu216) (29). Almost all are carbapenemases unable to hydro-
lyze cephalosporins, but some, including OXA-163, OXA-405 (29), and OXA 247 (30),
show the converse pattern.

ENZYME STRUCTURE AND FUNCTION

OXA-48 has a dimeric structure, similar to OXA-10 (31), OXA-13 (32), and OXA-46
(33), comprising two identical subunits. The active site is in a narrow crevice presenting
three motifs typical of DBLs in addition to the carbamylated side chain of Lys73 (34).
These elements (notably Arg214) are critical for substrate recognition and for catalysis
(15, 35). OXA-48-like enzymes have a unique B-5-B-6 loop conformation, which
extends to the outer portion of the active-site crevice, modifying the charge distribu-
tion and narrowing the active site compared with more remote DBLs, such as OXA-10
(31, 36). This loop is considered important for carbapenem hydrolysis, although there
is a different conformation in A. baumannii OXA enzymes (i.e,, OXA-23, -24, and -58)
(37-39). OXA-48 preferentially hydrolyzes imipenem (k. 5 s~') compared with the 1-
B-methyl-carbapenems, meropenem and ertapenem, whose k_,, values are =1 s~ (34,
40); the k,, for oxacillin, for comparison, is 25 s~ (41). Nonetheless, ertapenem MICs
are raised more than for other carbapenems, including imipenem.

Efficient hydrolysis relies on rotation of the carbapenem’s alpha-hydroxyethyl
group, as promoted by the conformation of residues located in or close to the B-5-
B-6 loop, which subsequently allows for the deacylating water molecule to access the
acylated serine residue (34). Sequence modifications in OXA-163 (see above) corre-
spond to positions belonging to, or close to, the B-5 strand (34), explaining spectrum
changes compared with other OXA-48-like enzymes. Specifically, the lack of Arg214 in
OXA-163 disturbs the active-site conformation and compromises interactions with car-
bapenems (26), whereas cephalosporin breakdown is efficient due to control of active-
site solvation requiring orientation of Leu158 in the Q loops (42).

Of significant concern is the recent prediction that a single mutation in the OXA-48
B-5-B-6 loop (Arg214Ser) would increase the efficiency of ceftazidime deacylation rel-
ative to that of OXA-163 (42), though the authors do not speculate on how this might
affect carbapenemase activity.

MOLECULAR MACHINERY: MOBILIZATION AND GLOBAL SPREAD

The original reservoir of blagy4s Was demonstrated to be the waterborne Gram-
negative saprophyte Shewanella oneidensis, which has a chromosomal B-lactamase
gene, blagyp.sq. blaoya.sa has genetic components upstream and downstream similar to
those of blagya.ss and its product has 92% amino acid identity to plasmid-associated
OXA-48 (41). Other Shewanella species have been sequenced, and their role as progen-
itors of blagya ss.ie g€NES has been confirmed (43), although the relative importance of
new escapes versus postescape mutations is uncertain.

Plasmids are the primary vehicle for the transmission and propagation of bldgya 4z ke
genes. Several plasmid types have been observed to host blagys.ssie genes, including
IncL, IncA/C, IncF, ColKP3, ColE2, IncX3, IncN1, and IncT plasmids (13). The most frequent
hosts for blagy, .4 itself are self-conjugative 60- to 70-kb plasmids with an IncL scaffold (13,
44, 45) also encoding the replicon protein RepP (46). IncA/C plasmids often carry blagy 04
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(47), whereas blaoys.1g1/23, are predominantly associated with IncX3 and ColKP3 plasmids
(44, 48, 49).

In contrast to many other oxacillinase determinants, bldoya s« 9€NES are not associ-
ated with class 1 integrons (50, 51). Rather, the “typical” IncL plasmid harbors blagya 45 Via
acquisition of transposon Tn7999 with an upstream, and often a downstream, IS7999 inser-
tion sequence (52). Expression is driven by the outward-directed promoter P, located in
IS7999 (53). When blagy,..s Was originally described from Klebsiella pneumoniae in Turkey
in 2001, 1S7999 was immediately upstream of the enzyme’s gene (50) and the transposon
had integrated within the tir gene, which is recognized as key for high conjugation and
transfer frequency (54, 55). This Tn7999 transposon structure has several variants, desig-
nated Tn7999.2, Tn1999.3, Tn1999.4, and Tn1999.5 (46, 56, 57). IncL plasmids with embed-
ded Tn7999.2 were critical to the dissemination of blagy,.4s across Libya, Turkey, and the
Netherlands (58).

OXA-181 has been identified among diverse sequence types (STs) but with nearly
identical IncX3 plasmids responsible for spread in different countries, including Jordan,
Egypt, Turkey, South Korea, Thailand, South Africa, and Kuwait (59). Furthermore,
although superclone K. pneumoniae ST307 was implicated as an OXA-181 producer in
a large outbreak across hospitals in South Africa, the IncX3 plasmid was universally
identified and found to be identical to others reported with blagys.1g; from China and
Angola (48). Plasmid-borne OXA-48-like carbapenemases have been observed in high-
risk international clones, including K. pneumoniae ST147 (12), ST307 (48), ST15 (13),
ST14 (51), ST23 (60), and ST405 (61) and Escherichia coli ST38 and ST410 (13), but these
are not the major factor behind the enzymes’ global spread (46). Thus, E. coli, K. pneu-
moniae, and Enterobacter cloacae were the predominant bldoyp.sgiie hOSts in the
United Kingdom; these were polyclonal, and the common denominator was that many
harbored a disseminated IncL plasmid carrying the carbapenemase gene (62).

Inevitably, exceptions to these generalizations occur. Clones with OXA-48-like
enzymes do, of course, cause local and regional outbreaks; examples are given (see
above and below). Furthermore, while plasmids are the principal mechanism responsi-
ble for global dissemination (13, 55), a chromosome-integrated blaoya4s.ie 9€ne has
been observed in emerging clones such as E. coli ST38 with OXA-244 B-lactamase,
which has spread across several European countries (63). Last, there is a growing prob-
lem, internationally, with K. pneumoniae, commonly of ST14 (an anyway frequent line-
age) carrying OXA-48-like (often OXA-232) enzymes together with NDM (New Delhi
metallo-B-lactamase) types (64-66). These points should not, however, detract from
the great importance of plasmids for the dissemination of blagya.sg.ie @and the overall
diversity of producers. This contrasts with KPC carbapenemases, where the K. pneumo-
niae ST258 has been a considerable vector of global dissemination.

CHALLENGES IN THE CLINICAL MICROBIOLOGICAL LABORATORY

A wide range of Enterobacterales can carry blagy,.,s and its variants, with a few
reports also for P. aeruginosa (3). In principle, biochemical or genetic detection can be
achieved by immunochromatography, multiplex PCR, or matrix-assisted laser desorp-
tion ionization-time of flight (MALDI-TOF), among other assays. However, the practical
difficulties for OXA-48-like B-lactamases are greater than for other carbapenemases.
These challenges have recently been reviewed (67, 68) and are not discussed in detail
here. Briefly, they include the following: (i) that carbapenem resistance is often low
level, meaning that a high level of suspicion is required to ensure that all likely pro-
ducers are recognized and examined further; (ii) that unlike for KPC carbapenemases
and metallo-B-lactamases (MBLs), there are no simple synergy tests to aid detection;
(iii) that owing to weak expression, biochemical tests (e.g., Carba-NP) have a greater
risk of false-negative results, and finally (iv) that some variants (including OXA-163,
OXA-405, and OXA-247) with increased expanded-spectrum cephalosporin hydrolysis
may be incorrectly identified as class A, although these are rare. These challenges
mean that OXA-48-like enzymes often pass undetected, impacting our understanding
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FIG 1 MIC distribution of meropenem for Enterobacterales. MIC distributions of meropenem for
Enterobacterales that were submitted to United Kingdom Health Security Agency (previously Public
Health England) Antimicrobial Resistance and Healthcare Associated Infection Reference Unit from
July 2015 to July 2016 are shown. (Reproduced from reference 69 with permission of the Infectious
Diseases Society of America.)

of their global epidemiology, burden of associated infection, and current treatment
outcomes.

Figure 1 shows a meropenem susceptibility distribution for 906 carbapenemase-
producing Enterobacterales (CPEs) submitted to Public Health England (PHE), illustrat-
ing how MICs for OXA-48 producers are mainly =<2 mg/L and lower than those for
Enterobacterales with other carbapenemases (69, 70). Consequently, many producers
count as “susceptible” based on current EUCAST (=2 mg/L) and CLSI (=1 mg/L) clinical
breakpoints (71, 72).

Two useful indicators in a clinical laboratory workflow are that producers of OXA-
48-like enzymes reliably display high-level resistance to piperacillin-tazobactam (MIC,
>64 mg/L) and temocillin (MIC, >128 mg/L), though the latter drug has limited avail-
ability and so is not widely tested (62). Ertapenem resistance (MIC, >0.5 mg/L) provides
a useful clue, even when imipenem and meropenem still appear active, but is also
seen in isolates with combinations of ESBL or AmpC activity and impermeability. Most
producers should be identified when screening breakpoints for meropenem (MIC,
>0.12 mg/L) trigger subsequent biochemical or genotypic testing (73). Rare producers
are susceptible to meropenem at =0.12 mg/L and/or temocillin at =32 mg/L (69).

A diagnostic trap is that most OXA-48-like carbapenemases do not hydrolyze third-
and fourth- generation cephalosporins, meaning that producers lacking ESBLs remain
susceptible to these agents (67). The unwary easily dismiss carbapenem-borderline-re-
sistant, cephalosporin-susceptible isolates as test failures, when the phenotype should
prompt suspicion of an OXA-48-like B-lactamase.

EPIDEMIOLOGY

OXA-48 itself was initially identified from a carbapenem-resistant K. pneumoniae iso-
late from a patient in Istanbul, Turkey, in 2001 (50). OXA-48-like B-lactamases have
subsequently disseminated to every inhabited continent (Fig. 2) (59, 74). Turkey
remains an important reservoir for OXA-48-like producers, with OXA-48, OXA-181,
OXA-232, and increasing reports of OXA-48-like/NDM coproducers linked with different
hosts and various STs (59, 64, 75, 76).

Aside from human clinical samples, OXA-48-like enzymes have been widely detected
among different bacterial species and in different countries globally from the environ-
ment, particularly from water (Table 2). The potential role of monitoring hospital sewage
as an early warning system for clinical outbreaks (77) is of interest, but false positives
from environmental Shewanella spp. may ensue if PCR is simply performed on sewage or
hospital wastewater. Different niches have been reviewed (21) and updated here. The
dissemination of OXA-48-like carbapenemases (particularly OXA-181) among nonhuman
settings in Switzerland (78), including in companion animal clinics (Table 3) (79, 80) and
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FIG 2 Global distribution of acquired OXA-48-like B-lactamases among Enterobacterales. (A) OXA-48; (B) prevalent OXA-48-like variants. Full-tone color is used to indicate
where OXA-48-like enzymes are reported as the most prevalent carbapenemases in the country. Lighter-tone color is used to indicate countries where OXA-48-like
enzymes are reported in outbreaks but where other carbapenemases (KPC or metalloenzymes) are more prevalent or the most prevalent carbapenemase is unclear.
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TABLE 2 Examples of environmental reservoirs of OXA-48-like enzymes globally

Yr isolated OXA-48-like enzyme Host Reservoir Country Reference
2011 OXA-48 E. coli and Serratia marcescens Puddles in and around Marrakech ~ Morocco 231
2011-2012 OXA-48 E. coli Domestic sewage and hospital Austria 232
wastewater treatment plant
2015 OXA-48 Enterobacterales (mainly E. coli) River water Algeria 233
2015-2016 OXA-48-like? Host species not defined® Hospital wastewater effluent Tunisia 234
2015-2017 OXA-48 E. coli and other coliforms Hospital sewage Sweden 77
2015-2021 OXA-48 E. cloacae (mainly ST66) Hospital (shower drains) Germany 235
2016 OXA-48-like? Bacteriophages and unspecified Wastewater, river water, and USA 236
bacterial hosts® irrigation water
2016-2017 OXA-48 S. marcescens Hospital wastewater (sink trap) Israel 237
2016-2019 OXA-48 Citrobacter freundii Hospital wastewater (toilets) France 238
2017 OXA-48 ST131 E. coliand ST101 K. Seawater bathing site Ireland 239
pneumoniae
2018 OXA-48-like® Enterobacterales (mainly Klebsiella  River water and farm soil South Africa 240
spp.)
2019 OXA-48 K. pneumoniae and Raoultella Hospital wastewater treatment United Kingdom 241
ornithinolytica plant
2019-2020 OXA-48 Enterobacterales Municipal wastewater treatment Romania 242
plant
2020 OXA-48 Enterobacterales (mainly E. coli) Municipal wastewater treatment Croatia 243
plant
2020 OXA-48 K. pneumoniae Hospital wastewater treatment Mexico 244
plant
Sampling date  OXA-48-like (including Host species not defined® Estuarine water with flow from Portugal 245

not specified OXA-48, OXA-181,
OXA-199, and OXA-

204, among others)

domestic, agricultural, and
domestic origin

aSpecific variant not specified.
bWhere host species are not defined among water reservoirs, caution must be used to interpret data due to the naturally occurring chromosomally encoded OXA-54 in
Shewanella spp. (as described in the text).

in the food chain (Table 4), is a concern. These new data enhance our understanding of
important links between humans and other reservoirs for OXA-48-like carbapenemases,
which remains poorly understood, with uncertainty on whether the predominant direc-
tion of spread is from animals to humans or vice versa.

International travel is well known to facilitate the spread of carbapenemases. This is
better documented for blayp, than for blaoy, e, but nonetheless, some data are avail-
able. Among early (2007 to 2014) United Kingdom patients colonized or infected with
bacteria producing OXA-48-like enzymes, a travel history was available for 24%, of
whom 42% had documented travel to 17 different countries, several of which had
previously reported outbreaks involving bacteria with OXA-48-like enzymes (62).
Casualties from the Libyan conflict were a source of export of OXA-48-like producers to
Germany (81), Denmark (82), United Kingdom, the Netherlands, and Malta (83, 84).
Notably, a polytrauma patient from Libya was the source of OXA-48-producing
Salmonella enterica serovar Kentucky ST198 into Switzerland in 2011 (85). The recent
COVID pandemic has greatly reduced travel and, no doubt, reduced the international
spread of resistance. Nevertheless, case reports continue to appear that highlight the
importation of OXA-48-like carbapenemases by way of repatriation of patients; one
such example was the transfer of a patient colonized with an E. coli carrying blagy ass
from India to Switzerland (86).

Europe and Russia. OXA-48-like enzymes are the most prevalent carbapenemases
among Enterobacterales in much of Western Europe (87). They are most frequently
detected in K. pneumoniae and E. coli but may be associated with other Enterobacterales.

One of the first cases outside Turkey was reported from Belgium in 2007. Notably,
this imipenem-susceptible, ertapenem-resistant K. pneumoniae isolate was cultured
from a patient who had no connection to Turkey (88). France reported its first OXA-48
outbreak in 2010, involving a K. pneumoniae strain (89). As in Belgium, those affected
had not travelled to anywhere the enzyme had previously been recorded, suggesting
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TABLE 3 Dissemination of OXA-48-like enzymes among animals globally
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Yr isolated OXA-48-like enzyme Host Reservoir Country Reference
2009-2011 OXA-48 Enterobacterales (mainly E. coli Companion animals (dogs, cats, Germany 246
and K. pneumoniae) horses)
2009-2013 OXA-48 E. coli Companion animals (dogs and US.A. 247
cats)
2009-2016 OXA-48-like? Enterobacterales (mainly Companion animals (dogs, cats, Germany 248
K. pneumoniae) guinea pig, rat, mouse, rabbit)
2013 OXA-48 E. coli and K. pneumoniae Companion animals (dog) Germany 249
2014-2015 OXA-48 E. coli Companion animals (dogs and Algeria 250
cats)
2015 OXA-48 E. cloacae German cockroaches Algeria 251
2015 OXA-48 E. coli Companion animals (dog) France 252
2015-2016 OXA-48 Enterobacterales (mainly Companion animals (dogs, cats, Algeria 253
E. cloacae ST527) horses, pet birds)
2016 OXA-48-like (OXA-181, E. coli, K. pneumoniae, Cockroaches, ants, moths, Pakistan 254
OXA-232) E. cloacae spiders, flies in human hospital
setting
2016-2019 OXA-48-like (OXA-181) E. coli ST410 Companion animals Portugal 49
postdischarge from veterinary
hospital (dog)
2018 OXA-48-like (OXA-181) E. coli Companion animals Switzerland 80
postdischarge from veterinary
hospital (dogs, cats)
aSpecific variant not specified.
that blagys.s Was already endemic in these regions (89). OXA-48-like enzymes have
become the most prevalent carbapenemase group in France (90) and Spain (55, 91, 92)
although KPC types remain more prevalent in Italy and Greece. Colistin resistance
among OXA-48-producers was first reported from France in 2014, likely mediated by
mgrB gene alterations (93), and cocarriage with plasmid-mediated mcr-1 has also been
reported (see below). Enterobacterales producing OXA-48-like carbapenemases appear
to have been introduced to Israel—a country where KPC otherwise dominates among
carbapenemases—first by medical tourism in 2007 (6) and then by wounded Syrian
nationals, transferred for medical care, in 2013 (94).
Elsewhere in Europe, away from the Mediterranean, OXA-48 types are now the most
prevalent carbapenemases in Germany (45, 95), the Netherlands (7), Switzerland (96), and
the United Kingdom (97, 98). E. coli ST38 with blary. 27,14 together with blagys ag24s has
spread across Germany and Switzerland (99, 100), precluding the use of unprotected third-
or fourth- generation cephalosporins. The case is similar in the United Kingdom and Spain,
where clonally diverse isolates with OXA-48-like carbapenemases often also produce CTX-
M-15 enzyme, narrowing the therapeutic options (27).
In 2018, there was a remarkable increase in K. pneumoniae producing OXA-48 or
OXA-244 enzymes across Russia (75). In Moscow, reports describe an outbreak of infec-
tion in a neurosurgical intensive care unit (ICU) caused by hypermucoviscous virulent
K. pneumoniae ST23 isolates harboring both blagya.ss and blacry.1s (101, 102). This is
TABLE 4 Dissemination of OXA-48-like enzymes in the food chain
Yr isolated OXA-48-like enzyme Host Reservoir Country Reference
2013 OXA-48 E. coli ST38 Fowl Lebanon 255
2015 OXA-48-like (OXA-181) Klebsiella variicola Coriander herb Import from Thailand, 256
Vietnam, and India to
Switzerland
2018 OXA-48 K. pneumoniae Retail pork meat in farmers' China 257
market
2018 OXA-48 E. cloacae Retail pork meat in China 257
supermarket chain
2018-2019 OXA-48 E. coli Poultry in foodchain Nepal 131
2019 OXA-48 E. coli Fattening pig Germany 258
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worrisome owing to the clone’s propensity to cause severe metastatic infection, and
this concern is redoubled by subsequent detections of the lineage in Sweden (2019),
Ireland and France (2020) (103), and then Switzerland (104).

Surveillance across 31 countries from 2016 to 2018 revealed 40/354 isolates with
second carbapenemases in addition to their OXA-48-like-enzymes. Most of these were
from Europe (75). Twenty carried NDM-1 plus OXA-232 (United Kingdom), 16 had
NDM-1 plus OXA-48 (Germany, Belarus, Greece, Turkey), two had NDM-5 plus OXA-232
(United Kingdom), and one had NDM-1 plus OXA-181 (Turkey) (75). The Middle East,
where double carbapenemase producers may be particularly prevalent (105), was not
represented.

Africa. Tunisia was another country with early reports of OXA-48-like enzymes (87,
106). Subsequently, OXA-48-like carbapenemases proliferated in neighboring North
African countries, including Egypt (107), Algeria (106, 108), and Morocco and Libya (46,
109, 110).

A lack of health care infrastructure, limited molecular diagnostics, and a paucity of
skilled scientists mean that the epidemiology of blagyaasike iS poOrly understood
across much of Africa. Nonetheless, a study conducted from 2015 to 2016 examined
117 clinical K. pneumoniae isolates from Sudan; 44/117 produced a carbapenemase,
and most were NDM types but seven had OXA-48-like enzymes (111). On the other
side of the continent, in Senegal, OXA-48 was reported among hospital and commu-
nity Enterobacterales as early as 2011 (112). More recently, a systematic review reported
OXA-48-like carbapenemases in human samples from Algeria, Nigeria, Libya, Sdo Tomé
and Principe, Tunisia, South Africa, and Uganda, though not in environmental or ani-
mal samples (113).

OXA-48-like enzymes are dominant among carbapenemases in South Africa (114),
with at least one early case having been imported from Egypt (115). Colistin resistance
emerged from a K. pneumoniae strain producing OXA-181 during selective digestive
decontamination (11), while K. pneumoniae ST307 with OXA-181 enzymes have spread
across several private hospitals in South Africa, concurrent with a period of high carba-
penem use (116).

Middle East, Gulf region, and the Levant. Enterobacterales producing OXA-48-like
B-lactamases have swiftly become endemic in the Gulf and non-Mediterranean Middle
East, with startling high prevalence rates reported in several studies (117-120).
Surveillance of ICU patients in Bahrain, Kuwait, Saudi Arabia, Oman, and the United
Arab Emirates in 2019 reported blagy,.s to be the most prevalent carbapenemase
gene in isolates from rectal swab samples (representing colonization), being present in
15% of all specimens screened and up to 51% of those in Saudi Arabia (121). Risk fac-
tors for colonization included being on antibiotics at admission to ICU, age of
>65 years, and prolonged stay. Travel was not associated with increased risk (121). In
Saudi Arabia, 81.5% of carbapenem-resistant K. pneumoniae isolates collected across
two large hospitals produced OXA-48. The authors attributed this prevalence to large
numbers of migrant workers from Turkey, India, and Pakistan (122), though the latter
two countries are more associated with NDM carbapenemases, which were much less
prevalent. Of particular concern is the emergence of Enterobacterales that harbor both
blagyasgiike aNd blaypy in Iran (123), Saudi Arabia (124), and Oman (125) from as early
as 2010. OXA-48 types dominate in the Levant, including Lebanon (126), Jordan (127,
128), and Syria, as well Turkey (see above).

Indian subcontinent, East Asia, and Australasia. In India, OXA-48-like enzymes are
the second-most-prevalent carbapenemases among Enterobacterales after New Delhi
metallo-B-lactamases (NDM) and are often represented by OXA-181 (87, 129) and
OXA-232 (130). Surveillance and reports show increasing numbers of Enterobacterales
that coproduce both OXA-48-like and NDM enzymes in hospital settings across the
Indian subcontinent and in Thailand (51, 75, 129). Cocarriage of blagya.ss and plasmid-
mediated mcr-1, encoding colistin resistance, has been identified in E. coli from clinical
and poultry isolates in Nepal (131) and in K. pneumoniae from pediatric patients in
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Vietnam (132). These patients had no epidemiological link to each other, further indi-
cating that reservoirs are poorly understood.

Enterobacterales producing OXA-48-like enzymes remain sporadic in China (12, 133)
and are (or, pre-COVID, were) occasionally linked to isolates from Western European
travelers (134). K. pneumoniae ST15 isolates producing OXA-232 have caused several
hospital outbreaks in the country (135-137), as have, less frequently, K. pneumoniae
ST11 strains coproducing KPC-2 and OXA-48 enzymes (133). In Singapore, OXA-181
producers appear increasingly important (138). In Japan, producers of OXA-48-like
enzymes are still uncommon and most often from patients transferred for medical care
from elsewhere, including India (139) and Kuwait (140).

In Australia and New Zealand, reports are few and sporadic (14). From 2009 to 2017,
9% of cases with OXA-48-like producers in New Zealand had no history of travel, sug-
gesting local transmission (8).

North America. The first reports of OXA-48-like carbapenemases in North America
were published in 2013 and included retrospectively identified isolates from 2009 (141).
From 2010 to 2015, the Centers for Disease Control and Prevention (CDC) received reports
of 52 Enterobacterales that produced OXA-48-like enzymes; international travel was the
predominant risk factor (66% of cases, frequently India) in addition to hospitalization
abroad (55% of cases) (142). U.S. surveillance of OXA-48-like producers from 2010 to 2014
across 12 states showed several variants represented (OXA-181, 43%; OXA-232, 33%; OXA-
48, 23%) (143). From 2016 to 2018, Enterobacterales expressing OXA-232 alone or together
with NDM-1 were the second-largest group of carbapenemase producers (75), although
they remain considerably rarer than those with KPC types.

OXA-48-like (OXA-181, 52.2%; OXA-48, 31.3%) enzymes are reported to be emerg-
ing in Canada, with recent international travel reported for 40% of cases identified
between 2011 and 2014 and IncL plasmids implicated (44), although this trend has
likely been disrupted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2)-induced travel restrictions.

Latin America. Reports of Enterobacterales producing OXA-48-like B-lactamases remain
relatively scarce in Latin America, where KPC enzymes dominate (144). Nevertheless, a case
series from Mexico in 2014 reported the first finding of Enterobacterales producing OXA-
232 (145), followed by a 2016 study reporting classical OXA-48 (146). In Argentina, OXA-163
has spread extensively among Enterobacterales (147, 148) and is exceptional among OXA-
48-like enzymes (see above) in not attacking carbapenems. Other variants, including OXA-
247, have also emerged here (147). The OXA-370 variant has been recorded in Brazil (28,
149), spreading also into Chile (150) and conferring small rises in carbapenem MICs. This
variant coproduced with NDM-1 by K. pneumoniae was first isolated from a patient trans-
ferred from Brazil to Chile (150), although there is no current evidence of ongoing spread in
Chile within the published literature. There is little evidence of wide dissemination of OXA-
48-like enzymes in human samples in Latin America, although there remain questions on
the reliability of detection and on environmental, animal, or food chain reservoirs.

TREATMENT OPTIONS

Much of the available data relate to infections involving strains with classical OXA-
48 enzymes. This is assumed to extend to other prevalent variants, including OXA-181
and OXA-232, which are associated with similar phenotypes. Data on noncarbapene-
mase variants such as OXA-163 remain scant.

Combination therapy. Until recently, the treatment of infections due to carbape-
nemase producers was mostly with polymyxins, tigecycline, aminoglycosides, and fos-
fomycin, often in combination and often together with carbapenems.

A systematic review in 2014 concluded that combination therapy reduced mortality
for infections involving carbapenemase-producing Enterobacterales (CPE), with fewer
treatment failures than with monotherapy (151). However, only one study represented
patients infected by OXA-48 producers. This was a cohort of 34 elderly patients with
bloodstream infection (BSI) among whom the 30-day mortalities were 52.4% (11/21)
for those treated with =2 active drugs (mostly including colistin) but not including a
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carbapenem, 33.3% (2/6) in patients receiving =2 “active” drugs including a carbape-
nem, and 33.3% (1/3) in patients receiving amikacin monotherapy (152). While this
study was prospective, the numbers were tiny, the patient population heterogenous,
and the infection sources diverse. Moreover, numerous antimicrobial combinations
were reported, and tigecycline susceptibility was judged by FDA interpretive criteria,
with a breakpoint 4-fold higher than that of EUCAST criteria, meaning that definitive
conclusions cannot be drawn.

Following this, a prospective multicenter randomized controlled trial in 2017 (INCREMENT)
showed that patients who received “appropriate” combination therapy (based on in vitro sus-
ceptibilities) for infections caused by CPE had reduced mortality compared with those receiv-
ing appropriate monotherapy only when their pretreatment mortality hazard score was high
(153). Colistin monotherapy was concluded to be adequate for those with a low-mortality
risk. A caveat is that KPC carbapenemases were heavily represented and OXA-48-like carbape-
nemases were underrepresented.

In an observational study of bacteremia involving OXA-48-producing Enterobacterales,
a triple combination (colistin-aminoglycoside-ceftazidime/cefepime) was associated with
slightly better 28-day survival than that with colistin-based dual combinations (P = 0.075),
although the authors failed to comment on the incidence of renal toxicity with aminogly-
coside-colistin combinations (154).

Based on these data, it remains unclear whether and when there is a benefit to colistin-
based combination therapy versus monotherapy for patients with infections due to bacteria
with OXA-48-like enzymes. Increasingly, though, this debate is being overtaken by the avail-
ability of ceftazidime-avibactam and cefiderocol (discussed below). Scenarios that may still
necessitate consideration of a colistin-based combination include (i) patients showing an
anaphylaxis risk with cephalosporins, or (ii) patients already receiving a high-dose central
nervous system (CNS)-penetrating B-lactam, e.g., for concurrent pneumococcal meningitis,
precluding further cephalosporin coadministration. In such cases, the neurotoxicity of coli-
stin-based regimens should also be considered.

Ceftazidime, cefepime, and aztreonam. Ceftazidime, cefepime, and aztreonam evade
hydrolysis by OXA-48-like enzymes (with the exceptions noted above). Ceftazidime activity
was demonstrated in a K. pneumoniae murine peritonitis model when the challenge strain
produced OXA-48 without accompanying ESBL or AmpC enzymes (155). However, these
drugs lack efficacy against strains that coexpress ESBLs and, for ceftazidime and aztreo-
nam, also those with derepressed AmpC. Since as many as 80% of OXA-48-positive isolates
(rates vary by country) coproduce ESBLs (7, 61), sometimes with bldy s contained
within a mosaic Tn7999.4 transposon (156, 157), neither unprotected ceftazidime, cefe-
pime, nor aztreonam is a reliable option for monotherapy.

Ceftazidime-avibactam. The ceftazidime-avibactam combination protects ceftazi-
dime with a novel diazabicyclooctane B-lactamase inhibitor, avibactam, which binds
covalently and reversibly to serine B-lactamases, including ESBLs and AmpC enzymes.
Inhibition of OXA-48 enzyme is weak, but this matters little given ceftazidime's stability
to this carbapenemase.

Nonrandomized controlled trials and registry-based analyses suggest that ceftazidime-
avibactam is an effective therapy for a range of infections due to pathogens with OXA-48-
mediated resistance to carbapenems (158). It displays in vitro activity against most
Enterobacterales producing OXA-48-like enzymes at the EUCAST and FDA susceptibility
breakpoints (8 + 4 mg/L) (159-163). Case series suggest better clinical outcomes than when
colistin- or carbapenem-based regimens are used against OXA-48 producers (164-167),
though further in vivo data and prospective outcome studies are required.

Emerging resistance to ceftazidime-avibactam was documented in one patient
infected with a K. pneumoniae strain producing OXA-48 enzyme. However, this individ-
ual was first treated with unprotected ceftazidime, and resistance emerged via
Pro170Ser and Thr264lle substitutions to a coproduced CTX-M-14 enzyme, with OXA-
48 remaining unaltered (70).

An in vitro exploration revealed that Pro68Ala and Pro68Ala,Tyr211Ser amino acid
substitutions in OXA-48 resulted in an increased ability to hydrolyze ceftazidime and a

August 2022 Volume 66 Issue 8 10.1128/aac.00216-22 11


https://journals.asm.org/journal/aac
https://doi.org/10.1128/aac.00216-22

Minireview Antimicrobial Agents and Chemotherapy

decreased ability to withstand inhibition by avibactam, respectively (168). Although
this has not been reported in clinical practice, and unlike for KPC carbapenemases,
emerging mutational resistance appears rare (169).

Further pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcome data,
for specific OXA-48-like carbapenemase variants, would be welcomed; nonetheless,
ceftazidime-avibactam appears widely effective for infections involving OXA-48-like-
B-lactamase-producing Enterobacterales and should be seen as a therapy of choice.

Cefepime-tazobactam and ceftolozane-tazobactam. A cefepime-tazobactam (1
g + 0.125 g) combination is available in India and China (170). While positive case se-
ries have been described (171), the low tazobactam dose is contentious and appears
to be predicated upon the 8:1 ratio of piperacillin to tazobactam [4 g to 0.5 g] rather
than robust PK/PD data. There is concern that the low tazobactam concentrations
achieved are insufficiently reliable to protect cefepime from hydrolysis by ESBL
enzymes. A higher dose combination (2 g + 2 g) is currently in development (172).
Tazobactam is a weaker inhibitor of ESBLs than enmetazobactam (below), but the
higher dose combination may render this difference insignificant.

Around two-thirds (90/136) of ceftazidime-resistant (i.e., ESBL-producing) OXA-48-pro-
ducing Enterobacterales were inhibited by cefepime-tazobactam at 8 + 8 mg/L along with
almost all (113/114) ceftazidime-susceptible OXA-48-producing Enterobacterales (173).

A phase 3 clinical trial to compare cefepime-tazobactam to meropenem for compli-
cated urinary tract infections (cUTI) is planned (174).

Ceftolozane, like cefepime and ceftazidime, must approach stability to OXA-48-like
enzymes, since it has low MICs for producers that lack ESBLs. Wide activity against OXA-
48-like producers would therefore be anticipated for ceftolozane-tazobactam, given tazo-
bactam'’s ability to inhibit coproduced ESBLs. Nonetheless, MICs of tazobactam-protected
ceftolozane are consistently high for ceftazidime-resistant OXA-48 producers, indicating
that ESBLs are being poorly inhibited in practice (175). A simple explanation—that OXA-48
might hydrolyze tazobactam—is refuted by the observation that cefepime-tazobactam
MICs are much lower than those of ceftolozane-tazobactam (173). Unlike cefepime-tazo-
bactam, ceftolozane-tazobactam should not be seen as a potential option against OXA-48
B-lactamase producers.

Cefiderocol. Cefiderocol is a siderophore cephalosporin with a catechol moiety on
the 3 position of the R2 side chain (176). It exploits the iron uptake pathway to perme-
ate Gram-negative bacteria and binds mainly to PBP3; moreover, it is stable to most
B-lactamases, including ESBLs and OXA-48-like enzymes (177, 178), with low induction
of chromosomal AmpC (179).

Despite this potential, preclinical animal models of infection assessing efficacy
against Enterobacterales with OXA-48 enzymes are limited. Moreover, although cefider-
ocol demonstrated efficacy and safety in a phase 3 clinical trial for infections due to
carbapenem-resistant pathogens, (CREDIBLE CR), it is unclear how many patients had
OXA-48-like producers (180). Its role against producers of more globally prevalent var-
iants, including OXA-181 and OXA-232, requires further investigation. Clarification of
these aspects is needed, along with a fuller understanding of the hazard of selecting
mutants with reduced CirA-mediated uptake (181); nonetheless, it is likely that cefider-
ocol will find a role in treating infections due to producers as an alternative to ceftazi-
dime-avibactam.

Aminoglycosides. Aminoglycosides may be used for the treatment of infections due
to Enterobacterales that produce OXA-48-like enzymes, provided that in vitro susceptibility
is confirmed. Except in UTI, they would not ordinarily be considered for monotherapy.

Historically, most resistance has been mediated by aminoglycoside-modifying
enzymes (182), with amikacin evading more of these than gentamicin and tobramycin.
Cocarriage of methyltransferases, which alter rRNA and prevent binding of 3-ring ami-
noglycosides, is an emerging issue (183). These confer resistance to plazomicin as well
as to long-established analogues such as amikacin, gentamicin, and tobramycin. In
Greece, most isolates with both NDM and OXA-48-like carbapenemases also had these
methyltransferases (183). Notably, armA was observed together with OXA-48 and CTX-
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M in the absence of NDM enzymes in both Greece (184) and Oman (125). In the United
Kingdom, pan-aminoglycoside resistance (to amikacin, tobramycin, and gentamicin), as is
typical of methyltransferase production, was seen in 14.8% to 15.9% of Enterobacterales
with OXA-48-like carbapenemases sent to the reference laboratory in 2018 and 2021,
respectively (S.E.B., personal correspondence with United Kingdom Health Security
Agency). Rates vary globally although with much higher resistance due to associated aac
(6)-1b (185, 186) and/or rmtB and armA (187) genes having been observed in Egypt.

Polymyxin B and colistin. Although most Enterobacterales with OXA-48-like carbape-
nemases are susceptible to polymyxins, susceptibility is not universal, with resistance
reported in K. pneumoniae, E. coli, and Enterobacter spp. (93, 188). Much of this resistance is
likely mediated by mgrB gene alterations (93) but cocarriage of blagyss.ixe With plasmid-
mediated mcr-1 has also been reported (see above).

A combination of azithromycin and colistin has recently been proposed to treat
infections caused by K. pneumoniae producing OXA-48-like enzymes, based on in vitro
synergism but without supportive in vivo or clinical data (189). However, the approach
is potentially undermined by genes increasing resistance to macrolides [e.g., mph(A),
erm(B)], which are commonly carried by the plasmids of Gram-negative bacteria. These
genes were identified alongside blagya.qg; in K. pneumoniae isolates from septic neo-
nates in India (51) and alongside blay, 4s among different Enterobacterales associated
with outbreaks in China (133).

Tigecycline and eravacycline. Tigecycline is a glycylcycline with in vitro activity
against Enterobacterales except Proteeae (190, 191) but not against Pseudomonas spp.
It is generally used in combination, often with colistin, but was successfully used as
monotherapy against OXA-48-B-lactamase-producing K. pneumoniae in two patients
with bacteremia secondary to intra-abdominal or skin and soft tissue sources (152).

Caution is advocated in sepsis because of bacteriostatic activity, the low plasma lev-
els of the currently recommended regimen, and disagreement concerning the appro-
priate breakpoint (EUCAST susceptibility breakpoint, =0.5 mg/L for E. coli only; FDA,
=2 mg/L for all Enterobacterales; CLSI, no values). Mixed trial outcomes and excess
mortality contributed to an FDA black box warning in 2013 (192). Time-kill curve assays
support its use with ceftazidime-avibactam as synergistic against OXA-48 producers,
but clinical data are lacking (193).

Eravacycline is a fluorocycline which, like classical tetracyclines, inhibits protein synthe-
sis by binding to the 30S ribosomal subunit. Like tigecycline, it evades acquired efflux
pumps (194); potential advantages over tigecycline are that it has slightly lower MICs for
Enterobacterales (195), achieves higher serum levels (196), and induces less nausea and
vomiting (197). Consequently, it may be a preferable combination agent to tigecycline,
but clinical data are scant. In 2019, the FDA approved eravacycline for use in complicated
intra-abdominal infections based on data from the IGNITE4 clinical trial (198), with subse-
quent United Kingdom and European Union (EU) licenses. Eravacycline was not approved
for cUTI, where it failed to achieve noninferiority to fluoroquinolone and carbapenem com-
parators (199). Clinical outcome data against OXA-48-like producers remain unavailable,
but evidently, the carbapenemase itself will not compromise activity.

Fosfomycin. Fosfomycin inhibits cell wall synthesis by a unique irreversible mecha-
nism, inactivating UDP N-acetylglucosamine-GIcNAc enolpyruvyl transferase (MurA)
(200). Despite having been available for over 50 years, its intravenous (i.v.) formulation
has garnered interest as a treatment for severe infections only in the past decade; it is
available in the United Kingdom, much of Europe, and Japan, but approval remains
pending in the United States.

Fosfomycin retains in vitro activity against many multidrug-resistant (MDR)
Enterobacterales, including most with OXA-48-like enzymes (201). Synergy, defined by
a fractional inhibitory concentration index (FICI) of =0.5, has been reported in vitro for
combinations with imipenem, meropenem, and tigecycline, whereas antagonism (FICI,
>0.5 to 4) has been observed with colistin (188).

A multicenter, noninterventional, prospective clinical registry (FORTRESS) across
Europe is in progress to evaluate the clinical outcomes of severely infected patients
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treated with i.v. fosfomycin and is expected to complete recruitment in 2023 (202),
although how well OXA-48-like producers will be represented is unclear.

An oral fosfomycin formulation is widely available, including in the United States,
but its utility is limited to uncomplicated lower UTI, with EUCAST and CLSI breakpoints
only for E. coli among Gram-negative bacteria. It may be useful in E. coli cystitis involv-
ing carbapenemase producers, including those with OXA-48-like enzymes.

Carbapenems. Carbapenems are often considered in combination regimens against
infections due to “carbapenem-resistant Enterobacterales” (CRE) (203), particularly if the
MIC is low (69) or if ceftazidime-avibactam and cefiderocol are unavailable. However, clini-
cal studies investigating treatments for CRE infections often include pathogens with mixed
mechanisms of resistance (180, 204), and a growing body of evidence from animal models,
small trials, and case series suggests that the type of carbapenemase is as important as the
MIC (69).

Uncertainty surrounds the utility of carbapenems for infections involving Enterobacterales
with OXA-48-like enzymes: clinical cure and survival rates ranged from 0 to 66% with mero-
penem or imipenem monotherapy (61, 89, 154, 205). True figures are likely to be lower, as
some “successes” involved source control by line removal (14). Clinical outcomes were poor
when carbapenems were used to treat patients infected with Enterobacterales producing
both OXA-48 and CTX-M-15 enzymes, despite low imipenem and meropenem MICs (89).

Crucially, and despite these poor outcomes, many OXA-48-like-positive isolates are
categorized as susceptible according to EUCAST and CLSI breakpoints (69, 70). It may be
that under challenge, the bacteria swiftly accumulate secondary mechanisms precluding
carbapenem efficacy. When meropenem was administered to recapitulate humanized PK
in a hollow fiber model of infection with a “EUCAST and CLSI susceptible” challenge strain
(E. cloacae; meropenem MIC, 1 mg/L), the total bacterial population expanded and a
drug-resistant population emerged. The drug-resistant population had reduced perme-
ability via inactivation of OmpC rather than increased expression of OXA-48 (206).
Likewise, (i) doripenem, administered to simulate a humanized regimen, failed to achieve
efficacy in a murine thigh infection model where the strain produced OXA-48 B-lacta-
mase despite a doripenem MIC of only 0.38 mg/L (versus EUCAST and CLSI susceptible
breakpoints of =1 mg/L) (207), and (ii) imipenem-cilastatin had little or no impact on
lethality in a K. pneumoniae murine peritonitis model where the challenge strain, with an
imipenem MIC of 0.5 mg/L (versus the CLSI susceptibility breakpoint of <1 mg/L and the
EUCAST susceptibility breakpoint of =2 mg/L) produced OXA-48 enzyme with no associ-
ated ESBL or AmpC B-lactamase (155). Synergy has been reported in vitro with a dual-car-
bapenem combination for OXA-48 producers (208, 209), but this is not an approach sup-
ported by current clinical safety or outcome data. In particular, it may be precluded by
central nervous system toxicity.

Carbapenems combined with B-lactamase inhibitors. The B-lactamase inhibitors
vaborbactam and relebactam do not inhibit OXA-48-like enzymes and do not potenti-
ate partner carbapenems against producers (67); rather, they are specific inhibitors of
KPC and other class A carbapenemases. Consequently, meropenem-vaborbactam and
imipenem-relebactam-cilastatin are not options against infections with OXA-48-like
producers.

Interpretive pitfalls arise owing to the different breakpoints for meropenem and mero-
penem-vaborbactam. EUCAST defines Enterobacterales as susceptible to meropenem
when the MIC is =2 mg/L, based upon 1 g every 8 h (q8h) dosing, “susceptible, increased
exposure” when the MICs are 4 to 8 mg/L with 2 g q8h dosing, and resistant when MICs
are >8 mg/L. For meropenem-vaborbactam, the breakpoints are for susceptible,
=8 plus 8 mg/L, and for resistant, >8 plus 8 mg/L, based on the sole licensed regimen of
2 g + 2 g g8h administered over a 3-h infusion (71). CLSI criteria for meropenem are for
susceptible, =1 mg/L, for intermediate, 2 mg/L, and for resistant, =4 mg/L; those for mer-
openem-vaborbactam are for susceptible, =4 + 8 mg/L, for intermediate, 8 + 8 mg/L,
and for resistant, =16 + 8 mg/L (72).

Consequently, an isolate with MICs of 4 mg/L meropenem and 4 + 4 mg/L mero-
penem-vaborbactam would count as meropenem resistant based on CLSI criteria,
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“susceptible-increased exposure” based on EUCAST criteria, and fully susceptible to
meropenem-vaborbactam based on both sets of criteria, despite vaborbactam not in-
hibiting OXA-48-like enzymes. As already highlighted, no data exist to show that an
increased dosage of meropenem (alone or combined as in meropenem-vaborbac-
tam) will overcome reduced susceptibility associated with OXA-48 B-lactamases in
clinical settings.

Flomoxef and other 7-a-methoxy (oxa)cephems. Flomoxef is an off-patent 7-
a-methoxy oxacephem B-lactam drug, developed in the 1980s. It is stable to ESBLs,
though not AmpC enzymes (210). It may retain activity against isolates with DBLs,
including OXA-48-like enzymes, but further research is required. It is licensed in China,
South Korea, Taiwan, and Japan, where OXA-48-like producers are sporadic, perhaps
explaining the lack of data thus far. Other 7-a-methoxy (oxa)cephems, moxalactam
and cefotetan, also deserve fuller investigation; published data on their interactions
are scant, and the drugs themselves have largely fallen into disuse.

Cefoxitin MICs for producers of OXA-48-like enzymes are widely scattered, from 4 to
>64 mg/L, with low values for some that coproduce ESBLs (D.M.L,, data on file), but
there is a general acceptance that activity is marginal against MDR Enterobacterales,
and mutational resistance readily arises via porin loss.

DEVELOPMENT PIPELINE

The development pipeline includes several cefepime-based B-lactamase inhibitor com-
binations. Given cefepime’s stability to prevalent OXA-48-like enzymes (see above), the key
issue is whether the inhibitor inactivates coproduced ESBLs (also NDM types, coproduced
in around 5 to 10% of United Kingdom isolates with OXA-48-like enzymes) (62).

Cefepime-taniborbactam. Taniborbactam is a boronic acid B-lactamase inhibitor
able to inactivate many class A (ESBL, KPC), class B (VIM, NDM, SPM-1, GIM-1), class C
(AmpCQ), and class D (OXA-48-like) B-lactamases (211); IMP metallo-carbapenemases are
not inhibited. The inhibition of serine B-lactamases involves covalent binding to the
active-site serine. Activity at likely breakpoints (4 or 8 mg/L) includes Enterobacterales with
OXA-48 carbapenemases (212).

A randomized, double-blind, phase 3 noninferiority trial (CERTAIN-1) has completed
recruitment, comparing cefepime-taniborbactam with meropenem for the treatment
of complicated urinary tract infection (cUTI) in adults (213). Given the comparator, it is
unlikely that this trial will inform on efficacy against carbapenemase producers.

Cefepime-zidebactam. Cefepime-zidebactam is widely active against Enterobacterales
that produce class A (ESBL, KPQ), class B (IMP, VIM, NDM), class C (AmpC), and class D (OXA-
48-like) B-lactamases and retains activity against P. aeruginosa with multiple modes of resist-
ance (214). Direct inhibition of OXA-48-like enzymes by zidebactam is limited; rather, activity
depends substantially (i) on the stability of cefepime (see above), (i) on the ability of zidebac-
tam to inhibit coproduced ESBLs, and (jii) on zidebactam'’s direct antibacterial activity and
ability to potentiate PBP3-targeted B-lactams by binding PBP2 (215).

A phase 3, randomized, double-blind, multicenter noninferiority clinical trial evalu-
ating the efficacy, safety, and tolerability of cefepime-zidebactam versus meropenem
in the treatment of hospitalized adults with cUTI is planned (216). As with cefepime-
taniborbactam, the design and comparator mean that few conclusions will be drawn
for the treatment of infections caused by carbapenemase producers.

Cefepime-enmetazobactam. Enmetazobactam is a methylated analog of tazobactam
with potent activity against class A (ESBL) enzymes (217-219). Eight of 10 Enterobacterales
producing OXA-48 carbapenemases were inhibited at 8 + 8 mg/L cefepime-enmetazobac-
tam compared to 4/10 with cefepime-tazobactam at 8 + 4 mg/L (220); this suggests an
advantage, but further data are needed (219).

The ALLIUM phase 3 clinical trial recently demonstrated cefepime-enmetazobac-
tam's superiority over piperacillin-tazobactam for cUTI at the primary efficacy endpoint
(221), but given the comparator, this trial is unlikely to contain any data relevant to effi-
cacy against OXA-48-like producers. At a dose of 2 g + 0.5 g g8h infused over 2 h, a
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probability of target attainment is achieved for >90% Enterobacterales with MICs
of =8 mg/L (222).

Aztreonam-avibactam. Aztreonam-avibactam is active, at a prospective breakpoint
of 8 + 4 mg/L, against Enterobacterales with class A (ESBL, KPC), class B (MBLs), class C
(AmpQ), and class D (OXA-48-like) enzymes but not against P. aeruginosa (223). This
combination is attractive, especially given the growing numbers of isolates that copro-
duce NDM and OXA-48-like carbapenemases reported across India, the United
Kingdom, Thailand, Turkey, Germany, the United States, and Belarus (75).

Nonetheless, the emergence of aztreonam-avibactam resistance via PBP3 modifica-
tions in E. coli is a concern. This is documented mostly for strains with NDM carbapene-
mases alone and is particularly prevalent in India (224) but was also seen for isolates
producing both OXA-48-like and NDM-type carbapenemases in Germany (225). These
modifications also compromise cefiderocol and ceftazidime-avibactam, though not
cefepime-zidebactam (226, 227).

Other therapies. Ancremonam (formerly LYS228 or BOS228) is a monobactam anti-
biotic currently in phase 2 development (Boston Pharmaceuticals). It is stable to class A
(ESBL, KPC), B (IMP, VIM, NDM), C (AmpC), and D (OXA-48-like) enzymes but is not
active against P. aeruginosa.

QPX7728 is a novel cyclic boronic acid inhibitor of class A (ESBLs, KPC), B (NDM, VIM,
IMP), C (AmpC), and D enzymes, including OXA-48-like enzymes from Enterobacterales and
OXA types from A. baumannii (228). Its future partner B-lactam remains uncertain (229),
and it may instead be developed as a “stand-alone” inhibitor (230). Direct comparison with
taniborbactam remains to be published.

CONCLUSIONS

The spread and threat of OXA-48-like producers have been underappreciated for
the last 2 decades. Patchy data on epidemiology undoubtedly reflect diagnostic diffi-
culties. Consequently, it is likely that the published literature reflects only the tip of the
iceberg. Several treatment options (ceftazidime-avibactam, cefiderocol, tigecycline,
eravacycline) have been licensed since 2001, when these enzymes first began to
spread. Unfortunately, data on their merits and limitations remain scantier than those
for KPC producers, despite OXA-48-like B-lactamases being more prevalent globally. A
limited appetite to generate specific PK/PD or clinical outcome data for newer agents,
let alone for repurposed older drugs, means it is difficult to definitively guide treat-
ment practice.

Despite these limitations, it seems reasonable to now consider ceftazidime-avibactam,
followed (simply because there are fewer data) by cefiderocol, as first-choice options if in
vitro susceptibility allows. While “OXA-48-like” enzymes currently fall under the same um-
brella, we are continuously developing our understanding of how broad and unique these
enzymes are. A concerted effort is required to ensure that new epidemiological, PK/PD,
and clinical outcome data are deeply understood, so that differences in the therapeutics
for specific OXA-48-like variants can be explored. The development pipeline includes
promising new agents, notably cefepime combined with taniborbactam and zidebactam,
but it is unlikely that licensing trials will provide extensive information on activity against
pathogens with OXA-48-like enzymes. Assuming that these combinations proceed to licen-
sure, an urgent need will arise to evaluate efficacy against cefiderocol and ceftazidime-avi-
bactam and to monitor the impact of evolution within the OXA-48 family, the incidence of
coproduction with metallo-carbapenemases, and the spread of reduced susceptibility
owing to PBP3 inserts.
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