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Associative memories guide behavioural adaptation by binding together outcome-predictive 

sensory stimuli1,2. However, in a feature-rich environment, only a subset of stimuli 

may predict a desired outcome3,4. How neural circuits enable behavioural adaptation by 

selectively and durably representing subsets of sensory stimuli that are pertinent to a specifc 

outcome is not known. We investigated this feature selection process in the hippocampus 

during memory acquisition and subsequent consolidation. Two-photon calcium imaging of 

CA3 axonal projections to CA1 combined with simultaneous local feld potential recordings 

revealed that CA3 projections that encode behaviourally informative sensory stimuli were 

selectively recruited during the memory replay events that underlie hippocampal memory 

consolidation5. These axonal projections formed sequential assemblies that conjunctively 

link sensory features to spatial location and thus reward proximity. By contrast, axons 

encoding uninformative, peripatetic sensory cues were notably suppressed during memory 

replay. Thus, while the hippocampus comprehensively encodes the real-time sensory 

environment, it implements a fexible fltering mechanism to maximize the utility of 

memories destined for long-term storage. We propose that utility-dependent recruitment 

of sensory experience during memory consolidation is a general coding principle for 

associative learning.

A fundamental challenge of learning in noisy environments is discerning task-relevant 

information for preferential long-term storage amidst a continuous barrage of sensory 

experiences. Selective attention3,4 has been shown to aid memory function by promoting 
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the association of relevant information with outcome during memory encoding6,7, but this 

strategy alone is limited; salience does not necessarily equate to relevance. In many cases, 

selectively representing task-relevant sensory stimuli and updating these representations as 

the behavioural relevance of stimuli changes is a superior strategy. However, it is unknown 

whether such adaptive selection mechanisms operate during memory formation and, in 

particular, whether uninformative stimuli are preferentially excluded from consolidation. 

The hippocampus has a crucial role in associative learning1,2,8,9. In particular, associative 

memories are thought to be rapidly encoded and stored initially within its CA3 recurrent 

network10,11. During subsequent periods of awake immobility and sleep, CA3 has a key role 

in driving sharp wave ripples (SWRs), high-frequency events during which reactivation of 

recent associations supports long-term memory consolidation5,12–14. While a large body of 

work has shown that the CA3-to-CA1 Schaffer collateral (CA3SC) pathway is important 

for the encoding and consolidation of memories15–18, little is known about the content 

transmitted through this projection. Here we report that CA3SC activity during sensory 

experience and subsequent awake SWRs flexibly switches between two distinct modes of 

operation depending on the behavioural relevance of sensory stimuli. As mice explore an 

environment, CA3SC dynamics rapidly reorganize to represent novel stimuli. However, 

during subsequent SWRs, only activity patterns that convey task-relevant sensory–spatial 

associations are reinstated, while patterns without navigational utility are suppressed.

In vivo functional imaging of CA3 output

We monitored calcium activity dynamics of CA3SCs located in the CA1 region (Fig. 1a and 

Extended Data Fig. 1a, b) while simultaneously detecting SWRs during awake immobility. 

Regions of interest (ROIs) corresponding to putative axonal boutons (Extended Data Figs. 

1c–i and 2a–i) were recorded while mice were head-fixed on a voluntary treadmill19,20. We 

delivered sensory cues with varying levels of behaviourally relevant spatial information (Fig. 

1b, c, Extended Data Fig. 3a and Methods). In a random cue (RC) condition, cues were 

presented pseudo-randomly, independently of the mouse’s position on the treadmill, while 

in a fixed cue (FC) condition cues were presented when the animal entered fixed zones on 

the treadmill. These stimulation rules were combined with two types of treadmill belts: one 

without tactile cues (non-spatial, NS) and one with textured cues (spatial, S). The animals’ 

velocity profile around fixed cues indicated that mice used sensory-place associations during 

fixed (FC-S and FC-NS), but not in random (RC-S), sensory stimulation conditions to 

inform navigational behaviour (Extended Data Fig. 3b–e and Methods).

Random cues recruit and modulate CA3SCs

To understand how CA3 output encodes sensory experience independently of space, we 

first analysed trial-averaged CA3SC activity centred on random presentations of novel cues 

in the RC-NS condition. We found that a subset of CA3SC ROIs positively responded 

to sensory stimuli, mostly preferring a single cue modality (termed ‘cue-CA3SCs’; Fig. 

1d, e). We observed that the magnitude and specificity of these sensory responses of 

CA3SCs often evolved monotonically over trials (Extended Data Fig. 3f) in a manner not 

readily explained by running behaviour (Extended Data Fig. 3g–j). To characterize these 

trial-by-trial changes in the response properties of cue-CA3SCs and identify subpopulations 
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within the cue-specific CA3SCs, we used tensor decomposition of multidimensional time-

series data (tensor component analysis, TCA) followed by K-means clustering (Fig. 1f 

and Extended Data Fig. 4). This analysis, in line with a similar principal-component 

analysis (PCA)-based analysis (Extended Data Fig. 5d–g), confirmed that the majority of 

cue-CA3SCs displayed amplification of response magnitude across trials (‘Up’ cluster) 

while a separate subpopulation showed gradually attenuating positive responses (‘Down’ 

cluster) (Fig. 1g, h). CA3SC cue specificity was stable across trials irrespective of whether 

the responses gradually increased or decreased (Extended Data Fig. 5a, c). Response 

latencies between clusters showed some change over trials as magnitudes evolved but were 

initially similar across modalities (Extended Data Fig. 5b). Thus, CA3 output undergoes 

rapid, within-session reorganization to represent novel sensory stimuli independently of 

spatial location.

Cue-CA3SCs are adaptively suppressed in SWRs

To explore the conditions under which recent sensory experiences are incorporated into 

lasting memories, we next sought to determine whether cue-CA3SCs during the RC-NS 

condition (Fig. 2a) were recruited to SWRs. We found that the majority of CA3SCs showed 

time-locked activation around awake SWR onset during inter-stimulus periods (Extended 

Data Fig. 6a, d). However, a smaller subset of CA3SCs were strongly suppressed during 

SWRs and showed delayed activation following SWR termination (Extended Data Fig. 6a). 

Strikingly, we found that these SWR-suppressed CA3SCs corresponded to cue-CA3SCs 

while other, non-cue-responsive CA3SCs were preferentially recruited to SWRs (Fig. 2b, 

c). This finding was reproduced across various CA3SC axonal ROI curation conditions 

(Extended Data Fig. 7a–k) as well as with direct imaging of CA3 cell bodies (Extended 

Data Fig. 7l–r). This SWR-associated suppression of cue-CA3SCs was also experience 

dependent: before exposure to sensory cues, cue-CA3SCs were indistinguishable from 

other, non-cue-responsive CA3SCs in their SWR responses, but, once acquired, SWR 

suppression persisted into poststimulation sessions (Fig. 2c–f and Extended Data Fig. 6f). A 

separate three-factor (ROI, peri-SWR time, trial) TCA analysis revealed that SWR-related 

suppression of cue-CA3SCs developed gradually over trials under the RC-NS condition 

(Extended Data Fig. 6e) and was present for all cue modalities and transition profiles (Up, 

Down, unclustered) (Extended Data Fig. 6b). TCA analysis of non-cue-responsive CA3SCs 

corroborated the observation that these CA3SCs are not suppressed around SWRs (Extended 

Data Fig. 6e). Finally, when mice ran on a spatially cued belt with random sensory cues 

that were now already familiar to the mice (RC-S condition on day 4; Fig. 2a), we found 

that a subset of non-cue-responsive CA3SCs showed spatially tuned (‘place cell’)21 activity 

and were reactivated during SWRs while cue-CA3SCs, together with the small subset of 

spatially tuned cue-CA3SCs, were suppressed to a similar extent as in the RC-NS condition 

(Fig. 2g and Extended Data Fig. 6c). Thus, while CA3SCs rapidly reorganize to encode 

novel sensory stimuli, the projections encoding these cues are selectively excluded from 

SWRs if the cues are not behaviourally relevant. At the same time, CA3SCs carrying 

potentially useful spatial information are reliably recruited to SWRs.
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Flexible reactivation during SWRs

Given that CA3SCs encoding spatially uninformative cues were excluded from SWR events, 

we then asked whether cue-CA3SCs would be reactivated in a utility-dependent fashion if 

they carried navigationally useful information. To address this question, we imaged CA3SCs 

during the FC-S condition, i.e., with cues presented at fixed locations and in a fixed order on 

the treadmill and thus offering navigational value (day 5; Figs. 1b, c and 3a).

First, to differentiate between cue- and place-CA3SCs, we classified CA3SCs on the basis 

of their activity profiles during an RC-NS session (Pre) and a subsequent FC-S session 

(Post; Fig. 3a and Extended Data Fig. 8a, b). As expected, the majority of cue-CA3SCs 

in the RC-NS condition exhibited spatially selective firing fields in the FC-S condition, 

while another subset of CA3SCs had no cue response in the RC-NS condition but exhibited 

place fields in the FC-S condition (place-CA3SCs) and the rest of the CA3SCs showed 

neither place nor cue responses (Fig. 3b, c and Extended Data Fig. 8b, d). The place fields 

of cue-CA3SCs during the FC-S condition were enriched around the locations of their 

preferred cues with a spatial offset, although some cue-CA3SCs had additional firing fields 

away from their preferred cue; in contrast, the place fields of place-CA3SCs were more 

evenly distributed on the belt (Extended Data Fig. 8c).

We next examined changes in SWR recruitment of CA3SCs from RC-NS to FC-S (when 

the same set of sensory cues switched from being random to behaviourally relevant). Place-

CA3SCs were already activated during SWRs in the RC-NS condition and were more 

robustly recruited during the FC-S condition (Fig. 3d, e). We found that cue-CA3SCs, which 

were suppressed during SWRs in the RC-NS condition, became strongly recruited to SWRs 

during the FC-S condition once the cues were fixed in space (Fig. 3d–f). Finally, we found 

that once cue–place associations had formed in FC-S, subsequent reversal to a random 

cue schedule did not suppress cue-CA3SC SWR recruitment; instead, it led to enhanced 

reactivation of cue-CA3SCs during SWRs (day 6; Extended Data Fig. 8e, f). Thus, SWR 

recruitment of CA3SCs reflects the behavioural utility of the sensory stimuli they encode. 

This estimate of behavioural relevance is dynamically updated: the SWR suppression of cue-

CA3SCs encoding irrelevant stimuli progressively increases with experience. However, a 

cue-CA3SC tuned to a spatially uninformative stimulus can switch from being suppressed to 

being activated around SWRs if the stimulus switches from a random to a fixed presentation 

and thus gains behavioural utility.

Replay of cue-driven cognitive maps

The preceding results demonstrate that SWRs selectively recruit CA3SCs in accordance with 

their behavioural utility. However, whether previously suppressed cue stimuli are replayed 

in spatial order during these events remains unclear. To address this question, we assessed 

place coding within CA3SCs in FC-NS sessions where only the three fixed-position sensory 

cues provided spatial information for the animal on an otherwise un-cued belt (day 7; 

Fig. 4a and Methods). This paradigm uniquely allowed us to determine whether previously 

suppressed cue patterns can be reinstated by replay events when behaviourally required, 

in the absence of other spatial information. We found robust and reliable spatial tuning 
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of CA3SCs (‘cue-place-CA3SCs’) during exploration in this task. The place fields of cue-

place-CA3SCs spanned the environment as opposed to solely encoding cue locations and 

were organized in a small number of well-separated clusters according to place field centres 

(Fig. 4a). Thus, sensory cues tied to sparse fixed positions alone were sufficient to drive the 

formation of comprehensive spatial maps in the CA3.

During periods of immobility, cue-place-CA3SCs were transiently activated with a high 

degree of synchrony around SWRs (Extended Data Fig. 9a–c). If these SWR-associated 

high-synchrony events (HSEs) represent bona fide memory replay events, cue-place-

CA3SCs representing similar positions should be reactivated more closely together in 

time12,13. Indeed, pairs of CA3SCs with nearby place fields showed stronger correlations 

(Fig. 4b), indicating pairwise reactivation of cue-driven CA3SC place fields. We next 

assessed the sequential nature of these putative replay events18 (Fig. 4c and Methods) and 

found that 62% of SWR-associated HSEs contained structured replay sequences of place 

maps. Finally, we asked whether HSEs recruit discrete neuronal assemblies. To address 

this question, we first sought to identify distinct recurring assemblies within HSEs using 

convolutional non-negative matrix factorization (Methods and Extended Data Fig. 10). We 

found multiple recurring assemblies across SWR-associated HSEs (Fig. 4d). These events 

fell into clusters that consistently recruited weighted combinations of identified recurring 

assemblies (Fig. 4e and Extended Data Fig. 9e–g) and contained replay information (Fig. 

4f). Thus, CA3SC spatial representations generated by task-relevant sensory cues are 

robustly replayed during SWRs.

Discussion

Here we demonstrate that recruitment or exclusion of cue-driven CA3SC activity patterns 

from awake, post-experience SWRs is determined adaptively by the behavioural utility of 

the sensory stimuli. These findings suggest that SWR recruitment encodes the animal’s 

internal estimate of the relevance of the encoded stimulus. We speculate that local circuit 

interactions22,23 may govern the dynamic recruitment of CA3 cells during SWRs. Parallel 

processing of spatial and sensory information by heterogeneous subcircuits may support 

flexible stimulus selection through plasticity of reciprocal inhibition24. The protracted 

suppression and subsequent delayed activation of cue-CA3SCs following SWRs strongly 

suggest a role for subtype-specific GABAergic input25 or subcortical neuromodulation in 

this phenomenon. Alternatively, stimulus selection may be implemented upstream of CA3 

and mapped onto distinct CA3 subcircuits22,23.

Our findings further demonstrate that the representational content of SWR-related 

reactivation differs from that of sensory experience26,27 and establish adaptive exclusion 

of behaviourally irrelevant and potentially distracting sensory stimuli from reactivation. 

Standard models of associative learning assume that memory specificity is primarily 

supported by selective encoding of behaviourally relevant information through attentional 

and sensory gating mechanisms3,4. However, we find robust activity at the level of CA3 

output encoding behaviourally uninformative cues, which, if repeatedly reactivated during 

awake SWRs, may impede consolidation of behaviourally informative associations. We 

propose that utility-dependent adaptive exclusion and recruitment of sensory experience 
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during memory replay represents a general coding principle to minimize long-term 

consolidation of spurious associations, separate positive and negative reinforcers8,27,28 and 

organize complex conceptual representations and hierarchical associations during inferential 

reasoning2,9. Such a mechanism would complement attentional modulation that occurs 

during encoding3,4,6,7 to jointly support memory specificity in a dynamic environment.

We find that ‘distractor’ stimuli, even if salient in experience, are shunned from replay 

events; instead, the animal selectively consolidates only those representations that model 

the conserved underlying structure of its environment. Our work thus lends credence to the 

hypothesis that replay events reveal the organism’s working model of the deeper structure 

of its world29. Our results suggest that initial broad encoding of sensory information 

in the CA3–CA1 circuitry is followed by utility-dependent refinement during replay to 

promote selective access to and consolidation of relevant memory traces supporting adaptive 

behaviours.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586-021-04118-6.

Methods

All experiments were conducted in accordance with US National Institutes of Health 

guidelines and with the approval of the Columbia University Institutional Animal Care 

and Use Committee. No statistical methods were used to predetermine sample sizes, which 

were similar to those reported in previous publications30,31. The experiments were not 

randomized, and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Mice

For all experiments, we used adult (8–16 weeks) male and female Grik4-cre transgenic mice 

(C57BL/6-Tg(Grik4-Cre)G32–4Stl/J, The Jackson Laboratory, Jax 006474; n = 6 mice for 

axonal imaging, n = 6 mice for somatic imaging). Mice were housed on a 12-h light/12-h 

dark cycle in groups of 2–5 mice (temperature, 22–23 °C; humidity, 40%) and individually 

after surgery for implantation.

Virus injections and imaging window/silicon probe implantation

Viral injections were performed with a Nanoject syringe, as previously described19,32,33. 

Briefly, mice were anaesthetized with isoflurane and treated with buprenorphine or 

meloxicam for analgesia and 200 nl of Cre-dependent recombinant adeno-associated virus 

(rAAV) expressing GCaMP6f under the control of the Syn1 promoter (rAAV1.Syn.FLEX. 

GCaMP6f.WPRE.SV4; Addgene, 100833; titre, 1 × 1013 viral genomes per ml; referred 

to as rAAV2/1:Syn(GCaMP6f)Cre) was injected into the left hippocampal CA3 (AP −2.2, 

ML −2.5, DV −2.4, −2.5 and −2.6 mm, with respect to the bregma). After 3–4 d for 
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recovery, mice were implanted with an imaging window (diameter, 3.0 mm; height, 1.5 

mm) over the left dorsal hippocampus as well as a steel head-bar for head fixation and 

a four-channel linear silicon probe in the right (contralateral) CA1 (AP −2.2, ML 2.75, 

DV −1.0) at a 45° angle. Mice recovered after surgery for 3–4 d before training sessions 

commenced. For somatic imaging of CA3 pyramidal cells, Cre-dependent rAAV expressing 

GCaMP7f (rAAV1. Syn-FLEX-jGCaMP7f-WPRE; Addgene, 104492) was injected into the 

left hippocampal CA3 at two locations (AP −1.3, ML −1.6, DV −2.1 and −1.9; AP −1.6, ML 

−1.9, DV −2.2 and −2.0; 30 nl for each DV step).

Sequential sensory–place associative paradigm

Mice were imaged during either an RC or FC condition on either a belt without textured 

segments or tactile cues (NS) or a belt decorated with various tactile cues (S). The S belt was 

constructed similarly to belts in previous studies19,20. In our case, the belt was composed of 

four textured segments of 20 cm each separated by a 30-cm segment of burlap belt. Each 

textured segment was made of a different fabric (such as felt or velvet, but not burlap) onto 

which small foam stickers were glued.

Both the NS belt and the S belt were 200 cm long. Imaging began after 2–3 d of head 

fixation and habituation to the experimental setup. In the RC condition, three sensory cues 

(odour, light and a non-operant water reward) were presented pseudo-randomly at 10 trials 

per cue. Cues were presented for 0.75 s, and each presentation was separated by a pseudo-

random inter-stimulus interval of 20–50 s. In the FC condition, cues were presented for 0.75 

s when mice entered fixed locations evenly spaced (every 30 cm) along the treadmill. The 

visual cue was presented in the first location, odour was presented in the second location and 

the reward was delivered in the third location. A blue-light LED flash was used as the visual 

cue, and one odour was selected from isoamyl acetate, I-(−)-limonene or I-(−)-carvone 

(Sigma-Aldrich) for each mouse. Odorants dissolved in mineral oil were passed through 

tubing in front of the mouse’s snout through a mineral oil-infused stream of compressed 

air that was evacuated by vacuum at the same speed it was delivered to avoid prolonged 

exposure. During spatial tasks, reward was delivered operantly, meaning that more licks 

triggered additional water drops (one additional drop for two licks, with a time-out of 1 s), 

which was necessary to motivate the animals to complete more laps.

On day 1, RC was carried out on an NS belt (RC-NS), which was made of burlap. The 

RC-NS session was interleaved between two 15-min resting sessions (Pre and Post) without 

sensory stimulation to record SWRs before and after sensory stimulation. After RC-NS (day 

1), mice were trained to run on a treadmill with a textured S belt for 2–3 d. There were no 

novel stimuli in the environment in the following sessions (RC-S on day 4, FC-S on days 

5 and 6, and FC-NS on day 7). On day 4, the mouse ran on a textured belt while sensory 

cues were randomly presented independently of the mouse’s location. On day 5, mice were 

imaged in the FC-S condition following an RC-NS Pre session. To remove any spatial 

confounding, the treadmill wheels were locked during the Pre session with mice positioned 

at a homogeneous and un-cued area on the S belt.

On day 6, FC-S was also carried out, first followed by an RC-NS session with the treadmill 

locked. Finally, we used an NS burlap belt in an FC session to remove spatial components 
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from the treadmill while the sensory cues were presented at the same fixed locations 

(FC-NS, day 7). Thus, in this session, only the visual, odour and reward cues were presented 

and the belt did not contain any textured segments or tactile cues. This paradigm uniquely 

allowed us to answer questions regarding SWR-related replay for two reasons: first, the 

absence of other spatial information allowed us to definitively determine whether previously 

suppressed cue patterns can be reinstated by replay events when behaviourally required and, 

second, the sparsity of spatial cues allowed us to resolve and dissect the internal structure of 

these replay events.

To examine the relationship between behavioural performance and each sensory stimulation 

paradigm, we used a generalized linear model (GLM) to fit velocity with position 

bins as regressors (Extended Data Fig. 3a–e). GLM fitting was carried out for each 

50 cm after the onset of visual stimulation as well as in the interval between odour 

stimulation and reward location. GLM coefficients represent the degree of velocity change 

(acceleration or deceleration) in response to sensory stimuli. We compared this sensory-

driven behavioural control across each session. GLM-predicted velocity was normalized 

within each mouse. Behaviour data were collected using custom software implemented in 

Java via a microcontroller (Arduino DUE) on the treadmill.

In vivo two-photon imaging and data preprocessing

All imaging was conducted using a two-photon 8-kHz resonant scanner (Bruker) and ×40 or 

×16 near-infrared (NIR) water-immersion objectives (Nikon, 0.8 NA, 3.5-mm and 3.0-mm 

working distance, respectively). For axonal imaging, we acquired images of 300 × 300 

μm2 (512 × 512 pixels) at 30 Hz using a 920-nm laser (50–100 mW, Chameleon Ultra II, 

Coherent) from CA3SCs in the CA1 SR, 50–150 μm below the SP. For somatic imaging 

(Extended Data Fig. 7l–r), images of 450 × 450 μm2 (512 × 512 pixels) were acquired and 

the focal plane was located about 450 μm below the surface of the brain, in distal CA3. We 

adjusted the angle of the mouse’s head using two goniometers (±10° range; Edmund Optics) 

to align the SP with the horizontal two-photon imaging plane. Green (GCaMP) fluorescence 

was detected with a GaAsP PMT (Hamamatsu, model 7422P-40).

The preprocessing steps for acquired fluorescence signal using the SIMA software package 

were described in our previous work19,31–33. After SIMA-based motion correction, we 

detected CA3SC ROIs, extracted signals and calculated neuropil-decontaminated ΔF/F0 

using the Suite2p software package with built-in neuropil subtraction34. Suite2p was chosen 

as it enables automatic ROI detection while imposing a minimum required decorrelation 

from surrounding pixels, thus mitigating signal contamination from neighbouring structures 

possibly emanating from the same CA3 cell body. The quality of automated ROI detection 

was validated by cross-checking key findings against alternative curation strategies: Suite2p-

based detection with an increased decorrelation threshold (2.0 versus the default setting of 

1.0) and manual ROI curation (Extended Data Fig. 7). All recordings were visually assessed 

for residual motion, and any data with uncorrected motion artefacts were discarded from 

further analysis. Subsequent image analysis was performed using custom-written routines in 

Matlab (MATLAB 2019a).
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To quantify signal instability artefacts due to x, y or z drift or any other source that might 

have caused trial-to-trial changes in our imaging field, we computed the average FOV 

between the presentation of cue n −1 and cue n and then computed pixel-wise correlation 

coefficients between FOV time averages (Extended Data Fig. 2a–c). To address frame-by-

frame uncorrected motion and its potential effect on computation of cue responsiveness, 

we calculated the mean squared error (MSE) between each imaging frame in an imaging 

session and the motion-corrected time average of that session. For each mouse, MSE was 

measured across all frames as well as between frames, corresponding to ±3 s surrounding 

stimulus presentation (‘Stim. trials’). To quantify any interaction between frame-by-frame 

and trial-by-trial stability, we chunked peri-stimulus MSE measurements into three bins 

according to trial number, computed peri-stimulus time histograms (PSTHs) of MSE and 

quantified whether the frame-by-frame stability of our recordings evolved over time in case, 

for example, the physical responses of animals to stimuli adapted with experience (Extended 

Data Fig. 2d–i). For all experiments, ROIs were tracked within but not across days.

Note that, while CA3 cell bodies are accessible with two-photon imaging, current 

instantiations of this approach are limited to relatively small FOVs and numbers of recorded 

neurons35–37. Our axonal imaging approach offers a more unbiased sampling of CA3 inputs 

to the CA1 with a larger overall number of units, but it also has shortcomings: it does not 

allow us to determine the precise number of independent cells imaged or to track them over 

multiple days. Furthermore, while axonal GCaMP–calcium dynamics are generally thought 

to serve as a reliable proxy for somatic activity38–40, it is in principle possible for axonal and 

somatic activity to become dissociated, for example, during fast network oscillations41.

Silhouette score

The silhouette value is a scalar between −1 and 1 that quantifies how well a point fits into a 

cluster under a given clustering. Intuitively, a point is well clustered if, under some distance 

metric d, it is highly cohesive with other points in its cluster and well separated from any 

other cluster. A clustering, i.e., a cluster labelling of the entire dataset, is of high quality if, 

on average, a point is cohesive with other points in its own cluster and well separated from 

points in other clusters. The silhouette method formalizes this intuition. The cohesion of a 

point i with respect to its cluster Ci is defined as

cohesion(i): = 1
Ci − 1 ∑

j ∈ Ci, i ≠ j
d(i, j) (1)

i.e., the mean distance of point i to points in its own cluster Ci; its separation from other 

clusters is defined as

separation(i): = min
k ≠ i

1
Ck

∑
j ∈ Ck

d(i, j) (2)

i.e., the mean distance of i to the points in the ‘closest’ other cluster. The silhouette value of 

a point i with respect to cluster Ci is defined as
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s(i) = separation(i) − cohesion(i)
max separation(i), cohesion(i) (3)

The silhouette score or silhouette coefficient is defined as the mean s(i) for all points under 

that clustering.

Identifying ROIs from the same axon

Ward’s hierarchical clustering was performed on the pairwise correlation matrix of ROIs 

from each FOV to identify instances where multiple ROIs represent different segments 

of the same axon. To estimate the number of unique CA3 units imaged, the hierarchical 

clustering result was flattened to K clusters for all values of K from 2 to 767 (the total 

number of ROIs). The ideal clustering would identify K* clusters where each cluster 

contains only segments from one axon and the K* different clusters correspond to the K* 

unique CA3 units imaged. Each clustering was evaluated through its silhouette values: the 

25th, 50th and 75th percentiles of ROI silhouette values were plotted for each K. The value 

of K for which adding one additional cluster improved the median silhouette value the most 

was taken as the estimate of K*.

LFP recording and SWR detection

Wide-band LFP signals were recorded at 25 kHz using a digital acquisition system 

(RHD2000, Intan Technologies) and downsampled to 1.25 kHz. For each mouse, the 

recording site closest to SP from the four channels was identified based on the amplitude 

of ripple events and the prominent polarity of sharp waves in SR and SO. SWRs were 

detected from the wavelet spectrograms of bandpass-filtered (80–270 Hz) LFPs during 

awake immobile states (running periods were removed). Candidate SWRs were defined 

as high-frequency LFP events with wavelet power more than 2.5 s.d. above baseline and 

a duration of longer than 20 ms within the ripple frequency band (100–250 Hz). SWRs 

that occurred within 200 ms of one another were merged. Detection performance was 

visually assessed, and false-positive events were manually discarded. LFP signal analysis 

was performed using custom-written routines in Matlab (MATLAB 2019a).

Perfusion, tissue processing and confocal imaging

Proper virus confinement to hippocampal CA3 was confirmed after the completion of 

all imaging experiments. Mice were transcardially perfused with 40 ml of ice-cold PBS 

(Thermo Fisher Scientific), followed by 40 ml of ice-cold 4% paraformaldehyde (PFA, 

Electron Microscopy Sciences). Brains were stored overnight in 4% PFA at 4 °C. The next 

day, the 4% PFA was removed and the brains were rinsed three times for 5 min each in 

PBS. Coronal sections (75 μm) of the hippocampus were cut on a vibrating microtome 

(Leica, VT1200S) and washed three times for 15 min each in PBS. Sections were mounted 

on glass slides in Fluoromount-G aqueous mounting medium (Thermo Fisher Scientific) 

and coverslipped. The slides were allowed to dry at 4 °C for at least 1 h before confocal 

imaging. A Nikon A1 confocal microscope was used to acquire fluorescence images of the 

labelled tissue sections; several sections were imaged in each mouse to confirm appropriate 

viral expression. A 488-nm laser line was used for excitation. Tile scans of the dorsal 
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hippocampus were acquired with a ×10 Plan Apo 0.45-NA objective (Nikon) at ×1 zoom. 

Images of 1,024 × 1,024 pixels were acquired every ~3 μm through the entire depth of the 

tissue sections, with the pinhole size set to ~1 Airy unit. Fluorescence was collected with a 

GaAsP PMT. The resulting z stacks were viewed in Fiji (NIH).

Shuffling test for cue preference and place field detection

Shuffling methods were used to identify the sensory cue preference of CA3SCs. The 

smoothed PSTH (15 temporal bins of 33.33 ms; Savitzky–Golay filter) was estimated 

from the onset of sensory cues with a time window of ±3 s. Then, the PSTH around cue 

presentation, Do(t), was computed:

Do(t) = λaft(t) − λbfr( − t) (4)

where λaft(t) is averaged ΔF/F0 in the tth bin after cue onset and λbfr(−t) is that in the tth 

bin before onset. As a shuffling test, the onsets for PSTHs were randomly chosen from bins 

within a session and the PSTHs were recomputed. This resampling process was repeated 

1,000 times to obtain the significance threshold of P < 0.05 (two-tailed test, α = 2.5% 

on each side) at each bin. To prevent type 1 error resulting from multiple comparisons, P 
values were adjusted by Bonferroni correction on the basis of the number of bins and cues 

tested. CA3SC ROIs with at least 10 consecutive temporal bins exceeding the threshold were 

defined as cue-CA3SCs.

For PSTHs used to calculate the spatial tuning of CA3SCs, λ(p) was computed as the 

averaged ΔF/F0 from the frames at each 1-cm position bin during running periods. Position 

bin assignments were randomly permuted across frames within each lap, and shuffled 

PSTHs were re-estimated 1,000 times using this strategy. Using these resampled PSTHs, a 

statistical threshold P value (5% for one side) at each position bin was computed. Bonferroni 

correction was performed to position bin size. Transients with at least five consecutive 

position bins (i.e., 5 cm) exceeding the threshold were identified as place fields.

Tensor component analysis

Overview.—The dataset collected in this study exhibits a natural tensor structure: the 

responses of N ROIs were recorded in S (=3) distinct cue conditions, with K trials per cue, 

each consisting of T temporal samples. The dataset X was thus arranged in an N × T × K × S 
tensor (Extended Data Fig. 6a). We wished to exploit this natural tensor structure to identify 

ROIs with similar intra- and inter-trial responses to each cue. TCA was used as a multi-axis 

dimensionality reduction tool to identify activity patterns shared across CA3SCs and across 

multiple animals. A non-negativity constraint was not used. The advantage of using TCA 

over PCA was that common within-trial trends, multitrial dynamics and cue preferences 

could be extracted jointly: one component may correspond, for instance, to a cluster of ROIs 

that exhibit a strong positive intra-trial response to odour cues, which increases over trials 

(‘Up’) (Fig. 1f–h). The ROI factor (analogous to loadings in PCA) of each component is 

a scalar measure of the strength of each ROI’s association with that component. The ROI 

factors of components that describe responsiveness to only one cue (i.e., >90% of the cue 
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factor weight is concentrated in one cue) were selected as a natural feature space in which to 

cluster ROIs by their intra- and inter-trial dynamics with respect to that cue.

To better reflect how it is used in the present study, we reformulated the TCA objective 

described in ref. 42 in a slightly different but mathematically equivalent manner, as we detail 

below.

TCA as dimensionality reduction.—Consider an N × T matrix X, corresponding to 

N neurons simultaneously recorded in a single trial of T time points. It is natural to apply 

dimensionality reduction followed by clustering on this data matrix to identify meaningful 

subpopulations in the data. PCA (with R components) decomposes the matrix X as the 

product AB, where B is an R × T row matrix of orthogonal components that capture 

activity patterns in the data shared across many cells and A is an N × R column matrix 

of ‘loadings’ with entries Bnr corresponding to a neuron n’s association with component r. 
Written another way, PCA approximates X as

X ≈ X = ∑
r = 1

R
ar ⊗ br (5)

with bi ⊥ bj and i ≠ j, where ⨂ denotes the outer product, also known as the tensor 

product. Subsequent clustering is performed using the loadings as features; when R = 2, this 

corresponds to clustering on the first two principal components.

TCA generalizes this idea to the case where the data X is a higher-order tensor: suppose 

X is now an N × T × K × S tensor (i.e., X ∈ ℝN × T × K × S). We are still interested in 

decomposing X into ‘loadings’ αr (referred to as ‘ROI factors’ or ‘axon factors’) and 

‘components’ Yr:

X ≈ X = ∑
r = 1

R
ar ⊗ Y r (6)

to cluster the cells on the tensor components. Here each component Yr is itself a rank – 1 T 
× K × S tensor, capturing not just within-trial responsiveness but also across-trial dynamics 

and cue preference. When these components are additionally constrained to be orthogonal, 

this procedure reduces to PCA (see ‘PCA comparison analysis’ in Extended Data Fig. 

8). The main innovation of our TCA approach here is that we remove this orthogonality 

constraint, as neuronal activity patterns are not necessarily orthogonal. Each component Yr 

can be written as

Y r = br ⊗ cr ⊗ dr (7)

giving the full factorization

X ≈ X = ∑
r = 1

R
ar ⊗ br ⊗ cr ⊗ dr (8)
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where the vectors ar ∈ ℝN correspond to ROI factors as before, br ∈ ℝT  correspond to 

within-trial responsiveness (referred to as ‘temporal factors’), cr ∈ ℝK correspond to inter-

trial dynamics (referred to as ‘trial factors’) and dr ∈ ℝS correspond to cue preference 

or ‘cue factors’ (Extended Data Fig. 6). Round brackets have been omitted as the tensor 

product is associative. Detailed algorithms for computing this tensor decomposition, such as 

canonical polyadic decomposition, have been described in previous studies42.

To perform model selection, i.e., the number of components, we examined extracted 

components and reconstruction errors across multiple N ranks and ultimately used the 

minimum N necessary to capture trends of interest for further interrogation. This approach 

was taken because of the fact that, unlike in PCA, the first K components learned in a K + 

1-component TCA model are not guaranteed to be identical to the components learned in 

a K-component model. Thus, we explored TCA models of various ranks for each question 

(up to 15 components for the TCA described in Fig. 1; Extended Data Fig. 4) to ensure that 

increasing model rank no longer yielded components that were meaningfully distinct from 

those previously seen.

K-means clustering on TCA-derived ROI factors.—To classify cue-CA3SCs on the 

basis of the trial-by-trial changes in cue response, we first found selected tensor components 

for which one cue was dominant in the cue factor (Extended Data Fig. 4b–e). TCA was 

carried out as described above across multiple ranks to determine the number of components 

sufficient to capture modality-specific variance (Extended Data Fig. 4e). An important 

limitation of TCA is that different runs may yield different results, as the algorithm 

only approximates an NP-Hard decomposition, which impacts the generalizability of the 

components. To make our results more robust and interpretable, we used K-means clustering 

on these modality-specific components with K = 5, followed by quantitative interpretation of 

the resulting clusters, to aid in identifying the ROIs with up and down dynamics. Clusters 

whose trial-by-trial evolution fit into one of these categories were labelled ‘Up’ or ‘Down’, 

while clusters that did not were labelled ‘Other’ to avoid artificially binarizing the data. To 

validate our clustering method, we examined inter-subject variability as a quality-control 

metric: the clusters corresponding to trial transition patterns observed in all mice were 

deemed meaningful, while clusters dominated by animal-to-animal variance were pooled 

into an ‘unclassified’ cluster.

TCA for SWR-associated CA3SC dynamics.—A similar procedure was performed to 

characterize how SWR-associated CA3SC dynamics evolved over time for cue-responsive 

and non-cue-responsive (other) CA3SCs (Extended Data Fig. 6e). We first separated 

CA3SCs into cue- and non-cue-responsive axons as described in the shuffling test for cue 

preference and place field detection. We then organized the raw data into third-order tensors 

ntk representing the peri-SWR (±300 ms) activity of cue-responsive or other CA3SCs n 
at time t on SWR event k. For both CA3SC populations, model selection was performed 

by inspecting models of ranks 1–10, and we found that a single-component TCA was 

sufficient to capture the primary response (temporal factor; Extended Data Fig. 6e) when 

we ran TCA on a by-mouse basis to eliminate subject-to-subject variability (e.g., brightness 

corresponding to viral expression, subtle effects arising from animal behaviour). Higher-rank 
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models yielded components with similar temporal factor patterns but low tensor component 

scores for the trial factor, indicating that little additional insight was gained.

Information value

To characterize CA3SC populations by task condition-related activity, we computed the 

mutual information value between ΔF/F0 and the task condition types (FC or RC) using the 

following formula43:

info = ∑
i

Pi
λi
λ log2

λi
λ (9)

where λi is the average ΔF/F0 at the ith position or time bin, λ is the overall mean ΔF/F0 and 

Pi is the probability density for the location or time spent (for example, 1/number of bins). 

We used the Kruskal–Wallis test to compare the information value between each CA3SC 

population.

Detection of HSEs

We smoothed and averaged (15-bin window; Savitzky–Golay filter) the ΔF/F0 values of 

all CA3SC ROIs to identify candidate HSEs associated with CA1 SWRs (Extended Data 

Fig. 9a–c). Frames associated with locomotion were removed, and HSEs were defined as 

transients on the population average that exceeded the mean by at least 3 s.d. HSE duration 

was computed as the number of frames from the first frame exceeding the threshold to 

the first frame in which the transient amplitude fell below 1.2 s.d. above the mean. Only 

candidate events within 0.5 s of SWRs were used for subsequent analyses.

To compute the latency of individual CA3SCs in HSEs, we extracted principal components 

of the population in each HSE within windows of ±3 s centred on HSE onset. A CA3SC 

was determined to have been ‘reactivated’ by an HSE if its peak cross-correlation with the 

first principal component was >0.5, and the CA3SC recruitment latency was defined as 

the ΔF/F0 correlation lag between each CA3SC and the first principal component within 

the peri-HSE window. Latency was calculated as the time of peak covariance between the 

normalized ΔF/F0 value of single ROIs and the first principal component of the population, 

relative to SWR onset (Extended Data Fig. 9c). Three local peaks can be seen at +0.03 s 

(1-frame delay), +0.25 s (5- to 8-frame delay) and +0.5 s (12- to 17-frame delay), suggesting 

sequential recruitment of ROIs by SWRs on a timescale of 0.5 s (20 frames).

Hierarchical clustering of place fields

To make subsequent analyses of reactivation order more robust, each CA3SC’s place field, 

a continuous variable, was converted into a scalar categorical variable (place cluster) via 

hierarchical clustering. CA3SCs with place fields were sorted into discrete clusters using 

Ward’s hierarchical agglomerative clustering algorithms on the basis of the similarity of 

place fields. The similarity metric for place fields was computed as the squared Euclidian 

distance between columns of the correlation matrix.
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dEuclid
2 (X, Y ) = 2[1 − |Corr(X, Y ) | ] (10)

In Ward’s method, pairs of clusters to merge are chosen to minimize the error of squares in 

the merged cluster, which was iterated until the number of clusters equalled 30. The average 

silhouette value was computed to decide the optimal number of clusters with the following 

formula:

Si = bi − ai
max ai, bi

(11)

ai = 1
Cin − 1 ∑

xj ∈ Cin
xi − xj (12)

bi = 1
Cnear

∑
xj ∈ Cnear

xi − xj (13)

where ai is the average dissimilarity of the ith CA3SC ROI xi with all others in its cluster 

and bi is the average dissimilarity with others in the nearest other cluster. We estimated 

the number of clusters in each FOV by minimizing the averaged silhouette score over 

clusterings on each correlation map (Fig. 4a).

Reactivation analysis

We computed the ΔF/F0 cross-correlation for every pair of reactivated CA3SCs in each HSE 

to measure population synchronicity in SWRs. Pairs were binned by the distance between 

their place field peaks in 5-cm increments (bin range was from 0–5 cm to 95–100 cm), and 

the synchronicity values in each bin were averaged to construct a cross-correlogram. We 

then recalculated the mean cross-correlation after shuffling place field distances 1,000 times 

and estimated 97.5% confidence intervals. To avoid ROIs originating from a common cell, 

highly correlated ROIs (R > 0.8 on a lap-by-lap basis) were merged and pairs with zero 

distance were removed (Extended Data Fig. 9d).

To assess the temporal sequence of reactivated place information in each HSE, we extracted 

the first principal component from each cluster of CA3SCs inferred by the above-described 

hierarchical clustering method. Only clusters containing at least five reactivated CA3SCs 

were included as ‘reactivated’ clusters for each HSE; at least four clusters were required for 

the following analysis. Both of these criteria were necessary for robust sequence detection. 

Next, the temporal order of these clusters during each HSE was determined on the basis 

of the time bin in which the first principal component of the cluster, which summarizes 

the activity of the cluster, reached its peak, and we computed correlations with the mean 

place sequence. The maximum R values are reported as the ‘replay score’ for the candidate 

HSE (negative sign for reverse order). To generate a null distribution of replay scores, we 

applied this scoring method to shuffled place clusters under the same shuffling procedure 

used to identify significant CA3SC clusters. We defined significant replay events as HSEs 
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having replay scores outside the 97.5% confidence interval of this shuffle distribution. To 

prevent contamination from in-field activity, cue-place-CA3SCs with place fields near SWR 

locations were excluded (e.g., cluster 6 in Fig. 4c).

Detection of recurring assemblies

We used the convNMF package to extract recurring sequences of CA3SC activation using 

convolutional non-negative matrix factorization (convNMF) as described in ref. 44. Briefly, 

an ROI × time data matrix X of CA3SC activity during immobility was approximated as a 

sum of K matrices generated as the convolution of two components: a non-negative matrix 

wk of dimensions N × L representing the sequential pattern of N CA3SCs at L time lags and 

a vector of temporal loadings hk, encoding the onset times of each sequential pattern and the 

relative amplitude of this activity:

Xnt ≈ Xnt = ∑
k = 1

K
∑
l = 0

L − 1
W nklHk(t − l) (14)

where Xnt is the (nt)th element of matrix X, which is the activity of CA3SC n at time t. W 
is a tensor of activity patterns, and H is its corresponding temporal loading. Index l (1 to L) 

indicates each time lag within the pattern (wk). The convolutions were zero-padded for lags 

(t – l) < 0.

To reduce the occurrence of correlated factors in convNMF, a penalty term R, penalizing the 

correlations between patterns, was added to the squared-error cost function:

W *, H* = argminW , H X − X F
2 + R (15)

A previous study reported that CA1 pyramidal cells form functionally orthogonal assemblies 

that recur across sharp-wave ripple events45. We thus assumed that HSEs of CA3SCs would 

also comprise multiple discrete assemblies. Therefore, we used a penalty term that strongly 

penalizes correlation in W, but not H, which Mackevicius et al.44 refer to as ‘parts-based’ 

factorization.

R = λ
2 W flat

⊤ W flat 1, i ≠ j (16)

W flat nk = ∑
l

W nkl (17)

Note that this approach encourages the learned CA3SC sequences W to be orthogonal 

while H may be strongly correlated. This parts-based factorization is particularly useful 

for separating CA3SCs into ensembles. The skewness of the distribution of overlaps of 

the extracted recurring patterns across time bins was then compared with that of the null 

case distribution, which is based on zero temporal relationship between recruited CA3SCs. 

We included recurring patterns for subsequent analysis if their skewness was significantly 
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greater than the distribution of skewness values for the null factor overlaps (Bonferroni-

corrected P value, 0.01).

Note that convNMF was run on the raw ΔF/F0 data, without explicitly annotating HSEs. 

To determine whether the recurring sequential patterns learned by convNMF are consistent 

with network activity within HSEs, we computed the correlation between each recurring 

assembly and the first principal component of each HSE. Although there was variability 

between individual HSEs, we asked whether certain subsets of HSEs consistently reactivated 

the patterns inferred by convNMF. To test this, Ward’s hierarchical agglomerative clustering 

was carried out on the assembly × HSE principal component correlation matrix. Each cluster 

obtained by this method corresponds to a ‘match’ of putative replay events (identified on 

the basis of population synchrony at each time point) with their putative internal sequences 

(learned from all time points via convNMF). The number of clusters was estimated by 

silhouette values. If an identified HSE cluster included fewer than five HSE events or the 

average correlation within the cluster was lower than 0.3, the cluster was considered to lack 

any recurring patterns.

Generating synthetic CA3 replay data.—Synthetic CA3 replay epochs were sampled 

using a recently described CA3 network model46 (Extended Data Fig. 10). Network 

weights during place field traversal in the network were first learned via spike-timing-

dependent plasticity in a randomly recurrently connected network of 8,000 leaky integrate-

and-fire pyramidal neurons. The network, with 150 inhibitory interneurons added, was then 

presented with random Poisson spiking input, which gave rise to spontaneous replay events. 

This process was repeated with random initialization 100 times, giving 100 networks with 

distinct connectivity and replay patterns. Spike times for each neuron were recorded with a 

simulation time step of 100 μs for 10 s. Further details on the model and the detection of 

replay events are provided in ref. 46.

Validation of convNMF for replay detection on the synthetic dataset.—Spike 

rasters during ‘rest’ were recorded from each simulated network (Extended Data Fig. 10). 

These simulated spike rasters were re-binned to the calcium sampling rate (30 Hz) and then 

used as input for an AR(1) time-series model with g = 0.95. This is equivalent to convolving 

the spike signal with a calcium kernel with tau = 0.65 s to generate a simulated CA3 replay 

calcium imaging dataset. White Gaussian noise (sigma = 0.3 ΔF/F0) was added to simulate 

experimental conditions. convNMF was then used to detect sequential reactivation events 

and reconstruct the simulated calcium signals, as described above.

To evaluate the accuracy of detected replay trajectories, a slope and intercept were fitted to 

each reactivation sequence inferred by convNMF. These values were then compared to the 

ground-truth slope and intercept computed from the raw spiking data. This simulation also 

validated the reliability of distinguishing forward and reverse events with convNMF.

To generate receiver operating characteristic (ROC) curves of the sensitivity and specificity 

of replay event detection by convNMF, a sweep was performed over thresholds on the 

convNMF temporal factors. A ‘frame’ was classified as ‘in replay’ (also known as 

‘positive’) if any temporal factor exceeded the threshold in that frame47. Frames that 
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contained any part of a ground-truth replay event were considered true positives. This 

provides a conservative measure of detection accuracy: we quantify the sensitivity and 

specificity of classifying each imaging frame correctly as replay or non-replay.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.

Data availability

Datasets included in this study are available from the corresponding author upon reasonable 

request. Source data are provided with this paper.

Code availability

Custom Matlab code supporting this study is available at https://github.com/losonczylab/

Terada_Nature2021. Source data is provided with this paper.
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Extended Data

Extended Data Fig. 1 |. Labeling of CA3 Schaffer Collaterals for in vivo two-photon calcium 
imaging and identification of ROIs.
a, Representative coronal slice of the dorsal hippocampus of a Grik4-Cre mouse showing 

Cre-dependent rAAV-driven GCaMP6f expression restricted to CA3. The CA3 pyramidal 

cell layer is outlined with the dotted white contour, and the approximate locations of the 

CA3 subregions (CA3a-c) are shown. b, Quantification of relative fluorescence intensity 

along the pyramidal cell layer of CA3 subregions (mean±s.e.m.). Fluorescence intensity at 
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10 locations along the CA3 pyramidal cell layer was measured, starting from the hilus of 

the dentate gyrus (x=0 μm) to the approximate CA2/3 border (x=900 μm). c, Example in 
vivo two-photon field of view (FOV) in CA1 SR from one representative mouse (n=6 in this 

study). Imaging focal plane was located 50–150 μm below CA1 SP. Right, the same FOV 

after ROI segmentation with the Suite2p analysis package (middle, overlapping display). d, 

Distributions of correlation coefficients between pairs of CA3SC ROIs during spontaneous 

activity for each individual mouse (black lines) and mean for all mice (green). e, Estimation 

of number of unique CA3 units recorded using hierarchical clustering and silhouette score 

(Methods). Top, silhouette values as number of clusters K (to the total number of detected 

ROIs) in an example FOV (green: average, pink: median, light blue: 75th percentile, red: 

25th percentile). Bottom, marginal change in silhouette values each time K is incremented 

by 1. The estimated number of unique CA3 units recorded on each FOV was defined as 

the number of clusters that maximized the rate of change (528 clusters in this case, and 

644±91 clusters, mean ± s.e.m.). f, Left, correlation matrix of ROI signals from the example 

FOV shown in (c). Right top, zoom: example clusters of putative same-axon ROIs (red), 

and non-clustered ROIs, likely recorded from distinct axons (blue). g, Median silhouette 

values over percentage of putative distinct CA3 axons as a proportion of total number of 

ROIs detected in the FOVs (color scheme as in e). The pink shaded area indicates the 

ranges between the mice. Dashed lines indicate the cluster numbers that maximized rate of 

change in 25th (red shaded area on right) and 75th percentiles (blue shaded area on left). h, 

Boxplots of within-cluster correlations of ROI signals all together (left, n=175 ROIs) and by 

mouse (right, 29.17±9.5 ROIs, mean±s.e.m.). The whiskers indicate maxima and minima. i, 
Fraction of ROIs putatively originating from the same cell across mice (n=6810 ROIs from 6 

mice). The whiskers indicate maxima and minima, outliers excluded.
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Extended Data Fig. 2 |. Stability of two-photon imaging.
a, Top, cue onsets in a representative RC-NS session (orange: odor; green: visual; light 

blue: reward). Bottom, trial-averaged FOVs corresponding to each odor trial from one 

representative mouse (n=6 in this study). Trial averages were computed from the frame 

of odor stimulus onset through the last frame 5 s prior to the next stimulus onset. b, 

Mean pixel-wise correlations between all pairs of trial-averaged FOVs from the above 

session. c, Mean pixel-wise correlations of trial-averaged FOVs with whole-session time-

averaged FOVs in RC-NS sessions. Colors correspond to individual mice. Correlations 

were recalculated with whole-session time-averaged FOVs on different mice (shuffled) and 

plotted in black (mean, shaded area: 90% confidence interval). d, Left, empirical cumulative 

distribution function (CDF) of mean squared error (MSE) between each frame and time-

Terada et al. Page 21

Nature. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averaged FOVs from corresponding sessions (green: all frames, orange: intra-trial frames, 

black: comparison to other FOVs). Middle, violin plot of data shown in CDFs. Right, MSEs 

between each frame and trial-averaged FOVs. MSEs were averaged every 10 trials and 

shaded areas indicate percentiles from 5% to 95%. e–i, Same as (a) for each individual 

mouse.

Extended Data Fig. 3 |. Reward-predictive behavior during sensory-place associative paradigm.
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a, Schematic of sensory stimulation paradigm and belt types (Methods). b, Examples of 

velocity in individual laps under different conditions. Each shaded color area corresponds 

to textural elements of the spatial belt where the sensory stimulations were presented and 

dashed lines indicate cue onsets. c, Representative lap-by-lap (top) and mean (bottom) 

velocity during FC-S. d, Velocity as predicted by generalized linear model (GLM, Method). 

Lines indicate mean GLM-predicted velocity and shaded areas indicate 25th and 75th 

percentiles across mice. e, Comparison of velocities before (black) and after (green) the 

onset of visual stimulus. Top, cumulative histograms of mean velocities 50 cm before and 

after visual stimulus. Bottom, velocity modulation by visual stimulus calculated with real 

pairs of velocities (green line) vs null distribution of scores calculated on 1000 random 

permutations of the onset ID (black histogram). Dotted lines indicate significance thresholds 

corresponding to p-values of 0.05 and 0.01. f, Examples of cue-CA3SC ROIs showing 

the different trial-by-trial transitions (left and middle; odor-, right; multi-sensory CA3SC 

ROIs). Heatmap shows ΔF/F0 by trial, chunked by cue modality and centered on cue 

onset with mean values plotted on right. PSTHs calculated on subsets of trials are shown 

below. g, Heatmap of mean cue-CA3SC activity centered on running bout initiations during 

random cue/non-spatial paradigm. h, Top, velocity (mean±s.e.m.) from all running bout 

initiations. Bottom, mean cue-CA3SC activity shown in (a). i, Fraction of significantly 

running-modulated CA3SCs during RC-NS (Other: n=5,836; Cue: n=1,219 ROIs from 6 

mice). 1000-time shuffling test with Bonferroni correction was used to obtain significance 

thresholds for P < 0.05 in each ROIs (two-tailed test, α=2.5% on each side). j, Correlation 

between cue response and running speed during trial periods represented as boxplots with 

median and interquartile range (Up: n=276 odor, n=143 visual, n=203 reward; Down: n=136 

odor, n=77 visual, 78 reward; Other: n=41 odor, n=196 visual, n=69 reward). The whiskers 

indicate maxima and minima, outliers excluded. The red plus symbols indicate outliers.
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Extended Data Fig. 4 |. Multi-axis dimensionality reduction of trial-by-trial changes in cue-
CA3SC activity via Tensor Component Analysis.
a, Schematic of tensor component analysis (TCA). Imaging data were arranged into a 4th 

order tensor with dimensions N×T×K×C where axes correspond to the number of CA3SC 

ROIs, within-trial temporal dynamics, evolution over multiple trials, and cue modality. 

b, Reconstructed (top) and original (bottom) ΔF/F0 heatmaps, centered on cue onset, for 

cue-CA3SCs in response to their respective 1st preferred (left), 2nd preferred (middle), 

and least preferred (right) cues. A 10-component TCA model, shown in (e), was used 
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for reconstruction. c, Error plot showing normalized reconstruction error for TCA (inset) 

and reduction in error with each additional component until 50 for 1st preferred (cyan), 

2nd preferred (pink), and least preferred (black) cue. d, Median coefficients (R2)±s.d. of 

reconstruction for each cue-CA3SC with the number of components for TCA ranging from 

1 to 20 (n=1219 ROIs from 6 mice). e, Extracted tensor components (TCs) from the 5, 

10, 15-component models. Columns show temporal factor (left), trial factor (middle left), 
cue factor (middle right), and ROI factor (right). Cyan trial factor: TCs dominated by a 

single sensory modality (#1–5) Pink trial factor: multimodal TCs (#6–10). Unimodal TCs 

strongly contributed to reconstructed responses to their 1st preferred cues shown in (b) and 

represent modality-specific features within and across trials. f, Distributions of averaged 

ΔF/F0 response after cue onsets, by trial, in each cue-CA3SC cluster.
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Extended Data Fig. 5 |. Latency and reliability of cue-CA3SC activity across trials.
a, Left, Heatmap activity showing responses triggered by all cue onsets across ROIs from 

each cluster (Up and Down). Row indicates individual trial. Right, response profiles of 

each cluster. b, Latency between cue onset and peak time of cue-CA3SC response in each 

trial. Each symbol indicates mean response latency of all cue-CA3SCs in each cluster 

(Up (purple): n=276 odor, n=143 visual, n=203 reward; Down (yellow): n=136 odor, n77 

visual, 78 reward. Two-way ANOVA with post-hoc Tukey’s tests. For odor-CA3SCs: Up 

× Down: P =0.74.; main effect of trial: P=3.6×10−14; interaction: P=1.8×10−5; for visual-

CA3SCs, Up × Down: P=0.62; main effect of trial: P=5.7×10−5; interaction: P=2×10−4; 

for reward-CA3SCs, Up × Down: P=0.74; main effect of trial: P=9.6×10−6; interaction: 

P=0.0193). c, Reliability of cue response, defined as the number of trials with response 

divided by the total number of trials (10 trials per modality) represented as boxplots 

with median and interquartile range. Whiskers denote minimum and maximum values. d, 

Extracted 1st principal component (PC) of the cue response of individual cue-CA3SCs 

assigned to Up and Down clusters using the TCA/K-means approach. To validate TCA and 

K-means classification, PCA was applied to K × T (trial × trial time) arrays of individual 

cue-CA3SCs. The 1st PC of each CA3SC robustly captured the initially-identified cue 

response. Note that 1st PC coefficients across individual trials represent the trial-by-trial 

evolution in the cue response of each CA3SC. e, Using K-means clustering, coefficient 

trends across trials were assigned to Up or Down clusters. Mean coefficients are plotted 

across trials of classified cue-CA3SCs. f, Fraction of cue-CA3SCs in inferred clusters. g, 

Overlap rates between TCA and PCA classifications of trial-by-trial trends.
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Extended Data Fig. 6 |. Additional data on SWR recruitment of cue-CA3SCs in random cue 
conditions.
a, Top, Example period of velocity and cue onsets. Blue shaded area corresponds to 

time window in the below heatmap showing examples of peri-SWR CA3SC activity. 

Bottom: SWR band-filtered LFP is plotted on top with detected CA1 SWRs indicated 

by black ticks and white dashed lines. b, Top, Average peri-SWR response in each 

group shown in Fig. 1 for cue-CA3SCs. Bottom, Fraction of SWR recruitments of cue-

CA3SCs. Number of ROIs for single-modality: odor: 349, visual: 256, reward: 350. 

Multi-modality ROIs, n=264; with odor-visual: 74, odor-reward: 30, visual-reward: 107, 
all-modalities: 53 (two-sided Fisher’s exact test with Bonferroni correction. P=3.7×10−6 

for Odor-vs-Reward. P=1.5×10−5 for Visual-vs-Reward. P=0.8967 for Odor-vs-Visual. 

P=3.7×10−6 for down-Reward-vs-down-Odor, -vs-up-Odor (P=1.6×10−7), vs-down-Visual 

(P=3.6×10−5), vs-up-Visual (P=3.4×10−5). P=0.0033 for up-Reward-vs-down-Odor, and 

-vs-up-Odor (P=3.7×10−5). P=0.2418 for up-Reward-vs-down-Visual. P = 0.0985 for up-

Reward-vs-up-Visual. c, Top, Cumulative histograms of peri-SWR z-scored ΔF/F0 of all 
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CA3SCs shown in Fig. 2g (RC-S, Day 4. Other: n=3,371; Place: n=1,644; Cue-Place: 

n=198, Cue: n=501 from 4 mice). Bottom left, fraction of cue-, cue-place, place-, and 

non-responsive CA3SC ROIs-. Bottom right, fraction of SWR recruitments of CA3SCs 

(One-way ANOVA with post-hoc Tukey’s test. ROI-type: P<1.3×10−16. d, Left, mean SWR-

triggered power spectrogram of contralateral CA1 LFP (black line: an example filtered 

LFP trace). Right, peri-cue onset time histogram of SWR rate for all mice and average 

rate stem plot juxtaposed to random, non-cue-centered onset times (‘outside’). Dashed line 

indicates onset of cue presentation. While SWR events around cue onset were excluded in 

the following analysis. e, Top, a single-component TCA model fit to cue-CA3SC peri-SWR 

suppression over individual SWR events in each mouse (n=17.76±1.39 SWRs in each inter-

trial-interval, mean ± s.e.m. from 6 mice). Left, sorted ROI factor for each CA3SC. Middle-
left and middle-right, temporal factor and trial factor (mean±s.e.m.). Trial factor TC scores 

were extracted in each SWR event and indexed to inter-trial intervals where these events 

were observed. Right, ROI-averaged ΔF/F0 indexed to inter-trial intervals (mean±s.e.m.). 

Bottom, a single-component TCA model of other-CA3SC peri-SWR activation over SWR 

events. The trial factor TC score is likely to correlate with synchronicity of all ROIs 

to SWR events. To more clearly isolate any trend in the trial factor other-CA3SCs, we 

included only other-CA3SCs with strong responses to SWRs for model fitting (exceeding 

average amplitude shown in Fig. 2c). The error bars indicate s.e.m. f, Left, extracted 

PCs representing CA3SC suppression and activation driven by SWRs during different task 

conditions in each class of CA3SCs (cue, place, and other). K-means clustering was applied 

to the PCA loadings to classify ROIs as “activated” or “suppressed”. Middle, percentages of 

variance accounted for by each PC (up to 20). Right, mean peri-SWR response of classified 

CA3SCs (dark green: activated, magenta: suppressed).
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Extended Data Fig. 7 |. Reproducibility of SWR suppression of cue-responsive CA3SCs with 
automated and manual sparse ROI segmentation and cell body ROI.
a, Left, representative time-averaged FOV from one representative mouse (n=6 in this 

study). Right, zoomed-in patches of FOV on left (yellow dashed square) showing 

original (default Suite2p performance), sparse automated, and sparse manual segmentation 

(Methods). ROIs overlaid onto FOV in random transparent colors at top with ROI outlines 

plotted below. b, Cumulative histogram of Euclidean distance between each ROI and its 

nearest neighboring ROI (black: n=7055 original ROIs; pink: n=2945 sparse automated 

Terada et al. Page 29

Nature. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROIs). Median values±s.d. are shown in bar plot (inset). c, Density of surrounding ROIs 

calculated for each ROI as a function of distance. d–g, Analysis of automatically-detected 

CA3SC ROIs including mean cue responses±s.e.m. of cue-CA3SCs during RC-NS (d), 

mean peri-SWR response±s.e.m. of all cue-CA3SCs (Cue, red) and non-cue CA3SCs 

(Other, black) recorded (e), fraction of cue-responsive and non-cue CA3SCs (910 cue-

CA3SC ROIs from 6 mice) (f), and fraction of SWR recruitment of CA3SCs during RC-

NS and POST (Other: n=1,945; Cue: n=910 ROIs from 6 mice. two-sided Fisher’s exact 

test with Bonferroni correction. P=2.6×10−24 for Cue-vs-All and Cue-vs-Other) (g). h–k, 

Analysis of manually-curated sparse CA3SC ROIs plotted as in (d-g) (Other: n=1,083; Cue: 

n=255 ROIs from 6 mice. Fisher’s exact test with Bonferroni correction. P=1.2×10−7 for 

Cue-vs-All and Cue-vs-Other). Fraction of hand-drawn cue-responsive and non-cue CA3SC 

ROIs. k, Fraction of SWR recruitment. l, Schematic of window implantation above CA3 

stratum pyramidale and CA3 pyramidal cells injected with rAAV2/1:Syn(GCaMP7f)Cre in 

Grik4-Cre mice. A 4-channel linear silicon probe was implanted in contralateral CA1. m, 

Example motion-corrected, time-averaged two photon imaging FOV from one representative 

mouse (n=6 in this study). Scale bar=100 μm n, Left, two example Suite2p-detected 

ROIs from (b). Right, representative GCaMP calcium signals (ΔF/F0) extracted from CA3 

pyramidal cell ROIs. o, Mean cue responses±s.e.m. of identified cue-CA3 cells during 

RC-NS in n=6 mice. p, Mean peri-SWR response±s.e.m. of cue- and non-cue-CA3 cells 

recorded during RC-NS. q, Fraction of cue-responsive and non-cue CA3 cells in RC-NS. 

r, Fraction of SWR recruitment during RC-NS and POST (Other: n=238; Cue: n=76 ROIs 

from 6 mice. two-sided Fisher’s exact test with Bonferroni correction. P=2.7×10−9 for 

Cue-vs-All and Cue-vs-Other).
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Extended Data Fig. 8 |. Spatial coding profiles of CA3SCs in FC-S.
a, Design of session block on Days 5 and 6 (Methods). b, Left, diagram of CA3SC ROI 

classification scheme on Days 5 and 6. Right, Fraction of active CA3SCs on Days 5 and 

Day 6. Each color indicates classified CA3SCs (Cue: n = 661, Place: n = 1,024, Other: n 

= 459 from 3 mice). c, Mean responses during RC-NS. Middle, Heatmap of place fields of 

individual cue-CA3SCs during FC-S with ROIs sorted according to location of peak activity 

to illustrate place coding (bottom). d, Cumulative histograms of cue-related and spatial 

information (bits). Mean±s.d. information values are shown in the insets. Cue- (red) and 

place- (blue) CA3SCs showed higher place information than other- (gray) CA3SCs on Day 5 

(Cue: n=470, Place: n=1,170, Other: n = 418 from 3 mice). One-way ANOVA with post-hoc 

Tukey’s test. Main effect of ROI-type for both FC-S and RC-NS: P =4.6×10−9) and on Day 

6 (Cue: n=661, Place: n=1,024, Other: n=459 from 3 mice. One-way ANOVA with post-hoc 

Tukey’s test. Main effect of ROI-type for both FC-S and RC-NS: P=1.5×10−5). e, peri-SWR 

activity in PRE and POST (left, mean±s.e.m.) summary of peri-SWR peak activity (right, 
mean±s.d.) for cue-, place- and other-CA3SCs on Day 6 (Two-way ANOVA with post-hoc 
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Tukey’s test, main effect of RC-vs-FC: P=8.7×10−12; main effect of ROI-type: P=2.3×10−12; 

interaction: P=7.9×10−10). f, Cumulative distribution plots of peri-SWR, z-scored ΔF/F0 for 

all CA3SCs shown in (e).

Extended Data Fig. 9 |. SWR-associated high-synchrony events containing recurring CA3SC 
assemblies.
a, Example SWR-associated high-synchrony event (HSE). Top, heatmap showing ΔF/F0 

of individual CA3SC ROIs with place fields. Bottom, mean ΔF/F0 and the first principal 

component (PC) of these ROIs (bottom). 0 point indicates onset of an SWR event. Red 

line indicates duration of the detected HSE with threshold (Methods). b, Distribution of 

HSE peak latencies and co-occurrence rate (inset) with SWRs (n=500 HSEs from 4 mice). 

Red center line in the box plot indicates the median, bottom and top edges of the box 

denote 25th and 75th percentiles. The whiskers indicate maxima and minima. c, Distribution 

of individual CA3SC latencies within SWR-associated HSEs. d, Left, normalized cross-

correlation (CC) at zero lag between all pairs of CA3SC ROIs replotted from Fig. 4b. Purple 

dashed line denotes result including all detected ROIs for comparison. Middle, distribution 
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of correlation coefficients between ROIs putatively from the same cells (black: n=139 ROIs, 

all together; each color: n = 34.75±13.84 clustered ROIs, Mean±s.e.m, individual mice). 

Red center line in the box plot indicates the median, bottom and top edges of the box 

denote 25th and 75th percentiles. The whiskers indicate maxima and minima. Right, fraction 

of clustered ROIs putatively originating from common cells (n=3315 ROIs from 4 mice, 

Methods). Red center line in the box plot indicates the median, bottom and top edges 

of the box denote 25th and 75th percentiles. The whiskers indicate maxima and minima. 

e, Left, similarity matrix of all HSEs containing recurring assemblies in a representative 

session. Middle, assembly recruitment for each identified HSE cluster. Colored lines and 

traces with ID numbers correspond to identified HSE clusters and recurring assemblies in 

the similarity map, respectively. Right, example plots showing participation of 2 recurring 

assemblies across identified HSE clusters in Fig. 4d (activation quantified as normalized 

covariance; clusters represented by different colors). f, Boxplot of the number of CA3SC 

ROIs in each identified recurring assembly (median with 25th and 75th percentiles from n=4 

mice). The whiskers indicate maxima and minima. g, Distribution of correlation coefficients 

between place fields within the recurring assemblies (magenta, mean with 25th and 75th 

percentiles), and all cue-place CA3SC ROIs in a field of view (black, mean of 4 mice). Pairs 

with coefficients >0.7 are considered as ‘Near’ fields, and coefficients <0 are considered 

as ‘Other’ field pairs. Middle, boxplots of correlation coefficients between the distribution 

within assemblies (n=28 HSE clusters from 4 mice, median with 25th and 75th percentiles). 

Right, fractions of ‘Other’ fields and ‘Near’ fields pairs within assemblies. Right, scatter plot 

based on these fractions (magenta circles for each assembly, black cross for mean value of 

all ROIs from each mouse). Notably, the lack of bias for recurring assemblies to comprise 

CA3SCs representing similar spatial locations suggests that individual structured replay 

sequences of CA3SC activity represent past experience in a relatively unbiased manner. Red 

center lines in the box plots indicate the median, bottom and top edges of the boxes denote 

25th and 75th percentiles. The whiskers indicate maxima and minima, outliers excluded.
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Extended Data Fig. 10 |. Validation of convNMF on simulated CA3 replay sequences.
a, Randomly, recurrently-connected spiking network model (pyramidal cells, blue triangles; 

interneurons, red circles) of CA3 used to generate synthetic replay sequences (Methods). 

b, Replay occurs spontaneously at rest in the simulated CA3 network (n=8000 simulated 

pyramidal cells, 150 inhibitory interneurons): 10 s simulation epoch, sampled at 10 kHz. 

Cell × time raster. c, Simulated spike rasters from (b) are re-binned to the calcium sampling 

rate (30 Hz). d, Re-binned spikes are then convolved with a calcium kernel (tau=0.65 

s), with added white Gaussian noise to simulate experimental conditions. e, Schematic 

of convNMF technique used to detect sequential reactivation events, vs standard NMF 

(Methods). The convNMF approximates the cell × time raster as the sum of K matrices, each 

which can be decomposed into the convolution of a rank-1 temporal component with cell × 

lag matrix. Unlike standard NMF, convNMF extracts recurring, localized sequential activity 

patterns. f, High-fidelity reconstruction of the simulated replay/calcium dataset in (b) is 

achieved using the convNMF-identified replay ensembles (left panels) and temporal factors 

(top traces). Each cell-component (left panel) represents a recurring sequential pattern of 

cell activations detected in the network. g, Slopes and intercepts were calculated for inferred 

replay events which were then compared to ground truth. ConvNMF accurately identifies 

replay events and extracted sequences of replaying cells. Left, scatterplot of true (x-axis) 

vs inferred (y-axis) replay slopes (a.u.). Note that this simulation also demonstrates that 

forward and reverse replay events are reliably differentiated by convNMF. Right, distribution 

of true (x-axis) vs inferred (y-axis) replay intercepts. h, ROC curve of sensitivity/specificity 

of replay event detection by convNMF. Specificity is prioritized over sensitivity. 20–60% of 

“true” replay events were detected at an 80% specificity threshold.
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Fig. 1 |. Rapid reorganization of CA3SC activity during sensory experience.
a, Left, schematic of axonal two-photon (2p) imaging of CA3SCs in CA1 and contralateral 

local field potential (LFP) recording. Box, example two-photon FOV with axonal bouton 

ROIs (coloured dots; scale bar, 50 μm) and an example CA1 SWR from one representative 

mouse (n = 6 in this study; scale bar, 200 ms). Top right, imaging schematic and 

example coronal section of a representative Grik4-Cre mouse (n = 6 in this study) dorsal 

hippocampus virally expressing GCaMP6f. Bottom right, example CA3SC fluorescence 

traces. ΔF/F0, relative fluorescence change; FOV, field of view; Obj., objective; SO, 

stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. b, Left, schematic of the 

test conditions. Right, schematic of random (RC) and fixed (FC) sensory cue presentation 

(Methods). ITI, inter-trial interval. c, Behavioural experiment design. d, Top, fraction of 

cue-responsive and non-cue-responsive CA3SC ROIs in the RC-NS condition (n = 7,055 

ROIs, n = 6 mice). Bottom, cue-responsive CA3SCs according to cue preference. e, Top, 

fluorescence responses of all identified cue-CA3SCs during the RC-NS condition for each 

cue modality. Bottom, average responses showing cue-specific activity. f, Schematic of 

dimensionality reduction with TCA followed by K-means clustering to identify cue-CA3SCs 

with adaptation. g, Summary of trial-by-trial dynamics for cue-CA3SC clusters showing 

negative (Down) and positive (Up) modulation of cue response (Methods and Extended Data 

Fig. 4). h, Fractions of cue-CA3SCs in the Up (purple), Down (yellow) and Other (grey) 

categories.
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Fig. 2 |. Suppressed reactivation of task-irrelevant sensory information during SWRs.
a, Random cue and non-spatial (RC-NS) paradigm. Pre and Post are stimulus-free periods 

before and after sensory stimulation (Stim.), respectively. b, Sensory- and SWR-related 

activity profiles of two representative CA3SC ROIs recorded simultaneously. Top, cue-

evoked mean response during the RC-NS condition for each modality. Middle, peri-SWR 

activity during RC-NS inter-stimulus intervals. Bottom, average responses. c, Top, average 

responses of all cue-selective CA3SCs (Cue, red, n = 1,219) and other, non-cue-selective 

CA3SCs (Other, black, n = 5,836) centred on SWR onset during RC-NS inter-stimulus 

intervals (n = 6 mice). Bottom, peri-SWR responses (mean ± s.e.m.) for cue-responsive 

and other CA3SCs during the Pre, Stim. and Post trials. d, ΔF/F0 response (mean ± s.e.m.) 

of axons from cue-CA3SCs (all responses per ROI are averaged) indexed to inter-trial 

intervals (n = 17.76 ± 1.39 SWRs (mean ± s.e.m.) in each inter-trial interval, n = 6 mice). 

e, Left, distributions of factor loadings for each principal component (Methods) representing 

SWR-associated activation (green) and suppression (magenta) for cue-responsive and other 

CA3SCs in Stim. and Post trials. Right, a large fraction of axons from cue-responsive 

CA3SCs are suppressed (two-sided Fisher’s exact test with Bonferroni correction, P = 1.9 × 

10−26). *P < 0.05. f, Summary for cue-responsive and other CA3SCs in each session block 

(mean ± s.d.; in Pre only, n = 4 mice; Other, n = 3,226; Cue, n = 961; two-way ANOVA 

with Tukey’s post hoc test: Cue × Other, P = 2.8 × 10−17; Pre × Post, P = 4.4 × 10−16; 

interaction, P = 1.2 × 10−16). *P < 0.05. g, Peri-SWR response magnitude (mean ± s.d.) for 

all active CA3SCs in the RC-S task (Other, n = 3,371; Place, n = 1,644; Cue-Place, n = 198; 

Cue, n = 501; n = 4 mice; one-way ANOVA with Tukey’s post hoc test: main effect of ROI 

type, P = 2 × 10−16). Cue-CA3SCs with significant place fields are plotted separately from 

cue-CA3SCs (Cue-Place, crimson). *P < 0.05.

Terada et al. Page 39

Nature. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. Adaptive switch in reactivation of cue-CA3SCs during SWRs.
a, Left, design of the imaging session on day 5. Random sensory cues were presented on a 

non-spatial belt (RC-NS, Pre) before fixed cue and spatial (FC-S, Post) trials. Right, diagram 

of CA3SC ROI classification (Extended Data Fig. 8). NS, not significant. b, Left, lap-by-lap 

ΔF/F0 of a representative visual cue-CA3SC (top) and place-CA3SC (bottom) during the 

spatial task (Post). Right, average response of the same ROIs in the Pre trial. c, Fraction of 

cue-responsive (red), place-responsive (blue) and other (grey) CA3SCs. d, Left, comparison 

of peri-SWR response (mean ± s.e.m.) for cue- and place-CA3SCs from Pre and Post trials. 

Right, distributions of peak responses for cue-selective (top), place-selective (middle) and 

other (bottom) CA3SCs in the Pre (contour line) and Post (fill) trials. e, Summary (mean ± 

s.d.) of peri-SWR response magnitudes (Cue (red), n = 470; Place (blue), n = 1,170; Other 

(grey), n = 418; n = 3 mice; two-way ANOVA with Tukey’s post hoc test: RC × FC, P = 

3.3 × 10−10; ROI type, P = 9.4 × 10−26; interaction, P = 6.9 × 10−11). *P < 0.05. f, Top, 

distributions of factor loadings for each principal component representing SWR-associated 

suppression and activation coefficients of all CA3SCs shown in c–e. Bottom, fraction of 

SWR recruitment of CA3SCs in the RC-NS and FC-S tasks (two-sided Fisher’s exact test: 

Cue, P = 1.1 × 10−43; Place, P = 1.9 × 10−13; Other, P = 0.72). *P < 0.05.
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Fig. 4 |. Replay of sensory cue-driven cognitive maps in CA3SCs.
a, Top, schematic of the fixed cue and non-spatial (FC-NS) task with an activity heatmap 

in which CA3SC ROIs are sorted by peak activity as a function of position for CA3SC 

ROIs with place fields. Middle, correlation matrix of the same CA3SCs. Bottom, average 

place field profile for discrete clusters identified on the basis of similarities between 

cue-evoked place fields (Methods). b, Pairwise cross-correlation at zero-time lag during 

SWR-associated HSEs for all CA3SCs with a place field, plotted against their place field 

peak in bins of 5 cm (n = 1,666,282 pairs, n = 4 mice). Each colour corresponds to an 

individual mouse; the black line indicates the mean with the grey shaded area indicating the 

97.5% confidence interval from shuffled pairs. c, Left, representative SWR-associated replay 

events. Colours correspond to the clustered places from a (bottom). Right, distribution of 

real (grey) and shuffled (white) replay scores. Dashed line, 95th percentile (shuffle). d, 

Recurring assemblies of cue-place-CA3SCs during HSEs. Left, eight recurring sequential 

factors detected by convNMF (Methods and Extended Data Fig. 10). Right, ΔF/F0 traces 

sorted by latency of peak activation within the assembly. e, Left, number of recurring 

assemblies in HSE clusters. The white line indicates the median; box edges correspond to 

25th and 75th percentiles. Whiskers extend to the maxima and minima. Right, number of 

HSE clusters in which each recurring assembly participated (n = 28 HSE clusters, n = 4 
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mice). f, Box plot indicating the fraction of recurring assembly-containing HSEs in each 

cluster that also contained replay sequences (n = 19 HSE clusters with assemblies from four 

mice). Whiskers extend to the maxima and minima, with outliers excluded. Dots correspond 

to individual HSE clusters.
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