
Highlighting the Unique Roles of Radical S-Adenosylmethionine
Enzymes in Methanogenic Archaea

Kaleb Boswinkle,a Justin McKinney,a Kylie D. Allena

aDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

Kaleb Boswinkle and Justin McKinney contributed equally to this article. Author order was determined alphabetically.

ABSTRACT Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety
of difficult biochemical reactions in various pathways across all domains of life. These
metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive
59-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive
substrates. Interestingly, the genomes of methanogenic archaea encode many unique
radical SAM enzymes with underexplored or completely unknown functions. These organ-
isms are responsible for the yearly production of nearly 1 billion tons of methane, a
potent greenhouse gas as well as a valuable energy source. Thus, understanding the
details of methanogenic metabolism and elucidating the functions of essential enzymes
in these organisms can provide insights into strategies to decrease greenhouse gas emis-
sions as well as inform advances in bioenergy production processes. This minireview pro-
vides an overview of the current state of the field regarding the functions of radical SAM
enzymes in methanogens and discusses gaps in knowledge that should be addressed.
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Radical S-adenosylmethionine (SAM) enzymes comprise one of the largest known
enzyme superfamilies, with over 700,000 estimated members (1). These enzymes

use SAM and a [4Fe-4S] cluster to catalyze complex reactions on inert substrates in var-
ious biochemical pathways, including cofactor biosynthesis, secondary metabolite bio-
synthesis, and nucleic acid modification (2, 3). Radical SAM enzymes are generally
defined by the presence of a CX3CX2C motif that coordinates a [4Fe-4S] cluster, with
the fourth iron in the cluster being ligated to the amino and carboxylate groups of
SAM (Fig. 1) (4, 5). Although the majority of radical SAM enzymes (.90%) contain the ca-
nonical CX3CX2C motif, several noncanonical cysteine motifs have also been described in
enzymes carrying out radical SAM chemistry (6). In a typical radical SAM reaction, the
reduced [4Fe-4S]11 cluster donates an electron to the sulfonium group of SAM, resulting
in homolytic bond cleavage to generate methionine and a highly reactive 59-deoxyade-
nosyl radical (59-dAdo�) (3, 7, 8). The 59-dAdo� abstracts a hydrogen atom from an other-
wise unreactive site to generate 59-deoxyadenosine (59-dAdoH) and a substrate radical
that can undergo further chemistry (Fig. 1). Established reactions catalyzed by radical
SAM enzymes include radical generation on a protein substrate, isomerization, cycliza-
tion, carbon backbone rearrangement, sulfur insertion, and methylation (3).

Most radical SAM enzymes are found encoded in bacterial genomes, with the next
largest proportion coming from archaea (6). Eukaryotes generally have the fewest radi-
cal SAM superfamily members. For example, the human genome encodes eight radical
SAM enzymes, all of which have established functions (9–11). Given the extensive suite
of natural products that are produced by different bacterial organisms, many radical
SAM enzymes in various bacteria are involved in secondary metabolite biosynthesis.
Conversely, although secondary metabolites and their biosynthetic pathways have
been identified in some archaea (12, 13), most archaeal organisms do not exhibit the
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potential for robust secondary metabolism, and thus, their radical SAM enzymes are
more likely to be involved in essential primary metabolism.

Methanogenic archaea (“methanogens”) are diverse and widespread microbes that are
strictly dependent upon methanogenesis, a form of anaerobic respiration that reduces simple
carbon compounds to generate methane as an end product. These organisms produce nearly 1
billion tons of methane each year, accounting for about 70% of global methane emissions (14,
15). Given the role of methane as a potent greenhouse gas and as a potential renewable energy
source (16, 17), investigating essential enzymes in methanogens could lead to the development
of methane mitigation strategies and could have implications for bioenergy applications.
Interestingly, methanogens contain an abundance of putative radical SAM enzymes compared
to other archaea, eukaryotes, andmany bacteria. However, currently, only about half of the puta-
tive radical SAM enzymes in methanogens have established or likely functions based on experi-
mental evidence or high sequence similarity to well-characterized radical SAM enzymes (see
Tables S1 and S2 in the supplemental material for lists of putative radical SAM enzymes in two
model methanogens,Methanococcus maripaludis S2 andMethanosarcina acetivorans C2A). Thus,
these organisms represent an underexplored domain for uncovering new functions and mecha-
nisms of radical SAM enzymes.

Some of the radical SAM enzymes with known functions in methanogens are well-charac-
terized and widespread enzymes that are additionally found in bacteria and/or eukaryotes,
while others catalyze less common reactions that are unique to only methanogens or a
smaller subset of organisms including methanogens (Table 1). This minireview focuses on the
latter group of methanogenic radical SAM enzymes to summarize the current state of the
field regarding the diverse functions of radical SAM enzymes in methanogens, especially
highlighting recent exciting work in this area as well as discussing remaining questions that
require further research.

TETRAETHER LIPID BIOSYNTHESIS

One of the defining features of archaea that distinguishes them from bacteria and
eukaryotes is the unusual chemistry of their membrane lipids. As opposed to mem-
branes composed of fatty acids with ester linkages to glycerol backbones, archaea
contain isoprenoidal membranes with ether linkages to glycerol backbones. There
are two major types of isoprenoid ether lipids: glycerol diphytanyl diethers (archaeol)
and glycerol dibiphytanyl glycerol tetraethers (GDGTs) (Fig. 2A) (18). Similar to tradi-
tional phospholipid-based membranes, archaeol lipids form a bilayer membrane
structure, whereas GDGTs, which consist of two diether lipids fused at their hydro-
phobic ends (Fig. 2A), result in a membrane-spanning structure to generate mono-
layer membranes. Different archaea have various proportions of archaeol and GDGTs
in their membranes, where the latter are especially prevalent in halophilic and ther-
mophilic organisms (18, 19). The higher rigidity and lower permeability of GDGT lipids
likely provide an advantage in extreme environments. Supporting this idea, growth experi-
ments have shown that archaea increase their GDGT/archaeol ratio when cultured at ele-
vated temperatures (20, 21). In some nonmethanogenic archaea, GDGTs are further modified

FIG 1 Common steps in canonical radical SAM enzyme catalysis.
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through the introduction of cyclopentane or cyclohexane rings at the C-7 and C-3 positions
of each chain (18). Additional GDGT modifications include the addition of hydroxyl or methyl
moieties, alteration of the polar head groups, and cross-linking of the two biphytanyl chains.
These modifications influence the physicochemical properties of the lipids and thus serve as
a mechanism for adaptation to various environmental conditions (18).

The enzyme(s) and mechanism involved in the key step of GDGT biosynthesis, the
diether-to-tetraether conversion (Fig. 2A), remained a mystery until just this year (22).
Through bioinformatic analyses, a putative radical SAM enzyme was identified in the
genomes of tetraether lipid-containing archaea, including the model methanogen
Methanosarcina acetivorans, which was a likely candidate to catalyze the required C-C
bond formation. The heterologous expression of the proposed gene MA_1486 in
Methanococcus maripaludis, a non-GDGT-containing methanogen, resulted in the pro-
duction of GDGT, thus indicating that the MA_1486 gene product is sufficient for GDGT
formation, likely using archaeol precursors (22). Thus, MA_1486 was defined as a tet-
raether synthase (Tes) (Fig. 2A). The M. acetivorans genome encodes another Tes homo-
log (MA_1114) that, when heterologously expressed in M. maripaludis, does not result in
GDGT production. However, the authors noted the production of trace amounts of mac-
rocyclic archaeol (Fig. 2A) in the strain expressing MA_1114. Macrocyclic archaeol was

TABLE 1 Summary of the known functions of radical SAM enzymes in methanogens and their distributions in different organismsa

Radical SAM enzyme Function(s) Distribution(s) Reference(s)
Tes Tetraether lipid biosynthesis Mostly archaea, some bacteria 22
PylB Pyrrolysine biosynthesis Methanosarcinalesmethanogens 32
MJ0619 Methylase in H4MPT biosynthesis Methanogens and some bacteria 37
Mmp10 5-(S)-Methylarginine synthesis

(posttranslational modification of MCR)
Methanogens 48, 50

QCMT 2-(S)-Methylglutamine synthesis
(posttranslational modification of MCR)

Some methanogens 47

AhbC Alternative heme biosynthesis, removal of 2
acetate side chains

Archaea and some bacteria 58

AhbD Alternative heme biosynthesis, heme b
synthase—conversion of 2 propionate side
chains to vinyl groups

Archaea and some bacteria 58, 62

CofG/CofH F0 synthase; F420 biosynthesis Methanogens and some bacteria 71
NifB Nitrogenase cofactor biosynthesis Some archaea and some bacteria 74, 79
HcgA [Fe]-hydrogenase cofactor biosynthesis Hydrogenotrophic methanogens 89, 91
RaSEA Archaeosine biosynthesis Some archaea 102
Tyw1 (Taw1) 4-Demethylwyosine synthase; tRNA

modification
Archaea and eukaryotes 108, 110

MtaB ms2t6A tRNA modification Widespread distribution in all domains
of life

118

Elp3 cm5U tRNA modification Ubiquitous in archaea and eukaryotes,
some bacteria

121, 123

QueE Biosynthesis of preQ0, precursor of tRNA
modifications—queuosine and
archaeosine

Ubiquitous in all domains of life 99

BioB Biotin biosynthesis Widespread in all domains of life 126
ThiC Thiamine pyrophosphate biosynthesis Widespread in all domains of life 127
MoaA Molybdopterin biosynthesis Widespread in all domains of life 128
PFL-AE Activating enzyme for pyruvate formate lyase Widespread in archaea and bacteria 3
RNR-AE Activating enzyme for anaerobic

ribonucleotide reductase
Widespread in archaea and bacteria 3

KAM N«-Acetyl-b-lysine biosynthesis for salt
tolerance; L-lysine catabolism

Most methanogens and many bacteria 7, 129

EAM b-Glutamate biosynthesis for salt tolerance Some methanogens and some bacteria 130
AtsB Formylglycine generation during sulfatase

maturation
Sporadic distribution in all domains of
life

3

Dph2 Diphthamide biosynthesis (posttranslational
modification of Elp2)

Widespread in archaea and eukaryotes 131

aQCMT, glutamine C-methyltransferase; PFL-AE, pyruvate formate lyase-activating enzyme; RNR-AE, ribonucleotide reducatse-activating enzyme; KAM, lysine 2,3-
aminomutase; EAM, glutamate 2,3-aminomutase.
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FIG 2 Summary of reactions catalyzed by methanogenic radical SAM enzymes discussed in this minireview. (A) Proposed reaction
catalyzed by tetraether synthase (Tes) in tetraether lipid biosynthesis. (B) Proposed reaction catalyzed by 3-methyl-D-ornithine synthase
(PylB) in pyrrolysine biosynthesis. (C) Proposed reaction catalyzed by MJ0619 from M. jannaschii in tetrahydromethanopterin biosynthesis.

(Continued on next page)
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also observed in cells expressing the confirmed Tes (MA_1486 or Maeo_0574) and was
proposed to be a side product that occurs during heterologous expression (22).
Interestingly, macrocyclic archaeol has been identified in only a select few archaea, all of
which are thermophilic methanogens from hydrothermal vents (23–25).

Although not present in methanogenic lipids, the cyclopentane rings in GDGTs
found primarily in the phyla Crenarchaeota and Thaumarchaeota are also installed by
radical SAM enzymes (26). None of these radical SAM enzymes involved in archaeal
lipid biosynthesis have been biochemically characterized, so the mechanism and direct
substrates utilized for C-C bond formation in tetraether lipid synthesis and the forma-
tion of cyclopentane rings in archaeal lipids remain unclear. Now that the identities of
these enzymes have been revealed, in vitro experiments can be pursued to reveal the
mechanistic details of these intriguing reactions.

PYRROLYSINE BIOSYNTHESIS

Pyrrolysine is the 22nd genetically encoded amino acid, which was initially described in
the active site of the monomethylamine methyltransferase MtmB from the methanogen
Methanosarcina barkeri (27). Pyrrolysine is encoded by amber (UAG) codons, which were
first identified in the genes encoding the three methyltransferases required for methano-
genesis from methylamines (28). Since then, pyrrolysine has been found in other enzymes,
including the tRNAHis guanylyltransferases (Thg1) (29) and certain transposases (30) in
Methanosarcina, and has also been identified in some bacteria (31). Five pyl genes are nec-
essary for pyrrolysine biosynthesis and its incorporation into proteins (32). The pylT gene
encodes tRNAPyl, and pylS encodes pyrrolysyl-tRNA synthetase. The other three genes are
required for the biosynthesis of pyrrolysine from 2 molecules of lysine. The first step is car-
ried out by PylB, a radical SAM enzyme that catalyzes a carbon skeleton rearrangement of
L-lysine to produce (3R)-3-methyl-D-ornithine (Fig. 2B) (33). The crystal structure of PylB
expressed and purified from Escherichia coli revealed both SAM and the product bound to
the active site, thus providing strong support for the function of PylB in (3R)-3-methyl-D-or-
nithine production (34). Despite structural information, an in vitro demonstration of PylB
catalytic activity has not yet been reported. The reaction is proposed to occur analogously
to that for B12-dependent glutamate mutase (32, 34, 35). Thus, the radical SAM-generated
59-dAdo� would abstract a hydrogen atom from C-4 of lysine, leading to C-C bond cleav-
age that results in a glycyl radical intermediate and 4-aminobutene. The glycyl radical can
then recombine with the former C-4 position of the substrate to form a new C-C bond fol-
lowed by reduction and protonation to yield the final (3R)-3-methyl-D-ornithine product
(32). Future in vitro studies are necessary to confirm PylB activity and provide experimental
evidence for the proposed mechanism.

TETRAHYDROMETHANOPTERIN BIOSYNTHESIS

Tetrahydromethanopterin (H4MPT) (Fig. 2C) is a modified folate cofactor found in
methanogens that, like tetrahydrofolate (H4F), functions to carry and transfer C1 groups of
various oxidation states (36). H4MPT is used for several steps in the methanogenesis path-
way and, in many methanogens, is also used instead of H4F for canonical folate-dependent
reactions in amino acid and nucleic acid biosynthesis. One interesting structural feature
that distinguishes H4MPT from H4F is the presence of methyl groups at the C-7 and C-9
positions (Fig. 2C). The unreactive nature of the sites of methylation led to the proposal
that radical SAM chemistry may be involved in their installation (37). Genomic analyses
revealed that in some methanogens, a radical SAM-encoding gene is found near the gene

FIG 2 Legend (Continued)
(D) Reaction catalyzed by Mmp10 in the posttranslational modification of MCR. (E) Reaction catalyzed by glutamine C-methyltransferase
(QCMT) in the posttranslational modification of MCR. (F) Reactions catalyzed by AhbC and AhbD in the alternative heme biosynthesis
pathway. (G) Reaction catalyzed by F0 synthase (CofG/CofH) in F420 biosynthesis. (H) Reaction catalyzed by NifB in FeMo-co biosynthesis.
(I) Proposed involvement of HcgA in FeGP cofactor biosynthesis. (J) Reactions catalyzed by QueE and RaSEA in archaeosine biosynthesis.
(K) Reaction catalyzed by Tyw1 (Taw1) in the biosynthesis of wyosine derivatives. (L) Proposed reactions catalyzed by MtaB in the
synthesis of methylthiolated tRNAs. (M) Reaction catalyzed by Elp3 in the synthesis of carboxymethyl-uridine. Dotted arrows represent
multiple steps.
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encoding b-ribofuranosylaminobenzene 59-phosphate synthase, a key enzyme required
for H4MPT biosynthesis (38, 39). Thus, the corresponding radical SAM-encoding gene from
Methanocaldococcus jannaschii, MJ0619, was used for heterologous-expression experi-
ments in E. coli to gain insight into the potential role of this gene product in H4MPT bio-
synthesis (37). When MJ0619 was expressed in E. coli, various methylated pterins were
detected in the cell extracts by liquid chromatography-mass spectrometry (LC-MS), consist-
ent with this enzyme catalyzing methylation at both the C-7 and C-9 positions of a pterin
substrate (Fig. 2C). Since E. coli does not normally produce methylated pterins, this
suggested that MJ0619 catalyzes the methylation reactions in H4MPT biosynthesis.
Additionally, because 6-hydroxyethyl-7-methylpterin was identified in cell extracts contain-
ing MJ0619, but the corresponding dimethyl-folate was not identified, it was concluded
that the likely substrate for MJ0619 is 6-hydroxmethyl(dihydro)pterin, a common early in-
termediate in both H4F and H4MPT biosynthesis (37).

Surprisingly, isotope feeding studies with E. coli expressing MJ0619 revealed that
the enzyme likely does not use SAM as a methyl group donor since none of the deute-
rium atoms from CD3-Met were incorporated into the C-7 pterin methyl group added
by MJ0619 (37). This is different from all other characterized radical SAM methylases,
which use 2 molecules of SAM, one as the C1 donor for the methylation reaction and
one as the source of 59-dAdo� for radical SAM chemistry (40). Interestingly, further
feeding studies with CD3-acetate led to the proposal that MJ0619 uses N5-N10-methyl-
ene-tetrahydrofolate (CH2H4F) as a C1 source for the methylation of pterins when it is
expressed in E. coli (37). This is analogous to thymidylate synthase, where CH2H4F
serves first as a methylene donor and then as a hydride donor to generate the final
methyl group for the biosynthesis of dTMP from dUMP (41, 42). Confirmation of the
function of MJ0619 and its homologs as well as details of the unique mechanism used
for methylation during H4MPT biosynthesis will require in vitro enzymatic studies,
which have yet to be reported.

POSTTRANSLATIONAL MODIFICATION OF METHYL-COENZYMEM REDUCTASE

Methyl-coenzyme M reductase (MCR) catalyzes the final rate-determining step of metha-
nogenesis. MCR is a dimer of heterotrimers with an a2b2g2 configuration, harboring two
active sites containing the F430 nickel tetrapyrrole prosthetic group. When the first crystal
structure of MCR from Methanothermobacter marburgensis was determined, five unusual
posttranslational modifications (PTMs) were revealed in the a subunit near the active site:
thioglycine, N1-methylhistidine, S-methylcysteine, 5-(S)-methylarginine, and 2-(S)-methylglut-
amine (43). Except for N1-methylhistidine, the genes/enzymes required to install each of
these PTMs have now been identified (44–47), including the identification and biochemical
characterization of the radical SAM methylases responsible for the synthesis of 5-(S)-methyl-
arginine (Fig. 2D) (44, 48–50) and 2-(S)-methylglutamine (Fig. 2E) (47). Upon searching the
genome neighborhood of MCR operons for potential genes encoding enzymes involved in
installing PTMs, a radical SAM-encoding gene annotated as “methanogenesis marker 10”
(mmp10) was identified. To elucidatemmp10’s function, it was deleted inM. acetivorans, and
the resulting MCR PTMs were analyzed by mass spectrometry (44). The authors found that
the a subunit from the mmp10 deletion strain contained an unmodified arginine residue at
position 285, thus demonstrating that Mmp10 is required for generating the 5-(S)-methylar-
ginine PTM found in methanogenic MCRs. In terms of the physiological impacts of the
unique PTM, it was observed that the lack of methylated arginine impaired the ability of M.
acetivorans to grow under oxidative or thermal stress conditions. Furthermore, the purified
variant MCR was shown to have a decreased melting temperature (Tm) (74.6°C versus 82.6°C
for the wild type), further indicating that the 5-(S)-methylarginine impacts the thermal stabil-
ity of MCR from M. acetivorans (44). Interestingly, the methylated arginine seems to have a
more substantial impact on M. maripaludis MCR, where a deletion strain lacking this modifi-
cation showed a highly impaired growth rate and the rate of methanogenesis was only
about half the rate of the wild type (49). The in vitro enzymatic activities of MCR variants lack-
ing specific PTMs have not yet been reported; thus, any specific role that 5-(S)-
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methylarginine plays in catalysis remains unclear. Interestingly, the crystal structure of MCR
from M. acetivorans lacking the 5-(S)-methylarginine and other unique PTMs was virtually
identical to the wild-type MCR structure (45).

Biochemical characterization of Mmp10 revealed that the enzyme is a cobalamin-
dependent radical SAM methylase (48) despite the lack of an N-terminal cobalamin
binding domain found in other cobalamin-dependent radical SAM methylases (40, 51).
Further experiments demonstrated that cobalamin functions as an intermediate
methyl group carrier, where SAM is used as the initial methyl group donor to generate
methylcobalamin and S-adenosylhomocysteine (SAH) in a nucleophilic substitution
reaction with cob(I)alamin (48). Thus, Mmp10 is proposed to employ a mechanism sim-
ilar to those of other cobalamin-dependent methylases (51), where one SAM is used in
nucleophilic chemistry to generate methylcobalamin and the other SAM is used in rad-
ical SAM chemistry to generate a substrate radical at the site of methylation that then
reacts with methylcobalamin to generate the methylated product and cob(II)alamin.
Cob(II)alamin can then be reduced to cob(I)alamin with titanium(III) citrate in vitro to
allow remethylation with SAM, followed by subsequent turnovers (48). Recently, the
crystal structure of Mmp10 was determined, which supports the proposed mechanism
and provides further details of how the enzyme controls the two different reactivities
of SAM (50). Interestingly, the radical SAM [4Fe-4S] cluster is coordinated by 3 cysteine
residues as well as a strictly conserved tyrosine residue, which excludes SAM binding
to the “unique” iron that is normally a defining feature of radical SAM enzymes. It is
proposed that this places SAM in a position to react with cob(I)alamin to generate the
methylcobalamin intermediate (50). Upon binding another SAM as well as the protein
substrate, the active site then appears to reorganize, displacing tyrosine from the clus-
ter, thus allowing coordination with SAM and subsequent radical SAM cleavage to pro-
duce 59-dAdo� that initiates the radical methylation reaction. The structure of Mmp10
also revealed a mononuclear iron site coordinated by 4 cysteine residues. Mutagenesis
studies indicated that the intact iron site is required for methylation activity; however,
its detailed function in Mmp10 catalysis remains unknown (50).

Like C-5 the arginine methylation, it was proposed that a radical SAM enzyme would
be required to catalyze the methylation of the a-carbon of a glutamine residue to gener-
ate the 2-(S)-methylglutamine (Fig. 2E) found in the active sites of some MCRs (52), and
the identity of this enzyme was recently confirmed (47). Bioinformatic investigations
identified a radical SAM enzyme-encoding gene located nearby the mcr gene cluster
andmmp10 in some methanogens (44). This gene encodes a predicted N-terminal cobal-
amin binding domain, as observed in other characterized cobalamin-dependent radical
SAM methylases outside Mmp10. The enzyme from Methanoculleus thermophilus was
heterologously expressed and purified from E. coli, followed by biochemical characteriza-
tion (47). The reconstituted protein binds a single [4Fe-4S] cluster as well as cobalamin in
a base-off, His-off state. Assays with a 28-mer peptide substrate resulted in the C-2 meth-
ylation of the expected glutamine residue and produced 59-dAdoH and SAH in equal
molar ratios. Additionally, the cobalamin cofactor was demonstrated to cycle between
cob(I)alamin, methylcob(III)alamin, and cob(II)alamin, consistent with the established
mechanism for cobalamin-dependent radical SAM methylases (51). The physiological
relevance of the 2-(S)-methylglutamine PTM of MCR is not yet known, but this can now
be explored through knockout studies since the identity of the gene required for the
modification has been confirmed. Notably, the 2-(S)-methylglutamine modification exhib-
its a more sporadic distribution compared to the conserved 5-(S)-methylarginine modifi-
cation in various MCRs for which the PTMs have been elucidated (53).

HEME BIOSYNTHESIS

Heme is an essential prosthetic group for several enzymes involved in a range of
fundamental biological processes in most organisms. In methanogens, heme is found
in cytochrome-containing methanogens of the order Methanosarcinales, where cyto-
chromes play a key role in energy metabolism (54). In all eukaryotes and most bacteria,
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heme is synthesized in a well-established canonical pathway (55). In the later steps of
heme biosynthesis, two oxidative decarboxylation reactions are required to convert
two propionate side chains of coproporphyrinogen III to two vinyl groups in the proto-
porphyrinogen IX product. In most bacteria, this reaction is catalyzed by oxygen-inde-
pendent coproporphyrinogen III oxidase, a well-characterized radical SAM enzyme
known as HemN that contains two simultaneously bound SAM molecules in the active
site (56). Recent mechanistic studies have elucidated the roles of each SAM: the canoni-
cal SAM bound to the [4Fe-4S] cluster, SAM1, is the source of 59-dAdo�, which abstracts
a hydrogen atom from the methyl group of SAM2 to generate a SAM-based methylene
radical. The latter species is uniquely proposed to be responsible for the key hydrogen
atom abstraction from the b-carbon of a propionate side chain to initiate the vinyl con-
version reaction (57).

Archaea utilize an alternative heme biosynthesis pathway where, among other dif-
ferences in later steps of the pathway, the installation of the two vinyl side chains
occurs in the last reaction involving the conversion of iron coproporphyrin III to heme
b catalyzed by the heme synthase radical SAM enzyme AhbD (Fig. 2F) (58–60).
Interestingly, AhbD from M. acetivorans and HemN from E. coli share only 17% identity,
and although they catalyze the same reactions, they use different substrates: a por-
phyrinogen in the case of HemN and an iron-porphyrin for AhbD. In contrast to HemN,
there is no evidence for AhbD binding more than one SAM. Furthermore, in addition
to the radical SAM cluster, AhbD contains an auxiliary [4Fe-4S], which is coordinated
by a cysteine-rich motif in the C terminus (61). In vitro enzymatic and mutagenesis
studies on AhbD from M. barkeri indicated that the auxiliary cluster was essential for
AhbD heme synthase activity but was not required for SAM cleavage and not directly
involved in substrate binding (62). Based on electrochemical studies, the role of the
auxiliary cluster was proposed as an electron acceptor necessary for the decarboxyl-
ation reaction (62). Thus, the proposed mechanism involves traditional radical SAM
chemistry to generate 59-dAdo� that, as opposed to HemN, abstracts an H atom directly
from the propionate side chain of the substrate to initiate the decarboxylation reac-
tion. The single electron resulting from the decarboxylation reaction is proposed to
first reduce the heme iron to Fe(II) and then be transferred to the auxiliary cluster,
which finally donates the electron to an external acceptor to reset the enzyme for
another turnover (62).

The alternative heme biosynthesis pathway contains one additional radical SAM
enzyme called AhbC, which catalyzes the penultimate step of the alternative pathway
to remove two acetate side chains at C-2 and C-7 of 12,18-didecarboxysiroheme to
produce the iron-coproporphyrinogen III substrate for AhbD (Fig. 2F) (58, 60). In M. ace-
tivorans, AhbC has 31% identity and 52% similarity to AhbD and also contains two pu-
tative [4Fe-4S] cluster binding motifs, one of which is the canonical radical SAM motif
CX3CX2C and the other of which is in the C terminus. This enzyme has not yet been bio-
chemically characterized, and thus, the mechanistic details of the reaction remain
unclear.

F420 BIOSYNTHESIS

Cofactor F420 (Fig. 2G) is a deazaflavin hydride carrier found in methanogens and
select bacteria. This cofactor was first discovered in mycobacteria (63) and was subse-
quently structurally characterized from a methanogen (64, 65). The redox-active core
ring system of F420, 7,8-didemethyl-8-hydroxy-5-deazariboflavin, with the 59-ribityl
group, is known as F0, while the complete F420 contains an added phosphate as well
as a bridging lactyl moiety followed by a g-linked polyglutamate tail (Fig. 2G).
Compared to the isoalloxazine ring of flavin cofactors, the deazaisoalloxazine ring of
F0 has a decreased reduction potential and can participate in two-electron chemistry
only, as opposed to the characteristic one- or two-electron chemistry catalyzed by
flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) (66). Bacteria
containing F420 use the cofactor in various redox reactions catalyzed by enzymes that
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often share homology to flavin-utilizing enzymes (67). Methanogens employ F420 for
reduction steps in the methanogenesis pathway as well as for other hydride transfer
reactions in various pathways.

F0 synthase is a radical SAM enzyme that carries out the key deazaflavin-forming step
in F420 biosynthesis to catalyze the oxidative coupling of L-tyrosine to 5-amino-6-ribityla-
mino-2,4[1H,3H]-pyrimidinedione (ribityl diaminouracil) (Fig. 2G), a common intermediate
in the riboflavin biosynthetic pathway. In mycobacteria and other actinobacteria, F0 syn-
thase, encoded by fbiC, is a single bifunctional enzyme with two radical SAM motifs, while
in archaea and cyanobacteria, F0 synthase is comprised of two independent radical SAM
enzymes known as CofG and CofH, which closely resemble the N- and C-terminal halves of
FbiC, respectively (68, 69). In vitro studies demonstrated that CofH catalyzes the first step
to produce a stable intermediate, followed by the action of CofG to produce the final F0
molecule (70). Further detailed mechanistic experiments revealed that the first part of the
CofH reaction likely proceeds similarly to those of other radical SAM tyrosine lyases such
as HydG and ThiH to produce a p-hydroxylbenzyl radical (71), which can then undergo
addition to the double bond of diaminouracil, followed by oxidation to produce an inter-
mediate that is the substrate for CofG-catalyzed cyclization and oxidation to produce the
final F0 (71). No crystal structures have been reported for any F0 synthase and would be im-
portant to obtain in the future to provide structural evidence for the mechanistic details of
the two radical SAM reactions necessary for the synthesis of the unique deazaflavin core.

NITROGENASE COFACTOR BIOSYNTHESIS

Found in some bacteria and archaea, nitrogenase plays an essential role in the global
nitrogen cycle by reducing molecular nitrogen (N2) to bioavailable ammonia (NH3). The
active site where N2 reduction occurs consists of a complex metallocluster [Mo-7Fe-9S-C-(R)-
homocitrate], referred to as FeMo-co, which can be described as a [4Fe-3S] cluster combined
with a [Mo-3Fe-3S] cluster, connected by three sulfides and one carbide and partially ligated
by (R)-homocitrate (Fig. 2H) (72). Molybdenum nitrogenases are the most common and
most well characterized, but vanadium- and iron-nitrogenases also exist, where the above-
mentioned metal replaces Mo in the unique metallocluster (73).

NifB is a radical SAM enzyme that plays a key role in FeMo-co biogenesis by converting
the “K-cluster,” a pair of 4Fe-4S clusters, into the “L-cluster,” containing the bridging car-
bide carbon and the 9th sulfur atom that closely resembles the Fe-S core of FeMo-co (Fig.
2H) (74–77). Many details of NifB catalysis have been elucidated via in vitro mechanistic
studies, and crystal structures have recently been reported (78, 79). Similar to many other
radical SAM methylases (40), NifB uses SAM for two distinct reactivities: as a methyl group
donor in a nucleophilic substitution reaction to generate SAH as a by-product and as a
source of 59-dAdo� in the radical SAM reaction to produce a substrate radical and 59-
dAdoH as a by-product. Thus, SAM is first used to methylate a sulfide atom in one of the
[4Fe-4S] clusters that make up the K-cluster. Next, 59-dAdo� produced at the radical SAM
[4e-4S] cluster abstracts a hydrogen atom from the newly added methyl group to generate
a methylene radical (80). Further processing of this species, using either an additional
round(s) of radical SAM chemistry or recently proposed deprotonation facilitated by a His
residue (81), finally results in the bridging SAM-derived carbide present in FeMo-co. This
process is accompanied by the coupling and rearrangement of the two [4Fe-4S] modules
of the K-cluster to generate the L-cluster (74) (Fig. 2H). A major remaining question regard-
ing the NifB reaction is the mechanism involved in inserting the 9th sulfur. Sulfite has
been shown to be the sulfur source in vitro (82), but the NifB-facilitated chemistry that
would be involved in this process remains unclear.

[Fe]-HYDROGENASE COFACTOR BIOSYNTHESIS

Hydrogenases are abundant across various organisms in all domains of life, where
they are responsible for the reversible conversion of H2 to protons and electrons.
These metalloenzymes are often categorized based on the transition metals present
in their active site cofactors: [NiFe], [FeFe], or [Fe]. Methanogens utilize five different

Minireview Journal of Bacteriology

August 2022 Volume 204 Issue 8 10.1128/jb.00197-22 9

https://journals.asm.org/journal/jb
https://doi.org/10.1128/jb.00197-22


types of hydrogenases, four of which are [NiFe] hydrogenases and one of which is an
[Fe]-hydrogenase that is found only in methanogens without cytochromes (83). The
latter is employed under nickel-limiting conditions to replace the function of the
F420-reducing [NiFe] hydrogenase required for the reduction of methenyltetrahydro-
methanopterin to methylenetetrahydromethanopterin during hydrogenotrophic
methanogenesis (84–86). Additionally, when nickel is limiting, the [Fe]-hydrogenase
is also required for the production of reduced coenzyme F420, which is involved in
several essential processes in methanogens (83).

The [Fe]-hydrogenase utilizes the unique iron-guanylylpyridinol (FeGP) cofactor (Fig. 2I),
whose biosynthetic pathway is still not completely resolved. This biosynthesis utilizes genes
located in the hcg gene cluster containing seven genes (hcgA–G) that cooccur with the [Fe]-
hydrogenase-encoding genes. Recent in vitro studies confirmed the roles of HcgC and HcgB
in the production of guanylylpyridinol (GP) in the early stages of FeGP cofactor biosynthesis
(87). Furthermore, enzymatic and structural studies demonstrated that HcgE and HcgF cata-
lyze the formation of a thioester-activated acyl group using a two-stage mechanism where
HcgE catalyzes the adenylylation of the carboxy group of GP followed by a transesterifica-
tion reaction to generate a Cys-S-GP thioester on the HcgF protein (88). This is presumably
the activated substrate that is then converted to the final FeGP cofactor. HcgA is a radical
SAM enzyme present in the hcg gene cluster that contains a noncanonical CX5CX2C motif.
Recombinant HcgA has been studied in vitro to demonstrate that the enzyme contains a
radical SAM-characteristic [4Fe-4S] cluster and carries out uncoupled SAM cleavage to pro-
duce 59-dAdoH in the presence of dithionite (89). Due to the sequence similarity of HcgA to
the well-characterized radical SAM enzyme HydG, which synthesizes the CN and CO ligands
of the H-cluster in [FeFe]-hydrogenase (90), it has been proposed that HcgA similarly pro-
duces the CO ligands for the FeGP cofactor (89). However, in vivo isotope labeling studies
indicated that the CO ligands of the FeGP cofactor are derived from CO2, and no incorpora-
tion from pyruvate was observed (91), whereas the CO ligands of the H-cluster are derived
from L-tyrosine via dehydroglycine (92, 93). These results indicate that the synthesis of CO
ligands for the FeGP cofactor occurs by a different pathway/mechanism compared to the H-
cluster, and thus, many open questions remain surrounding the role of HcgA in FeGP cofac-
tor biosynthesis. Future work on HcgA should be facilitated by the recent development of
an in vitro system to study the later steps of FeGP cofactor biosynthesis using precursors iso-
lated from Dhcgmutated strains (87).

tRNA MODIFICATIONS

tRNAs are highly modified in all organisms, with up to 10 to 20% of nucleosides
modified in a given tRNA and over 170 different types of modifications that have
been described (94, 95). The distribution of tRNA modifications can be highly vari-
able, where some are found at the same position in all tRNAs throughout all domains
of life and others are found in only one or a few tRNAs in one domain of life (96, 97).
These modifications ensure accurate decoding and aminoacylation and stabilize the
tertiary structure of tRNAs. Modifications can be simple (e.g., methylation or isomeri-
zation) or complex, requiring multiple enzymatic steps. Several radical SAM enzymes
in methanogens are involved in tRNA modifications (Table 1).

Archaeosine (7-formamidino-7-deazaguanine [G1]) (Fig. 2J) is a structurally complex
modified nucleoside in archaea, where it is found in the D-loop at position 15 of virtu-
ally all archaeal tRNAs (98). As a 7-deazaguanosine nucleoside, archaeosine is related
to queuosine, the latter of which is ubiquitous throughout eukaryotic and bacterial
organisms. The biosynthesis of both of these modified nucleosides involves the com-
mon intermediate 7-cyano-7-deazaguanine (preQ0) (Fig. 2J). The biosynthesis of preQ0

from GTP involves the action of four or five enzymes, one of which is QueE, a ubiqui-
tous radical SAM enzyme that catalyzes the key heterocyclic rearrangement reaction to
convert 6-carboxy-tetrahydropterin to 7-carboxy-7-deazaguanine, expelling a nitrogen
as 1NH4 (99). In archaea, preQ0 serves as a substrate for tRNA-guanine transglycosylase,
which catalyzes the exchange of guanine at position 15 for preQ0 (100). In most
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Euryarchaeota, including methanogens, preQ0-tRNA is then converted to G1-tRNA by
archaeosine synthase (ArcS), of which the enzyme from M. jannaschii has been inves-
tigated in vitro (101). While it was originally thought that ArcS alone synthesizes G1

from PreQ0, it was recently shown that some Euryarchaeota, including M. acetivorans,
utilize a complex consisting of ArcS and the radical SAM enzyme for archaeosine for-
mation (RaSEA) (102). Here, ArcS first transfers lysine to preQ0, where the « -amino
group of lysine is added to the cyano group of preQ0 (Fig. 2J). RaSEA is then pro-
posed to abstract a hydrogen atom from the « -carbon of the lysine moiety, which
activates the molecule for C-N bond cleavage to eventually form G1 and 1-piperi-
dine-6-carboxylic acid as a by-product (102). Virtually all sequenced Euryarchaeota
contain homologs of both ArcS and RaSEA; thus, this may be the main pathway for
G1 synthesis in these organisms (102). In the future, further biochemical and struc-
tural studies of ArcS/RaSEA should be carried out to elucidate the mechanistic details
of the reaction and to clarify the dependence of ArcS on a radical SAM partner since
in vitro experiments with ArcS from M. jannaschii showed that the enzyme alone can
produce G1 from preQ0 (101).

Wyosine derivatives are fluorescent modified nucleosides found in eukaryotes and
archaea but not bacteria. They are located at position 37 of phenylalanine-specific tRNA
and consist of an imidazopurine (tricyclic) core structure. The key ring formation step in
the biosynthesis of these wyosine derivatives is catalyzed by wybutosine 4-demethylwyo-
sine synthase (Tyw1), also referred to as Taw1 in archaea (103). This radical SAM enzyme
forms the tricyclic ring of 4-demethylwyosine from N1-methylguanosine and pyruvate (Fig.
2K) (104), which is an intermediate in the biosynthesis of several imidazopurine-containing
nucleosides, including wyosine and wybutosine and the archaeon-specific isowyosine and
7-methylwyosine (105–107). The Tyw1 reaction is initiated with hydrogen atom abstraction
from the methyl group of N1-methylguanosine, which then reacts with pyruvate, followed
by decarboxylation and transamination to finally form the tricyclic product (108).
Interestingly, eukaryotic Tyw1 contains an N-terminal flavodoxin domain used for reducing
the radical SAM [4Fe-4S] cluster to the catalytic 11 state; however, this domain is absent
in the archaeal enzyme (109). A crystal structure of Tyw1 from M. jannaschii revealed that
pyruvate is bound in the active site via Schiff base formation with a conserved lysine resi-
due (110). Additionally, the structure showed that Tyw1 contains an auxiliary [4Fe-4S] clus-
ter that is partially coordinated by the lysine nitrogen and carboxylate oxygen of the Schiff
base intermediate. Thus, the auxiliary cluster is proposed to serve as an electron sink to
facilitate the decarboxylation of pyruvate (110).

Residue 37, which is 39 adjacent to the anticodon, is a frequently modified position
in most tRNAs. The modified nucleosides found exclusively in this position include N6-
isopentenyladenosine (i6A), N6-threonylcarbamoyladenosine (t6A), and N6-hydroxynor-
valylcarbamoyladenosine (hn6A) (95, 97). Depending on the sequence features of the
specific tRNA, all three of these can be further modified via the addition of a methyl-
thio group at the 29 position to generate ms2i6A, ms2t6A, and ms2hn6A, respectively. In
methanogens, the threonyl-containing (t6A and ms2t6A) and hydroxynorvalyl-contain-
ing (hn6A and ms2hn6A) modifications have been identified in various organisms, but
the isopentenyl-containing modifications are absent (105, 107, 111–113). The methyl-
thiolation reaction is catalyzed by a radical SAM methylthiotransferase (MTTase): MiaB
for the ms2i6A modification and MtaB for the ms2t6A modification (Fig. 2L). The bacte-
rial MiaB MTTase has been well characterized with detailed mechanistic and structural
information available. MTTases contain two iron-sulfur clusters: the radical SAM cluster
and an auxiliary cluster that is the source of the sulfur atom that is eventually trans-
ferred to the tRNA substrate (114–117). The first stage of MTTase catalysis involves a
nucleophilic substitution reaction to transfer the methyl group of SAM to a sulfur spe-
cies associated with the auxiliary cluster that is proposed to be [3Fe-4S]0 (115). In the
second stage, radical SAM-dependent chemistry facilitates the transfer of the resulting
methylthio group to C-2 of i6A to produce ms2i6A (114–117). MtaB is expected to utilize
analogous chemistry for the methylthiolation of t6A; however, although the enzyme

Minireview Journal of Bacteriology

August 2022 Volume 204 Issue 8 10.1128/jb.00197-22 11

https://journals.asm.org/journal/jb
https://doi.org/10.1128/jb.00197-22


from Bacillus subtilis has been purified and its [4Fe-4S] clusters have been characterized
(118), the in vitro catalytic activity has not yet been investigated, and no MtaB struc-
tural information is available. Additionally, although MtaB homologs are proposed to
be responsible for the methylthiolation of hn6A to produce ms2hn6A (Fig. 2L) (119), this
has yet to be experimentally confirmed.

5-Carboxymethyluridine (cm5U) is an intermediate modified nucleoside that leads
to a variety of uridine modifications at the wobble position of tRNA in primarily eukar-
yotes and archaea (120). The synthesis of this modification is carried out by Elp3 (Fig.
2M), a radical SAM enzyme present in the elongator complex, a large protein complex
involved in cm5U synthesis and previously implicated in histone acetylation. Enzymatic
studies of Elp3 from the methanogen Methanocaldococcus infernus confirmed that the
enzyme is solely responsible for the cm5U modification in vitro and utilizes radical
SAM-characteristic chemistry (121). Crystal structures of a rare bacterial Elp3 (122) as
well as M. infernus Elp3 (123) revealed a radical SAM domain that is highly similar to
that of RlmN (124), the radical SAM methylase that modifies specific tRNA and rRNA.
Elp3 also contains a C-terminal lysine acetyltransferase (KAT) domain similar to those
of the GCN5-like acetyltransferases (125). Based on the available biochemical and struc-
tural data, the following mechanistic features have been proposed: (i) tRNA substrate
binding initiates a conformational change that leads to acetyl-CoA binding in the KAT
domain (123); (ii) acetyl-CoA hydrolysis occurs, and the released acetate is transferred
to the radical SAM domain (123); (iii) radical SAM chemistry leads to hydrogen atom
abstraction from the methyl moiety of acetate, which then adds to C-5 of the uridine
residue to form a C-C bond (121); and (iv) the loss of an electron followed by general
base-catalyzed proton abstraction results in the final cm5U product (121). Further
detailed mechanistic studies are required to confirm the proposed mechanism, espe-
cially with respect to the chemistry occurring in the radical SAM domain. Additionally,
the specific roles of the additional proteins present in the elongator complex need to
be elucidated.

CONCLUDING REMARKS

Radical SAM enzymes in methanogens catalyze several unique reactions compared
to those found in other organisms and often utilize especially intriguing catalytic mecha-
nisms, even among radical SAM superfamily members. Based on the presence of the ca-
nonical CX3CX2C motif, the model methanogens M. maripaludis S2 and M. acetivorans
C2A have 32 and 58 putative radical SAM proteins (see Tables S1 and S2 in the supple-
mental material), respectively, with only about half of these having established functions
based on experimental evidence or high sequence similarity to well-characterized radical
SAM enzymes. Thus, many questions remain regarding the physiological functions and
catalytic versatility of radical SAM enzymes in methanogens. Characterizing these
enzymes will further expand the catalytic repertoire of the radical SAM superfamily and
aid in defining previously unknown aspects of primary metabolism in methanogens.
Furthermore, understanding the functions and mechanisms of unique radical SAM
enzymes in methanogens could inform methane mitigation strategies as well as bioen-
gineering efforts for biofuel applications.

SUPPLEMENTAL MATERIAL
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