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BACKGROUND: West Nile virus (WNV), a global arbovirus, is the most prevalent mosquito-transmitted infection in the United States. Forecasts of
WNV risk during the upcoming transmission season could provide the basis for targeted mosquito control and disease prevention efforts. We devel-
oped the Arbovirus Mapping and Prediction (ArboMAP) WNV forecasting system and used it in South Dakota from 2016 to 2019. This study reports
a post hoc forecast validation and model comparison.
OBJECTIVES: Our objective was to validate historical predictions of WNV cases with independent data that were not used for model calibration. We
tested the hypothesis that predictive models based on mosquito surveillance data combined with meteorological variables were more accurate than
models based on mosquito or meteorological data alone.

METHODS: The ArboMAP system incorporated models that predicted the weekly probability of observing one or more human WNV cases in each
county. We compared alternative models with different predictors including a) a baseline model based only on historical WNV cases, b) mosquito
models based on seasonal patterns of infection rates, c) environmental models based on lagged meteorological variables, including temperature and
vapor pressure deficit, d) combined models with mosquito infection rates and lagged meteorological variables, and e) ensembles of two or more com-
bined models. During the WNV season, models were calibrated using data from previous years and weekly predictions were made using data from
the current year. Forecasts were compared with observed cases to calculate the area under the receiver operating characteristic curve (AUC) and other
metrics of spatial and temporal prediction error.

RESULTS: Mosquito and environmental models outperformed the baseline model that included county-level averages and seasonal trends of WNV
cases. Combined models were more accurate than models based only on meteorological or mosquito infection variables. The most accurate model
was a simple ensemble mean of the two best combined models. Forecast accuracy increased rapidly from early June through early July and was stable
thereafter, with a maximum AUC of 0.85. The model predictions captured the seasonal pattern of WNV as well as year-to-year variation in case num-
bers and the geographic pattern of cases.
DISCUSSION: The predictions reached maximum accuracy early enough in the WNV season to allow public health responses before the peak of human
cases in August. This early warning is necessary because other indicators of WNV risk, including early reports of human cases and mosquito abun-
dance, are poor predictors of case numbers later in the season. https://doi.org/10.1289/EHP10287

Introduction
West Nile virus (WNV), a mosquito-transmitted zoonotic arbovi-
rus with a global distribution, poses significant public health
threats in many parts of the world (Kramer et al. 2008). Although
most infected humans are asymptomatic or have only mild symp-
toms, ∼ 25% develop West Nile fever and <1% develop severe
neuroinvasive disease that can lead to death (Petersen et al.
2013). In North America, the virus was first detected in New
York City in 1999 and spread throughout the entire continent
over the next several years (Kramer et al. 2019). WNV is now
endemic in the conterminous United States, but the occurrence of
human cases varies considerably in space and time. Annual inci-
dence rates have been consistently highest in the northern Great
Plains states, including North Dakota, South Dakota, and
Nebraska (Ronca et al. 2019). Between 2004 and 2019, the total
number of annually reported human WNV cases in the United
States varied from 712 to 5,674, and there was even more interan-
nual variation in individual states (CDC 2021). Because of these
fluctuations, predictions of future WNV risk are desirable for

targeting disease prevention and mosquito control activities at the
times and locations where transmission risk is highest (Nasci and
Mutebi 2019). This article presents a retrospective validation of
the Arbovirus Mapping and Prediction (ArboMAP) system,
which was developed to carry out WNV forecasting in South
Dakota and implemented in 2016.

Mosquitoes in the genus Culex are the primary vectors of
WNV, and multiple species of wild birds are the reservoir hosts.
Humans are dead-end hosts that can be infected when bitten by a
mosquito that has previously bitten an infected bird. The popula-
tion dynamics and vector competence of mosquitoes are sensitive
to meteorological variables, such as temperature and humidity
(Shocket et al. 2020). The availability of aquatic habitats for de-
velopment of mosquito larvae and the resulting densities of adult
mosquitoes are affected by rainfall patterns (Gardner et al. 2012;
Karki et al. 2016). Bird populations are impacted by mortality
caused by extreme weather events, such as heat waves and
droughts (Albright et al. 2010). In temperate climates, the timing
of egg laying and hatching is influenced by the rate of warming
in the spring (Burkett-Cadena et al. 2012; Shave et al. 2019). All
of these environmentally mediated factors influence mosquito
populations and the rate of virus amplification in mosquitoes and
avian hosts, which in turn affect the density of infected mosqui-
toes and the potential for WNV transmission to humans (Paz
2019; Reisen 2013).

In the United States, reported human WNV cases are typi-
cally not confirmed until weeks to months after they occur,
providing a lagging indicator of disease risk during the trans-
mission season (DeFelice et al. 2019). Vector mosquitoes are
often trapped and tested for WNV to obtain more timely data
about where the virus is currently circulating and where humans
are at risk (Hadler et al. 2015; Kilpatrick and Pape 2013). The
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amount of mosquito surveillance that can be conducted is lim-
ited by available resources, and there are inevitably many loca-
tions with no mosquito data. In contrast, meteorological
variables and other environmental risk factors can be mapped
continuously and monitored through time using freely available
geospatial data sets, such as interpolated climate grids and satel-
lite remote sensing products. However, meteorological data
alone are seldom sufficient to predict WNV cases with high ac-
curacy. Other unmeasured factors related to vector populations,
avian host communities, and human activities can decouple dis-
ease transmission cycles from their environmental potential
(Allan et al. 2009; Johnson et al. 2012; Kwan et al. 2012).
Therefore, we adopted a forecasting approach that used both
mosquito surveillance data and meteorological observations
with an aim of leveraging the strengths and minimizing the lim-
itations of each type of information.

Various approaches have been used to develop predictive mod-
els forWNV (Barker 2019; Keyel et al. 2021).Most of these efforts
have used a correlative approach, where mathematical functions or
machine learning algorithms are fitted to historical observations. In
these models, the dependent variable is an index of risk derived
from either humanWNV cases or mosquito infection rates. The in-
dependent variables are measurements of temperature, humidity,
and precipitation from meteorological stations or related indices,
such as land surface temperature and the normalized difference
vegetation index (NDVI), derived from Earth-observing satellites.
A variety of analytical techniques have been applied, ranging from
generalized linear and mixed effects models (Hahn et al. 2015;
Karki et al. 2020; Manore et al. 2014; Shand et al. 2016) to more
flexible curve-fitting techniques, including generalized additive
models (Chuang and Wimberly 2012; Smith et al. 2020) and
machine learning methods, such as random forests (Keyel et al.
2019; Skaff et al. 2020). Mechanistic models, including epidemio-
logical compartment models based on the susceptible–infected–
recovered (SIR) framework, have also been used to incorporate
temperature and mosquito infection rates as predictors of human
WNVcases (DeFelice et al. 2017, 2018).

Although these modeling studies have been conducted in
diverse locations using different data and modeling techniques,
they have consistently found that high temperature before and dur-
ing the transmission season increases mosquito infection rates and
human WNV cases. However, the specific temperature thresholds
for WNV transmission can vary geographically and over time
(Skaff et al. 2020). In contrast to these temperature effects, there is
much less consistency in the effects of precipitation on WNV, and
both positive and negative effects have been found in different geo-
graphic settings (Hahn et al. 2015; Wimberly et al. 2014). Fewer
studies have incorporated other moisture-related variables, such as
humidity and soil moisture, making it difficult to generalize their
effects. Recent reviews have highlighted several significant gaps in
the development and implementation of forecasting models for
WNV.Althoughmultiple models have been created using a variety
of data sources at a wide range of spatial and temporal scales, few
have been applied to make real-time forecasts and connect the pre-
dictions with public health decision-making (Keyel et al. 2021).
Further, most predictions have not been rigorously validated
against independent data that were not used in the model-fitting
process (Barker 2019).

The present study aims to address these gaps through a retro-
spective validation of 4 y of WNV forecasting in South Dakota, a
state with a high burden and considerable interannual variation of
WNV. Between 2009 and 2018, South Dakota had the second-
highest average annual incidence of WNV neuroinvasive disease
in the United States (3.06/100,000), with annual incidence rates
ranging from zero to 7.44/100,000 (McDonald et al. 2021). Culex

tarsalis has been implicated as the primary mosquito vector of
WNV in South Dakota and surrounding states (Dunphy et al.
2019; Vincent et al. 2020). This species is primarily associated
with rural habitats (Chuang et al. 2011), and as a result, the inci-
dence of WNV is generally higher in small towns and rural areas
than in larger cities (Chuang et al. 2012; Wimberly et al. 2008).
Within South Dakota, the incidence of WNV is highest in the
northern James River Valley, a glacial lowland dominated by rel-
atively flat terrain with poorly drained soils, shallow water tables,
and extensive wetlands that provide habitat for vectors and hosts
(Hess et al. 2018).

In 2016, we developed and implemented an integrated
WNV modeling approach in South Dakota that combined mete-
orological data with mosquito infection data. Prospective fore-
casts for 2016 correctly predicted a resurgence in WNV in
contrast with relatively low case numbers in 2014 and 2015
(Davis et al. 2017). A subsequent model comparison study
found that temperature and vapor pressure deficit were the most
important meteorological predictors, showed that their effects
varied over the course of the WNV transmission season, and
confirmed that including infection rates from mosquito surveil-
lance data improved model fit (Davis et al. 2018). These techni-
ques were incorporated into a computer program for automatically
generating WNV forecasts that we named ArboMAP. Here, we
present a retrospective validation of WNV forecast accuracy in
South Dakota using the ArboMAP system from 2016 to 2019. We
tested the hypothesis that predictions based onmeteorological varia-
bles combined with mosquito infection data were more accurate
thanmodels based onmeteorological or mosquito data alone. These
results, combined with our experience forecastingWNV risk in near
real time and using the forecasts to support WNV control and pre-
vention in South Dakota, can inform efforts to implement disease
early warning systems and use them to support public health deci-
sion-making.

Methods

Data Sources
Records for 1,679 human WNV infections from 2004 to 2019
were provided by the South Dakota Department of Health
(SDDOH). The initial epidemic years of 2002 and 2003 had large
numbers of cases that reflected the unique conditions when WNV
was first introduced into the region (Wimberly et al. 2013). These
atypical years were excluded, and we analyzed endemic WNV
from 2004 to 2019. Human WNV records included all instances
of confirmed WNV fever cases (67%) and neuroinvasive disease
cases (23%), as well as records of incidental discovery during
blood donation (10%). Data on travel status were not available,
and each case was referenced to the person’s county of residence.
The project was determined to be exempt from review by the
institutional review board because the human case data were col-
lected as a normal part of the SDDOH’s surveillance process and
were county-level summaries that did not include any personally
identifying information.

The time of each case was referenced to the date of symptom
onset or, for viremic blood donors, the date when the blood was
donated. The median incubation period for WNV is 2.6 d, and
95% of individuals who develop symptoms do so within 7.0 d
(Rudolph et al. 2014). Thus, the majority of symptom onset dates
are within 1 wk of the infection date. Blood donors were screened
using nucleic acid–amplification tests that detect active infec-
tions. WNV RNA is expected to be detectable up to 8 d after the
infectious mosquito bite and would be detected prior to symptom
onset for donors who eventually experience symptoms (Busch
et al. 2008; Zou et al. 2010).
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Mosquito infection data for 2004–2019 were collected by
state, county, city, and tribal entities. We used data from 162
trapping sites in 23 of the 66 South Dakota counties (Figure 1).
All mosquitoes were collected with carbon dioxide–baited
Centers for Disease Control and Prevention (CDC) light traps
equipped with photo switches and air-activated gates. Mosquito
trapping is generally conducted weekly for at least one 24-h
period, but the timing can vary depending on the municipality
carrying out the surveillance. A detailed description of mosquito
surveillance activities in South Dakota is provided by Vincent
et al. (2020). Mosquitoes were identified by morphological char-
acteristics by trained individuals within local agencies and sepa-
rated into single-species pools containing no more than 50
mosquitoes. Most of the pools (81%) were submitted to the
SDDOH for testing using polymerase chain reaction according to
the recommendations of Lanciotti et al. (2000). Mosquito pools
collected by city agencies in Sioux Falls and Aberdeen were
tested using the RAMP test (ADAPCO). Data from pools of
Culex tarsalis, the primary vector of WNV in South Dakota,
were used for statistical modeling. Of the 33,315 pools tested
from 2004 to 2019, 1,414 (4.2%) were positive for WNV.

Meteorological variables were obtained from the Gridded
Surface Meteorological (gridMET) data set (Abatzoglou 2013),
including gridded daily estimates of mean temperature, mean rel-
ative humidity, mean vapor pressure deficit, and total precipita-
tion at a 4-km spatial resolution. Daily data for 2004–2019 were
summarized by county as zonal means.

Models
Because of delays in diagnosis and reporting, human cases are a
lagging indicator of WNV transmission, and the total WNV case
burden is not known until after the WNV season. In contrast, me-
teorological data and mosquito surveillance data can be obtained
with latencies of a week or less. The objective of modeling was
therefore to predict current and future human cases as a lagged
function of meteorological observations and infection rates from
mosquito surveillance data.

The dependent variable was human WNV cases summarized
as county-weeks, with a value of one if any number of cases
occurred in a county during a particular week (positive) and zero
if no cases occurred (negative). Over the 16 y of data used in the
study, 82% of the positive county-weeks included a single WNV
case, and an additional 16% included two or three WNV cases.
When summarized by county and year, the total number of posi-
tive county-weeks was strongly associated with the total number
of WNV cases based on Spearman’s rank correlation (rho= 0:98,
n=532, p<0:001). Based on these results, we determined that
the dichotomous variable for human case occurrence within a
county-week provided an adequate representation of the spatio-
temporal dynamics of WNV in South Dakota, and the additional
complexities of modeling heavily zero-inflated data were not
warranted. Spatial and temporal variability in positive county-
weeks was therefore modeled as a dichotomous variable using
logistic regression.

Meteorological effects were incorporated as distributed lags
(Gasparrini et al. 2010), which are commonly used in epidemiol-
ogy to model the delayed effects of environmental exposures on
health outcomes (Braga et al. 2001; Schwartz 2000). Using this
approach, each county-week was associated with a 120-d environ-
mental history extending from the day the week began (lag 0) back
to 120 d in the past (lag 120). Incorporating each daily lag as a dif-
ferent independent variable with a separate parameter would result
in severe overfitting. The distributed lag approach instead models
the effect of the independent variable as a smoothed function of lag
date using a thin-plate spline. The effect of each independent vari-
able in the logistic regressionmodel is then estimated as

XL
l=0

sðlÞut− l,

where l is the lag in days, L is the maximum lag in days, s(l) is
the estimated coefficient for lag l modeled with a thin-plate
spline, and ut− l is the independent variable observed l days
before time t, where t represents the first day of the current week.
An advantage of this approach is that the modeling process auto-
matically determines the range of lags over which the meteoro-
logical effects are strongest.

Because mosquito infection data were not available for every
county, we partitioned the state into four geographic strata that
reflected the patterns of mosquito surveillance along with climate
and physiography (Figure 1). The strata were associated with
major physiographic zones, including the Couteau des Prairies
plateau, James River Valley, and Missouri Couteau in eastern
South Dakota and the drier Great Plains landscapes west of the
Missouri River. Mosquito testing data for all traps within each
geographic stratum were aggregated and used to estimate weekly
mosquito infection rates with a mixed effects logistic regression

logitðIs,y,tÞ= ðc0 + v0,y + u0,s,yÞ+ ðc1 + v1,y + u1,s,yÞdoyt,
where logit(I) was the probability that a mosquito pool was
infected with WNV for stratum s, year y, and day t; c0 was the
global intercept; c1 was the global slope; v were random effects
on intercept and slope per year; u were random effects on inter-
cept and slope per stratum within year; and doy was the standar-
dized day of year (Davis et al. 2018).

The mosquito infection growth rate (MIGR) was estimated
for every combination of stratum and year as

ms,y = bc1 + cv1,y + du1,s,y ,
where the hats indicated posterior modes from the fitted model.
The rationale behind this model is that a higher MIGR is an

Figure 1. South Dakota counties with total number of tested mosquito pools
from 2004 to 2019 and geographic strata used for modeling the mosquito
infection growth rate (MIGR). Strata were delineated based on patterns of
mosquito surveillance along with climate and physiography, and their names
refer to the major physiographic zones with which they are associated. Map
drawn using R (version 4.2.1; R Development Core Team).
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indicator of rapid WNV amplification in the early transmission
season, which results in larger proportions of infected mosquitoes
and higher risk of human cases during the peak season (Davis
et al. 2017).

We compared five types of models (Table 1). The baseline
model included only a cyclical seasonal function and a fixed
effect for each county. The cyclical function captured the annual
epidemic curve resulting from seasonal climate patterns. The
county-level effects captured geographic variation caused by dif-
ferences in human population and ecological effects of land cover
and hydrology (Hess et al. 2018). This model used only historical
human case data as predictor variables, thus providing a bench-
mark for determining if incorporating mosquito and meteorologi-
cal predictors can improve accuracy.

The mosquito model included the cyclical and fixed effect
terms plus the MIGR variable. A set of four environmental mod-
els included cyclical and fixed effect terms plus distributed lags
for temperature and vapor pressure deficit. These variables were
selected based on a previous model comparison exercise that
found they were the strongest predictors of historical WNV
occurrence (Davis et al. 2018). The environmental models incor-
porated meteorological data in two different ways: a) as untrans-
formed variables, and b) as anomalies calculated by subtracting
the seasonal expectation for each day of the year. For each type
of data transformation, relationships with WNV cases were mod-
eled using two approaches: a) a fixed set of distributed lags that
assumed environmental relationships were constant throughout
the WNV season, and b) seasonally varying distributed lags that
allowed environmental relationships to vary over the course of
the WNV season (Davis et al. 2018). A set of four combined
models incorporated the MIGR variable into each of the four
environmental models. The mathematical equations for these
models are specified in Table 2. Finally, a set of three model

ensembles were implemented as simple means of the predictions
of the best two combined models, the best three combined mod-
els, and all four combined models.

Forecasts
We used the terms “forecast year” to refer to the year in which a
forecast wasmade, “forecast week” to identify the week of the year
when a forecast was produced, and “predicted week” to indicate a
week for which human cases were predicted. For a given forecast
year, the model was calibrated using data from all previous years
back to 2004 (Figure 2). For example, the models used for the 2016
predictions were calibrated using data from 2004 to 2015, and the
models used for the 2017 predictions were calibrated using data
from 2004 to 2016. There were 19 forecast weeks during each
WNV season, starting in early June (week 22, where weeks are
specified as CDC epidemiological weeks) and continuing through
the end of September (week 40). During each forecast week, fore-
casts were generated for every predicted week of the WNV season
(weeks 22–40), estimating the probability of one or more WNV
cases occurring in each county during the week. Thus, the predic-
tions generated by the ArboMAP system encompassed past weeks
of theWNV season and the current forecast week, as well as future
weeks. However, we still refer to these predictions as forecasts
because the actual weekly case counts are typically not known until
after the end of theWNV season.

To generate the prediction for a forecast week, current-year
mosquito infection data and meteorological variables were used
as independent variables to predict county-level WNV probabil-
ities (Figure 2). The current-year MIGR values were estimated
for all strata using the available mosquito surveillance data up to
the first day of the forecast week. For forecast weeks early in the

Table 1. Description of models used for West Nile virus forecasting in
South Dakota.

Abbreviation Description

Base Baseline model with seasonal cyclical function and no
mosquito or meteorological data

Mosq Mosquito infection rate model with seasonal cyclical
function

Env Environmental model with distributed lags of untrans-
formed meteorological variables

EnvAnom Environmental model with seasonal cyclical function
and distributed lags of meteorological anomalies

EnvSv Environmental model with seasonally varying distributed
lags of untransformed meteorological variables

EnvSvAnom Environmental model with seasonal cyclical function
and seasonally varying distributed lags of meteorolog-
ical anomalies

Comb Combined mosquito–environment model with distributed
lags of untransformed meteorological variables

CombAnom Combined mosquito–environment model with seasonal
cyclical function and distributed lags of meteorologi-
cal anomalies

CombSv Combined mosquito–environment model with seasonally
varying distributed lags of untransformed meteorolog-
ical variables

CombSvAnom Combined mosquito–environment model with seasonal
cyclical function and seasonally varying distributed
lags of meteorological anomalies

Ens2 Mean of CombAnom and CombSvAnom
Ens3 Mean of CombAnom, CombSvAnom, and Comb
Ens4 Mean of CombAnom, CombSvAnom, Comb, and

CombSv

Note: Each row describes 1 of 13 models. The abbreviation for each model is used in
the article text, tables, and figures. The description includes the distinctive components
of each model. Each model contains a county-level fixed effect term in addition to the
components listed in the description.

Table 2. List of model equations used for West Nile virus forecasting in
South Dakota.

Model Equation

Base logitðpi,tÞ= c0i + cycðwÞ
Mosq logitðpi,tÞ= c0i + c1mi,t + cycðwÞ
Env

logitðpi,tÞ= c0i +
P2
k=1

PL
l=0

skðlÞui,t− l

EnvAnom
logitðpi,tÞ= c0i + cycðwÞ+ P2

k=1

PL
l=0

skðlÞai,t− l

EnvSv
logitðpi,tÞ= c0i +

P2
k=1

PL
l=0

skðl,wÞui,t− l

EnvSvAnom
logitðpi,tÞ= c0i + cycðwÞ+ P2

k=1

PL
l=0

skðl,wÞai,t− l

Comb
logitðpi,tÞ= c0i + c1mi,t +

P2
k=1

PL
l=0

skðlÞui,t− l

CombAnom
logitðpi,tÞ= c0i + c1mi,t + cycðwÞ+ P2

k=1

PL
l=0

skðlÞai,t− l

CombSv
logitðpi,tÞ= c0i + c1mi,t +

P2
k=1

PL
l=0

skðl,wÞui,t− l

CombSvAnom
logitðpi,tÞ= c0i + c1mi,t + cycðwÞ+ P2

k=1

PL
l=0

skðl,wÞai,t− l

Note: pi,t is the probability of one or more WNV cases in county i at time t; coi is a
county-level fixed effect; mi,t is the mosquito infection growth rate (MIGR) in county i
at time t; c1 is the parameter for MIGR; cyc(w) is a cyclical seasonal function; k indexes
two meteorological variables; l indexes daily lags up to L=120 days in the past; skðlÞ is
a thin-plate spline function of lag days; skðl,wÞ is a thin-plate spline function of lag days
and week of the year; ui, t− l is an untransformed meteorological variable for county i at
time t–l and ai, t− l is an anomalized meteorological variable for county i at time t–l.
Base, baseline; Comb, combined; CombAnom, combined with anomalies; CombSv,
combined with seasonally varying distributed lags; CombSvAnom, combined with
anomalies and seasonally varying distributed lags; Ens2, two model ensemble; Ens3,
three model ensemble; Ens4, four model ensemble; Env, environmental; EnvAnom,
environmental with anomalies; EnvSv, environmental with seasonally varying distrib-
uted lags; EnvSvAnom, environmental with anomalies and seasonally varying distrib-
uted lags; Mosq, mosquito.
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season when no positive mosquito pools had been detected, the
MIGR could not be estimated, and the average historical MIGR
for that forecast week taken over all historical years was used
instead. All available meteorological observations were com-
bined with average values from the historical climatology for
future dates. The MIGR estimates and observed meteorological
data were then used as independent variables to predict county-
level WNV probabilities. Thus, the amount of current-year data
that was incorporated into the forecasts increased throughout the
year as the forecast week advanced. The predicted probabilities
could be summed across counties to compute the expected num-
ber of positive counties per prediction week, across predicted
weeks to compute the expected number of positive weeks per
county, and across counties and predicted weeks to estimate the
total number of positive county-weeks in the year.

Validation
The ArboMAP system was used in a real-time, prospective mode
to generate forecasts from 2016 to 2019. Various updates were
made to the model every year, including changes to the specifica-
tion of the statistical models, the numbers of spatial strata used in
the MIGR model, and the specific meteorological variables used
as predictors. To facilitate a systematic accuracy assessment and
model comparison, we undertook a retrospective validation in
which we evaluated 13 alternative models across the entire 4-y
period. The meteorological variables and mosquito surveillance
data were censored at each time step so that only data available
prior to each forecast week were used to make the predictions.
This approach replicated the operational forecasting process as

described in the preceding section and allowed us to compare
multiple forecasting scenarios with different models.

We computed the receiver operating characteristic curve (AUC)
based on the predicted probability for each county-week and the
observations of county-weeks. We computed the temporal error
(TE) by summing the predicted probabilities and observed county-
weeks across counties and computing the mean absolute error
(MAE) for all prediction weeks.We computed the spatial error (SE)
by summing the predicted probabilities and observed county-weeks
across predicted weeks and computing the MAE for all counties.
These accuracy statistics were computed separately for each fore-
cast week to compare forecasts made at different times during the
WNV season. Results from different models were compared to
assess how accuracy varied in relation to the types of data used for
the predictions and the specifications of the predictivemodels.

This validation exercise determined the accuracy of eachmodel
when making seasonal predictions of WNV occurrence for the
entire transmission season. We also examined the accuracy of
lagged weekly predictions by computing the AUC of predictions
made zero through 6 weeks in the past for predicted weeks 28–40.
Finally, we carried out a sensitivity analysis to determine whether
the presence of a mosquito trap in a county had a significant effect
on model accuracy. We removed the 23 counties with mosquito
infection data from the statewide data set and carried out the same
validation process that was used on the full data set.

Software
The ArboMAP system was implemented using R (version 4.2.1;
R Development Core Team). The application was coded as an R

Figure 2.Major steps for calibrating the Arbovirus Monitoring and Prediction (ArboMAP) system, generating weekly forecasts, and computing accuracy statis-
tics. Note: Env, environmental; Mosq, mosquito.
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markdown file that automatically executed all data processing
and modeling steps and generated a formatted report with model
output. The code used to carry out the analyses in this article is
included in the Supplemental Material (“ArboMap_Main_Code.
Rmd”). The ArboMAP system is under active development, and
the most recent version of the code along with a user guide and
simulated data for testing can be found on our GitHub archive
(https://github.com/EcoGRAPH/ArboMAP).

Results
The AUC statistics characterized the overall accuracy of county-
week predictions over both space and time, with larger values
indicating higher accuracy (Figure 3). The two-model ensemble
(Ens2) had the highest AUCs in most of the forecast weeks. AUC
values were only slightly lower for the combined model with cli-
mate anomalies and without seasonally varying environmental
effects (CombAnom) and for the three- and four-model ensem-
bles (Ens3 and Ens4). The AUCs for this group of models
increased rapidly through forecast week 26 and reached peak val-
ues of 0.85 or higher. After forecast week 26, the AUCs declined
slightly but remained relatively stable with values close to 0.85
through forecast week 40.

At the beginning of the WNV season in forecast weeks 22–23,
the AUCs of the environmental models were the same or higher
than the corresponding combined models (Figure 3). However,
beginning in forecast week 26, the AUC values of the combined
models were always higher than the environmental models. The
AUC of themosquito model (Mosq) was lowest at the beginning of
theWNV season, increased through forecast week 31, and was sta-
ble thereafter, but it was lower than all three ensemble models and
the best combinedmodel (CombAnom) in every forecast week. All
models had the same or higher AUCs than the baseline model,
which included only a cyclical seasonal term and a fixed effect for
each county.

The TE statistic characterized the accuracy of the predicted
weekly number of counties with one or more WNV cases, with
lower values indicating higher accuracy (Figure 4). Results were
generally comparable to those based on the AUC statistic. The
two-model ensemble (Ens2) had the lowest error in all forecast
weeks, with TE values <2:0 in forecast weeks 26–40. The TE
values of the other ensemble models (Ens3 and Ens4) and two of
the combined models (CombAnom and CombSvAnom) were
only slightly higher. The environmental model with climate
anomalies and without seasonally varying environmental effects
(EnvAnom) had lower TEs than the mosquito model (Mosq) and
was nearly as low as the ensemble models and the two best com-
bined models (CombAnom and CombSvAnom). All of the en-
semble and combined models, as well as the mosquito models
and two of the four environmental models, had lower TEs than
the baseline model.

Considering the weekly time series of results from the two-
model ensemble (Ens2), the fitted values from 2004 to 2015
showed that the meteorological data and mosquito infection data
were able to predict much of the seasonal and interannual fluctua-
tions in historical WNV cases (Figure 5). Although there was
overprediction in some years (2006, 2010–2011, and 2015) and
underprediction in other years (2004–2005), the fitted values
clearly distinguished the lowest-transmission years (2004, 2008–
2011, and 2014–2015) from the highest-transmission years
(2005, 2007, and 2012–2013). The predicted seasonal curves for
2016–2019 changed with the forecast week as more meteorologi-
cal and mosquito data from the current year were incorporated as
predictors. However, the predictions generated during the early
weeks of the WNV season (forecast weeks 26–30) were able to
distinguish between years with high cases (2016 and 2018) vs.
those with low cases (2017 and 2019).

The SE statistic characterized the accuracy of predicted total
weeks with one or more WNV cases at the county level, with
lower values indicating higher accuracy (Figure 6). Overall, SE

Figure 3. Accuracy of South Dakota West Nile virus predictions from 2016 to 2019 measured as the area under the receiver operating characteristic curve
(AUC). Predictions were generated using the Arbovirus Monitoring and Prediction (ArboMAP) software with 13 different model formulations. Each line repre-
sents the variation in AUC by forecast week for one model. The logistic regression models incorporated various combinations of mosquito infection variables
and lagged meteorological variables (temperature and vapor pressure deficit) with different variable transformations and model structures. Individual models
are defined in Table 1 and mathematical forms are provided in Table 2. Note: Base, baseline; Comb, combined; CombAnom, combined with anomalies;
CombSv, combined with seasonally varying distributed lags; CombSvAnom, combined with anomalies and seasonally varying distributed lags; Ens2, two
model ensemble; Ens3, three model ensemble; Ens4, four model ensemble; Env, environmental; EnvAnom, environmental with anomalies; EnvSv, environ-
mental with seasonally varying distributed lags; EnvSvAnom, environmental with anomalies and seasonally varying distributed lags; Mosq, mosquito.
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was lower than TE, which was expected because the statewide
pattern of WNV cases remains consistent from year to year and
the county-level fixed effect is a strong predictor of this pattern.
Results for all the ensemble and combined models were similar,
with SE values decreasing rapidly in forecast weeks 22–26 and
remaining relatively stable between 0.9 and 0.95 in forecast
weeks 26–40. The mosquito model (Mosq) had SE values only
slightly higher than the ensemble and combined models, and it

generally had lower SEs than the environmental models. All of
the ensemble and combined models, as well as the mosquito
model and three of the environmental models, had lower SE than
the baseline model.

Maps of observed WNV cases showed similar patterns in
each year, with more WNV-positive weeks in eastern than in
western South Dakota (Figure 7). However, some shifts in the
spatial pattern were evident, such as the concentration of WNV

Figure 4. Accuracy of South Dakota West Nile virus predictions from 2016 to 2019 measured as temporal error (TE), which is the mean absolute error of pre-
dicted positive counties per week. Predictions were generated using the Arbovirus Monitoring and Prediction (ArboMAP) software with 13 different model for-
mulations. Each line represents the variation in TE by forecast week for one model. The logistic regression models incorporated various combinations of
mosquito infection variables and lagged meteorological variables (temperature and vapor pressure deficit) with different variable transformations and model
structures. Individual models are defined in Table 1 and mathematical forms are provided in Table 2. Note: Base, baseline; Comb, combined; CombAnom,
combined with anomalies; CombSv, combined with seasonally varying distributed lags; CombSvAnom, combined with anomalies and seasonally varying dis-
tributed lags; Ens2, two model ensemble; Ens3, three model ensemble; Ens4, four model ensemble; Env, environmental; EnvAnom, environmental with
anomalies; EnvSv, environmental with seasonally varying distributed lags; EnvSvAnom, environmental with anomalies and seasonally varying distributed
lags; Mosq, mosquito.

Figure 5. Observed numbers of counties with one or more West Nile virus cases per week from 2004 to 2019 in South Dakota and predictions from the two-
model ensemble (Ens2). Ensemble predictions are the mean of predictions from the combined mosquito–environment model with distributed lags of meteoro-
logical anomalies (CombAnom) and the combined mosquito–environment model with seasonally varying distributed lags of meteorological anomalies
(CombSvAnom). Fitted values are shown from 2004 to 2015 and predictions outside of the training data set from 2016 to 2019. Predictions are shown for two
forecast weeks: 26 (late June) and 30 (late July). Shaded areas represent the weekly means of observed positive counties across all years.
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in southeastern South Dakota in 2017 and the westward expan-
sion of WNV in 2018. The largest prediction errors were concen-
trated in the southeastern and north-central portions of the state,
where WNV-positive weeks were underpredicted in 2016 and
2018.

The validation of lagged weekly predictions found that the
AUC statistics were nearly as high as in the seasonal validations,
with a maximum AUC value from the two-model ensemble
(Ens2) of just >0:84 (Figure S1). Furthermore, the AUC values
were considerably higher than the baseline model and remained
relatively stable as the forecast lead time increased from zero to
6 weeks. Thus, the modeling approach generated reliable weekly
as well as seasonal forecasts.

AUC values were lower in the validation run that excluded all
counties with mosquito infection data (Figure S2). However, the
baseline predictions, which did not include mosquito data, were
also considerably lower than in the main analysis. In general,
the counties that did not provide mosquito data tended to have
smaller towns, lower populations, and fewer WNV cases than the
counties that did provide mosquito data. As a result, WNV occur-
rence is more heterogeneous in space and time and is more chal-
lenging to predict even when not using mosquito data. The
accuracy of the mosquito model was still considerably higher
than that of the baseline model, and the combined and ensemble
models were more accurate than models based only on mosquito
or meteorological data. Based on these results, we concluded that
the mosquito data contributed substantially to the prediction
accuracy even in counties where no surveillance was conducted.

Discussion
Statistical models based on air temperature and vapor pressure
deficit combined with mosquito infection rates were able to pre-
dict spatial and temporal patterns of WNV cases in South

Dakota. All models with either meteorological or mosquito data
outperformed simple baseline models based only on county
means and seasonal trends. The best combined models were
more accurate than models based only on meteorological or mos-
quito data. Models based on anomalies were more accurate than
models based on untransformed meteorological variables, and a
simple ensemble of the two best combined models generated the
most accurate predictions. Accuracy increased rapidly from fore-
casts made in early June (forecast week 22) through early July
(week of year 26) and was relatively stable thereafter. These
results were consistent for multiple accuracy statistics that meas-
ured the ability to discriminate county-weeks with and without
WNV cases (AUC), error in the predicted time series of positive
districts (TE), and error in the predicted spatial patterns of posi-
tive counties (SE).

Because human WNV cases in South Dakota do not peak
until August (Kightlinger 2017; Wimberly et al. 2013), these
early July predictions still allow sufficient lead time to expand
mosquito control efforts and implement WNV prevention pro-
grams if there is an indication of high risk. The main technique
for WNV vector control in South Dakota is ground-based spray-
ing for adult mosquitoes. Many of the larger communities also
use larvicides following major rain events. Initiating these control
activities before there is widespread human transmission lowers
the abundance of biting vector mosquitoes and may also reduce
the mosquito infection rate (Nasci and Mutebi 2019). The
SDDOH and some municipal governments also implement adver-
tising campaigns that encourage prevention measures such as
using mosquito repellants. Targeting this messaging when and
where WNV risk is highest may help to limit the phenomenon of
message fatigue, in which repeated warnings are eventually
ignored because of overexposure (So et al. 2017).

In South Dakota and other states with high WNV burdens,
linking control and prevention activities to WNV forecasts is

Figure 6. Accuracy of South Dakota West Nile virus predictions from 2016 to 2019 measured as spatial error (SE), which is the mean absolute error of pre-
dicted positive weeks per county. Predictions were generated using the Arbovirus Monitoring and Prediction (ArboMAP) software with 13 different model for-
mulations. Each line represents the variation in SE by forecast week for one model. The logistic regression models incorporated various combinations of
mosquito infection variables and lagged meteorological variables (temperature and vapor pressure deficit) with different variable transformations and model
structures. Individual models are defined in Table 1 and mathematical forms are provided in Table 2. Note: Base, baseline; Comb, combined; CombAnom,
combined with anomalies; CombSv, combined with seasonally varying distributed lags; CombSvAnom, combined with anomalies and seasonally varying dis-
tributed lags; Ens2, two model ensemble; Ens3, three model ensemble; Ens4, four model ensemble; Env, environmental; EnvAnom, environmental with
anomalies; EnvSv, environmental with seasonally varying distributed lags; EnvSvAnom, environmental with anomalies and seasonally varying distributed
lags; Mosq, mosquito.
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important because other sources of information may not provide
timely and reliable indication of disease risk. Because the report-
ing of human cases can take weeks to months, tracking human
cases during the WNV season can provide misleading informa-
tion about the current level of transmission. For example, in
2018, only eight confirmed cases were reported to the SDDOH
by July 26. If viewed alone as an indicator of current WNV trans-
mission, this number would have given a false impression of low
risk. In reality, 50 cases had already occurred by this time, and
there were 169 cases by the end of the 2018 season—the highest
total since the large national outbreak in 2012. The ArboMAP
system was able to predict a higher-than-normal level of WNV
risk by early July in 2018 based on warm weather in the spring
combined with rapid growth of the mosquito infection rate in
early summer. The number of reported human cases did not
increase substantially until August, after WNV had already
peaked. Waiting this long to respond would be too late to have a
substantial effect on transmission.

Mosquito control programs often respond to public percep-
tions of the mosquito nuisance and the resulting demands for
action from local agencies (Dickinson and Paskewitz 2012).
However, high mosquito abundances and frequent bites do not
necessarily translate into high risk of WNV transmission. In
South Dakota, the most important nuisance mosquito is Aedes
vexans, which occurs in large numbers in spring and early
summer after heavy rains flood their breeding habitats (Vincent
et al. 2020). In contrast, the primary vector of WNV in South
Dakota is Culex tarsalis. This species peaks during mid to late
summer and has a lower abundance that is more stable within and
between years. During the 2018 WNV season, local mosquito
control programs in South Dakota were reporting low mosquito
abundances and few public complaints through July. Without
forecasts based on weather and mosquito infection data, these
observations of low mosquito activity can be misinterpreted as
indicating low WNV risk.

In the United States, mosquito surveillance and WNV testing
programs are implemented at municipal, county, and state levels

(Hadler et al. 2015). We have demonstrated how the data gathered
from these programs can be enhanced by incorporating meteoro-
logical data as a component ofWNV surveillance and using predic-
tive models to forecast the risk of disease in humans. The
GridMET data used in this study are freely available, and there are
additional sources of free environmental monitoring data that
could be used to model mosquito-transmitted diseases. However,
expertise in geospatial data processing and modeling along with
specialized software and sufficient computational resources are
needed to acquire and use these data. To facilitate the use of the
ArboMAP system by the SDDOH, we used the Google Earth
Engine cloud-based platform (Gorelick et al. 2017) to build an app
that automated the downloading of daily, county-level summaries
of GridMET variables. The forecasting models were implemented
in the free and open source R language and software environment
as a script that automatically generated forecasts and output the
results as a formatted portable document format (PDF) report. The
continued development of informatics tools such as these will be
essential to facilitate the integration of environmental monitoring
data for disease surveillance and predictions.

The limitations of the ArboMAP forecasting approach are
closely linked to the quality and scale of the data used to make
the predictions. Some studies have analyzed only neuroinvasive
cases based on the presumption that these severe disease cases
are detected and reported more consistently than milder forms of
disease (Hahn et al. 2015; Paull et al. 2017). However, we used
all available WNV case data, including neuroinvasive cases, as
well as fever cases and reports of viremic blood donors. Because
South Dakota is a relatively small state where WNV is well
known as a locally important disease in the medical community,
we assumed that fever cases were also well diagnosed throughout
the state. A previous study found that annual fever case counts
were strongly correlated with neuroinvasive case counts, and that
geographic patterns of total WNV incidence were similar to that
of neuroinvasive disease incidence (Wimberly et al. 2013). Using
all types of WNV cases in our models allowed us to detect more
locations where WNV transmission to humans had occurred. The

Figure 7. Observed numbers of weeks with one or moreWest Nile virus cases from 2016 to 2019 in South Dakota and prediction errors from the two-model ensem-
ble (Ens2). Ensemble predictions are the mean of predictions from the combined mosquito–environment model with distributed lags of meteorological anomalies
(CombAnom) and the combined mosquito–environment model with seasonally varying distributed lags of meteorological anomalies (CombSvAnom). Prediction
error is the difference between the predicted number of positive weeks and the observed number of positive weeks for each county in each year. Map drawn using
R (version 4.2.1; RDevelopment Core Team).
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results of our validation confirmed that WNV cases based on this
broader definition were predictable using mosquito infection rates
and environmental conditions. More generally, we suggest that
improving the quality and consistency of human and mosquito
surveillance data will increase the accuracy of forecasts for WNV
and other infectious diseases.

There is also potential to improve prediction accuracy by
exploring alternative sources of environmental data. We used me-
teorological data fromGridMET because they were easy to access,
easy to process with the Google Earth Engine, and were available
at a lag of only a few days. Other prospective data sources include
satellite Earth observations of temperature, vegetation greenness,
soil moisture, and precipitation (Chuang and Wimberly 2012;
Marcantonio et al. 2016), as well as modeled soil moisture and
other hydrological outputs from land data assimilation systems
(Davis et al. 2018; Shaman et al. 2010). Alternative spatial resolu-
tions besides the county-level should also be explored to determine
the scales at which environment–disease relationships are
the strongest (Uelmen et al. 2021). Given the many possible
approaches, developing and testing new environmental models of
WNV remains an important area for future research.

In the ArboMAP system, we used the seasonal rate of increase
in the proportion of infectedmosquito pools as an indicator of ento-
mological risk (Davis et al. 2017, 2018). We chose this approach
because it was relatively insensitive to changes in the numbers and
locations of mosquito traps from year to year, allowing us to use all
of our statewide mosquito data for model calibration and predic-
tion. A prior study found that, in South Dakota, mosquito abun-
dance is not a strong indicator of human WNV risk (Vincent et al.
2020). However, additional variables characterizing totalmosquito
abundance or vector index (the estimated abundance of infected
mosquitoes) could be tested and incorporated into themodel. Other
types of predictor data could also be explored, including informa-
tion about avian host communities, the timing and locations of out-
door gatherings that may increase human exposure, and the
impacts of mosquito control activities.

In conclusion, this research showed that it is possible to pre-
dict the annual WNV case burden early in the season before most
human transmission has occurred. The best predictions were
obtained from models that included lagged weather variables, as
well as mosquito infection data. Because environmental monitor-
ing data are freely available from a variety of sources, it is feasi-
ble to integrate them with epidemiological and entomological
surveillance data to implement routine forecasting of WNV. Our
experience making real-time predictions in South Dakota demon-
strated that these forecasts provide alerts of upcoming WNV out-
breaks early in the season when other indicators of WNV risk,
such as mosquito abundance and reported human WNV cases,
are either ambiguous or misleading (Kilpatrick and Pape 2013;
Winters et al. 2008). The general approach used in the ArboMAP
system can be extended to new locations and different diseases
and improved upon by testing alternative sources of data and
novel predictive modeling techniques.
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