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Abstract: The field of neurofeedback training (NFT) has
seen growing interest and an expansion of scope, resulting
in a steadily increasing number of publications addressing
different aspects of NFT. This development has been
accompanied by a debate about the underlying mecha-
nisms and expected outcomes. Recent developments in the
understanding of psychophysiological regulation have
cast doubt on the validity of control systems theory, the
principal framework traditionally used to characterize
NFT. The present article reviews the theoretical and
empirical aspects of NFT and proposes a predictive
framework based on the concept of allostasis. Specifically,
we conceptualize NFT as an adaptation to changing con-
tingencies. In an allostasis four-stage model, NFT involves
(a) perceiving relations between demands and set-points,
(b) learning to apply collected patterns (experience) to
predict future output, (c) determining efficient set-points,
and (d) adapting brain activity to the desired (“set”) state.
Thismodel also identifies boundaries for what changes can
be expected from a neurofeedback intervention and out-
lines a time frame for such changes to occur.

Keywords: allostasis framework; neurofeedback training;
psychophysiological regulation; self-regulation.

Introduction

The study of neurofeedback (NF) began with initial
explorations in the 1960s, which showed that both humans

and animals can acquire the ability to alter their elec-
troencephalographic (EEG) signals when given appro-
priate instructions and suitable feedback (Kamiya 1962;
Wyrwicka and Sterman 1968). In the following half
century, neurofeedback training (NFT) has become the
most widely applied psychophysiological procedure
enabling individuals to self-regulate specific character-
istics of the EEG. Mounting evidence shows that NFT
prompts measurable clinical and performance benefits
(see the reviews by Arns et al. 2009; Coben et al. 2010;
Gruzelier 2014a; Linhartova et al. 2019; Moore 2000;
Trambaiolli et al. 2021; Yeh et al. 2020). However, NFT has
not escaped criticism; first, concerns have been raised
regarding the widely used framework of homeostasis and
its ability to explain the effects of NFT on EEG signals
(Reiner et al. 2018). A second issue relates to the under-
standing of the neural mechanisms thought to underlie
NFT. Although extensive research has shown positive
behavioral outcomes for NFT, this is in stark contrast to
the fact that the neural mechanisms underlying NFT are
still poorly understood (Micoulaud Franchi et al. 2020). In
fact, several authors have suggested that the effects of
NFTmay simply reflect the placebo effects (Schabus 2017;
Thibault et al. 2016; Thibault and Raz 2017). Finally, the
lack of understanding of NFT’s mechanisms has limited
researchers’ abilities to predict specific training out-
comes. For example, there is an ongoing debate
regarding the extent to which NFT prompts changes in
resting brain activity across training sessions (Schabus
2018; Witte et al. 2018). To better leverage the potential of
NFT, the field would thus benefit from (a) a heightened
understanding of the underlying neurophysiology and
(b) precise definitions of brain-behavior interactions
during self-regulation, as discussed in Papo (2019).

This article addresses these challenges in three ways:
First, we develop a theoretical framework for NFT, groun-
ded in the concept of allostasis and based on the current
understanding of psychophysiological regulation. We
outline the key concepts of physiological regulation,
including homeostasis and control theory. Learning to
control one’s own neural signals involves operant condi-
tioning, which is also discussed. Whereas more traditional
control approaches have difficulty in explaining how
learning and experience shape physiological regulation;
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our allostatic framework characterizes the ability of
complex organisms to learn and implement self-regulation
by dynamically forming and updating predictions and
expectations regarding neural states and associated out-
comes. Second, we review the research study into neural
mechanisms underlying self-regulation based on NF and
relate it to the allostasis-based framework. Third, we
discuss about unresolved issues in NFT research and how
these issues can be addressed in the context of our
framework.

A psychophysiological framework
of NF

NFT aims to enable a person to self-regulate neuro-
physiological processes such as electrocortical activity
measured by EEG. The current understanding of this self-
regulation is based on the tenets of homeostatic psy-
chophysiological regulation (Gruzelier and Egner 2004;
Micoulaud Franchi et al. 2020). Since the time of Claude
Bernard (Cooper 2008), it has been believed that physi-
ological regulation encompasses various processes that
all seek to maintain an organism in a stable (internal)
state by detecting and countering fluctuations in or

perturbations to the state of the organism—a process
known as homeostasis.

Homeostasis and the negative feedback loop

In 1929, Walter Cannon, expanding on Bernard’s ideas,
introduced the term homeostasis, the processes and
mechanisms that maintain a stable and optimal physio-
logical state of the organism. Cannon also introduced
negative feedback as a mechanism to explain how ho-
meostasis functions (Figure 1): In response to maladaptive
perturbation (for example, when getting too hot), a phys-
iological process (for example, sweating) rectifies the
function and restores an optimal level based on feedback.
Thus, homeostatic regulation connects sensors (thermo-
receptors in our example) to effectors (sweat glands),
allowing the system to reset to pre-perturbation levels
(Ramsay and Woods 2014).

The negative feedback loop within homeostasis was
later more formally modeled within control systems theory
(Wiener 2019). It has been argued that all systems, “living
and mechanical, are both information and feedback con-
trol systems” (Shinners 1998, p. 6). As depicted in Figure 2,
the control theory is suitable for describing regulation at
the system level, irrespective of individual processes,
which often cannot be specified in the context of complex
systems. The focus is on the transformation of information
as it flows through the system and on the effects exerted by
this information on the system’s output. A controller ad-
justs the system’s behavior according to the real-time
comparison between the output sensor and the input
reference value, referred to as the systems’ set-point
(denoted as ± in Figure 2). Paralleling the homeostatic
process outlined above, this control circuit thus minimizes
the difference between the set-point and the system’s
observed state. One common example of such a control
system is the thermostat on a heater (Gopal 2002); simi-
larly, the regulation of body temperature around the
set-point of 37 °C is readily modeled within control

Figure 1: Homeostasis.
What stands out in thismodel is the general pattern ofmaintaining a
controlled parameter constant by recognizing its divergence from a
“set-point” and then transferring this information to correct the
error (taken from Sterling 2012).

Figure 2: Basic control theory model (adapted version from LeBlanc and Coughanowr 2008).
This model is a closed-loop system, where the output is sent back, as feedback, to the input to regulate the system.
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systems theory (Hensel 1981). Although there are powerful
explanatory devices, homeostatic control theories are
limited in their ability to characterize NFT, as discussed
below.

Learning from reward and punishment

In physiological regulation, beyond phylogenetically
determined mechanisms (Dworkin 1986), a control over
central and autonomic nervous system functions can be
acquired through instrumental learning, which is also
referred to as operant conditioning. In this type of learning,
the likelihood that a behavior or response is shown
depends on contingencies experienced in the past. Success
(reward) and failure (punishment) act to, respectively,
reinforce or suppress the behavior. For example, in terms of
physiological regulation, the increase in heart rate before a
100 m dash will be associated with higher success, in turn
leading to a higher likelihood of an increase in heart rate
before the next event.

Using feedback signals for operant learning involves
the association between (a) a neural target signal,
(b) contingent rewards or punishments, and (c) knowledge
of outcomes. Although feedback effects themselves are
often considered automatic (Gruzelier 2014c), the volun-
tary control or self-regulation of physiological states is
widely thought to require that the feedback stimulus is
actively perceived (Miller 1978). Indeed, most people are
unable to perceive certain physiological responses such as
current blood pressure, which is analogous to a blind-
folded beginner trying to learn to shoot baskets. External
measurement devices that index a biological process in
real time can “remove the blindfold” by supplying an
appropriate feedback, known as biofeedback—allowing
operant learning to take place, and thus enabling the
participant to acquire self-regulation of the targeted
physiological state.

Self-regulation through biofeedback

Self-regulation refers to processes of managing one’s own
thoughts, feelings, and behaviors, often in the context of
accomplishing certain goals (de Ridder and de Wit 2006),
and physiological self-regulation can be considered a
sub-process of this broader notion. Biofeedback is tradi-
tionally understood to rely on the principles of physiolog-
ical regulation discussed above: feedback and operant
conditioning (Gruzelier 2014c; Pandria et al. 2018; Ros et al.
2014). A biological system is constantly fluctuating. In the

context of biofeedback, a physiological process is consid-
ered well-controlled when it can be shifted from an unde-
sirable or unhealthy state to a desired or healthy state,
while minimizing random variations and nearly in real
time. By contrast, an unregulated physiological process is
one in which a maladaptive state cannot be changed, has
too much random variation, and/or changes too slowly or
too rapidly (Mulholland 1984).

The concept of biofeedback is to use operant principles
to shape the regulatory processes of these fluctuations.
Biological functions are not only fed back, but fluctuations
in the desired direction are also reinforced by setting
appropriate contingencies or instructions. Today, a wide
spectrum of physiological signals are used for feedback,
including brain activity (NF). NFT has been defined as a
noninvasive brain stimulation technique that trains
individuals to modulate their own brain activity toward
functionally desirable states (Gruzelier 2014b). The most
common NFT is based on the feedback of electrical activity
of the cerebral cortex via EEG-NFT, inwhich the participant
aims to heighten or suppress the EEG band power within a
specific frequency range. Similar approaches based on
other neural signals are now widely used, including NFT
based on hemodynamic (functional magnetic resonance
imaging, fMRI) signals or optical signals as are captured
using near-infrared spectroscopy (Sitaram et al. 2017). By
framingNFTwithin homeostasis, this can be understood as
a therapist providing an (external) set-point to which the
current state is compared. Deviation from this set-point is
fed back via the feedback signal, and the state of the system
is subsequently regulated in the direction of the set-point.

Psychophysiological regulation—from
homeostasis to allostasis

A more recent development in the study of physiological
regulation has been the widespread recognition that
homeostasis, and especially negative feedback, does not
completely explain physiological regulation. One obvious
problem is that complex physiological systems do not
possess a fixed, rigid set-point for regulation, and thus the
state of a biological system may indeed be stable, yet far
from constant. Rather, physiological systems fluctuate
adaptively and dynamically, according to the demands of
the environment or the organism (Ramsay and Woods
2014). A second problem is that homeostasis is considered
to rely on a reflexive response to a perturbation, after the
fact. However, physiological regulation also clearly relies
on anticipatory responses (Ramsay and Woods 2014). For
example, with respect to thermoregulation, it has been
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shown that thermosensors on the skin produce a feedfor-
ward disturbance signal in ambient heat which eventually
leads to preventive cold-defense behaviors like shivering
even before the core temperature drops (Kanosue et al.
2010). Such anticipatory responses are thought to require a
learning process—a third aspect that is not considered
within the concept of homeostasis. “The conclusion seems
almost inescapable: the central nervous system (CNS)
anticipates present and future needs on the basis of past
experience. By having successfully corrected errors, the
CNS learns how to prevent them” Somjen (1992, p. 184).
Figure 3 (A and B) illustrates the main characteristics of
general allostasis models.

In its original form, allostasis differs from homeo-
stasis in which the level of a requisite parameter
(the system’s target level or set-point) can vary between
situations (i.e., there is no fixed set-point). Whereas ho-
meostasis is based on stability (stasis) via constancy
(homeo), allostasis is based on achieving stability (stasis)
through change (allo; Gerdes et al. 2013). Thus, allostasis
describes the process of achieving stability through
adaptive adjustment of the internal milieu to meet
perceived and anticipated (new) demands (Zsoldos and
Ebmeier 2016). Such predictive processes are now
considered a hallmark of neurophysiological functioning
(Friston and Kiebel 2009). Thus, a number of allostasis-
based models have recently been proposed to account for

a wide spectrum of cognitive and behavioral processes
(Barrett et al. 2016; Saxbe et al. 2020). The basic configu-
ration of a system-maintaining state can still be presumed
to be based on homeostasis, whereas the configuration of
a system-changing output is based on goal-setting
or allostasis (Collura 2014, p. 48). Figure 4 illustrates
how the framework proposed here accounts for these
processes: Allostasis enables an organism to adaptively
respond to its physical state (e.g., awake and asleep) and
to flexibly cope with its physiological state and external
demands (e.g., hunger, temperature extremes, and psy-
chosocial stress; McEwen 2016; Sterling 2012). Impor-
tantly, the allostasis model accounts for the changing of
“set-points” and other control boundaries in response to
changing requirements or conditions (McEwen 2016).
Anticipatory changes of target states in a given situation
require the use of previous experience (i.e., learning). In
our allostasis-based model, learning is incorporated into
the control process, putting the system into an altered,
“allostatic state”, optimal for the anticipated challenge.
Thus, an organism may use earlier experiences in a given
environment (e.g., Florida summer afternoons) in order to
properly anticipate future challenges to the internal
milieu (e.g., implement anticipatory heat-reduction stra-
tegies; Sterling 2012; Sterling et al. 1988). Readers inter-
ested in allostasis as a model of predictive regulation are
referred to the papers by Sterling (Sterling 2012, 2018).

Figure 3: (A) General allostasis model (taken from Sterling 2018). This model describes a mechanism in which the brain merges sensory data
with the previous knowledge to predict adaptations that are likely to be required. [….] (B) Predictive regulation (allostasis). Adapting internal
states of the body (bottom left) with external demands is a crucial regulatory task of the brain. [….] What is striking in this model is that the
brain, before deciding on a course of action, likens larger input patterns to stored patterns to obtain historical background (what happened
previously?).
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A new allostasis-based framework for
understanding NFT

The concepts of homeostasis and classic control system
theory have long been used to describe physiological
self-regulation through biofeedback. However, it has
become clear that homeostasis, at least as understood by
the control system theory, is unable to explain how control
is acquired and how experience contributes to self-
regulation. Yet, this is paramount for an understanding
of the mechanisms of biofeedback in general, and of NF in
particular. We, therefore, propose to frame NFT within the
concept of allostasis. As Sterling (2020) highlights, physi-
ological regulation based on allostasis does not come
cheaply; “a brain must collect, process, store, and retrieve
immense quantities of information from the external
environment and also from the internal environment—
from the body itself”. In this review, we argue that suc-
cessful self-regulation via NFT involves processes that can
be organized into four subsequent stages, each of which
builds upon its predecessor(s).

In our framework (Figure 4), until an initial (current)
set-point is valid, a system based on homeostasis (gray
box) maintains its stability, that is, a trade-off between
demands and the current internal state. For example,
during a brisk walk, the heart rate is kept at roughly
100 bpm, with occasional fluctuations around this set-
point. However, when there is a new demand due to new
conditions, a system founded on allostasis—by applying
prior knowledge—introduces a newphysiological set-point
in accordance with the new conditions. In the model
developed by Sterling (Sterling 2018; Sterling and Laughlin
2015), the detection of new demands prompts a process in
which information (internal [sensory data] and external
[disturbance in ambient heat and/or behavioral outcomes])
is compared to the patterns (the last set-point successfully
determined for such conditions) stored in memory to
obtain a historical background. If a difference between this
information and the existing data and patterns is found,
then the memory is updated. These processes allow the
organism to predict the internal and external state of the
body and its future output. Following these predictions,

Figure 4: Allostasis four-stage NFT model for neurophysiological regulation and adaptation.
(1) Brain as a regulator: A: Perceive (current internal and external state), B: Predict (output patterns, future internal & external state),
and C: Regulate (determine an efficient trade-off or set-point). (2) Brain as an effector: Adapt (respond efficiently and flexibly to demands).
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the brain determines an efficient trade-off between de-
mands to help the body remain in balance. Returning to the
above example (i.e., a brisk walk), seeing a steep incline
ahead leads to an adaptive, anticipatory change in heart
rate, and a new set-point of 130 bpm. The system tries to
maintain this new set-point (through homeostasis) until a
new demand is encountered or anticipated. In the
following, we discuss how these notions may inform the
conceptualization of NFT.

Importantly, the brain plays two roles during NFT: as
an effector (defined as an organ or cell that acts in response
to a stimulus) and as a regulator (by integrating the infor-
mation of the internal and external milieu to adapt a
set-point to meet a trade-off between demand(s) and the
current internal state). During biofeedback, the ability to
regulate the functions of an effector, such as the heart,
lungs, or sweat glands, is acquired by first measuring and
then feeding back the activity of this effector. Thus, in NFT,
the brain plays two roles: first as a regulator of the body
(and itself), which might occur by perceiving the error
signal(s) and sending corrective information for regula-
tion, and, second and simultaneously, as an organ or
effector, which may occur by responding to the corrective
information by up- and/or downregulating the brain
activity.

This framework also allows us to distinguish two
different time scales of adaptation that relate to within-
session and between-session changes. Regarding the
immediate, short-term adaptations, the framework pre-
dicts that, during an NFT session, the system tends to
regulate based on an allostatic state by reinforcing fluc-
tuations in brain activity that follow a desired direction.
This reinforcement can be understood as an adaptive
change of the set-point in response to new demands. Once
an NFT session is over, the system is expected to return to
the previous allostatic state; accordingly, the power of the
trained frequency band might be similar to its presession
measurement (Kober et al. 2015). However, the system
might also adapt to a new allostatic statematching the new
demand(s), which would be a response to the new internal
and/or external demands induced by conditions after an
NFT session.

During the initial stages of an NFT session, the regu-
lation process consists of (a) perception and (b) adaptation.
A new set-point is introduced into the system externally
(by setting the feedback goal; e.g., lowering alpha power),
and the brain, as the regulator, perceives the error signal(s)
and then, as an effector response to corrective information,
modifies its function (i.e., adaptation), which, in the case of
EEG-NFT, occurs by up- and/or downregulation of power at
the targeted frequency or frequencies. In this step, when a

new set-point is defined for the system, the stability of the
system’s neurophysiological states is based on the
homeostasis framework (this step is shown in the gray
box in Figure 4). Gradually, the brain—as the regulator—
acquires the ability to predict the outcome based on the
error signal(s), corrective information (i.e., a command
sent to an effector), and the resulting adaptation(s). The
regulation process develops to perception, prediction, and
adaptation accordingly.

Regarding long-term adaptations, NFT can be
conceived of as optimizing neurophysiological regulation
to meet new demands in four stages. We have already
explained the three stages (perception, prediction, and
adaptation) of the regulation process that are thought to
occur during NFT under laboratory conditions. However, a
permanent adaptation after the intervention process has
ended might occur if the brain, as regulator, determines a
suitable set-point with respect to the internal and/or
external state of the body and its future output. Thus, the
perception, prediction, and adaptation model requires
further development in the form of an additional step that
leads the brain as the regulator after its (a) perception,
(b) prediction, to (c) determining an efficient trade-off be-
tween demands to help the body remain in balance, and
finally, (d) as an effector adapting its function to meet the
new demands (accordingly, the regulation process de-
velops to perception, prediction, determination, and adap-
tation). In this article, the name “allostasis four-stage
model of NFT” will be used to address the aforementioned
stages for neurophysiological regulation and adaptation.

One prediction from the model is that in the initial
stages of NFT, the power fluctuations at a trained fre-
quency are assumed to be spontaneous, without any voli-
tional control from participants, yet meeting the current
intrinsic set-point. It would then be possible for the brain,
by connecting the reward to some specific physical or
mental state, to gradually predict the next rewarding
outcome, using mechanisms of associative or operant
learning. Thus, extensive NFT aims to enable a participant
to predict and regulate physiological and mental states, in
the light of expected external demands and future out-
comes. A final prediction of the four-stage allostasis
framework is that repeated NFT and the associated voli-
tional changing of set-points facilitates future shifts in set-
points through practice effects: Within and across NFT
sessions, new set-points are expected to be more readily
implemented as training progresses because of learned
flexibility in coping (adaptation) and increased application
of prior knowledge (experience). Thus, passing through the
hypothetical four stages (i.e., perception, prediction,
determination, and adaptation) is expected to assist
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participants in regulating their behavior more and more
easily and quickly.

Previous studies (Kamiya 1962) of NFT mechanisms
have also focused on the participants’ ability to better (a)
perceive the current mental state, (b) predict whether they
are in the required mental state, (c) determine a set-point
which meets the required demand, and (d) quickly adapt
brain activities to the desired (“set”) state. These four
stages (perceive, predict, determine, and adapt) are incor-
porated into the present allostasis four-stage NFT
framework.

Support for the four-stage framework comes from
several sources. For example, in a seminal study of NFT,
Kamiya (1962) first gave participants the opportunity to be
aware of fluctuations in their own EEG alpha activity
(spectral power changes in the range between 8 and 12 Hz)
and eventually found that participants could readily
perceive changes in their EEG alpha activity without
feedback. Thus, providing feedback on a specific neuro-
physiological state appears to facilitate the perception of
that state, potentially along with its cognitive correlates.
Afterward, the majority of participants were able to
voluntarily increase the spectral power of the alpha rhythm
based on instruction (Gruzelier and Egner 2005). These
findings support the notion that the ability of participants
to deal with a newdemand can be developed and improved
by NFT. Such a regulation can best be explained within the
framework of allostasis; brain activity not only fluctuated
around a given set-point (“homeostasis”) but participants
learned to change the set-point upon request and based on
their experience (“allostasis”).

A broader perspective was adopted by Sorger et al.
(2018), who showed that a protocol combining mental
strategies and continuous feedback of their BOLD signal
level (real-time fMRI [rtfMRI] NFT) further improved the
ability of participants to learn self-regulation. Participants
were instructed to consecutively self-regulate the level of
regional brain activation to reach 30, 60, or 90% of their
maximal capacity by implementing a selected activation
strategy. The task was conducting a mental task, such as
inner speech, in concomitance with modulation strategies
(e.g., applying different speech rates). Most of the partici-
pants gradually showed the ability to self-regulate so as to
change the regional brain activation in at least two of the
target levels, even in the absence of NF (Sorger et al. 2018).

In line with these findings, the present framework
states that NFT involves learning relations between
demands and set-points (“perception and prediction”) by
learning to apply memorized patterns (experience), to
determine efficient set-points, and to quickly adapt brain
activity to the desired (“set”) state. To the extent that the

model is focused on the level of behavioral and physio-
logical processes, it should not depend on a particular
measurement on which the NFT is based. In fact, based on
the allostasis four-stage model of NFT, the structural and
functional plasticity/changes, which are the expected
consequences of NFT, can now be better specified and
examined, ideally using a range of neural measurement
modalities. When the brain (as an effector) adapts to new
set-points, this adaptation leads to structural plasticity.
When the brain (as a regulator) is involved in perception
and prediction by applying prior knowledge gained
throughNFT, functional plasticity develops by refining and
improving neural networks. The following sections present
and discuss the theoretical framework around neural
plasticity and the evidence regarding its development
through NFT.

Neural mechanisms underlying NF

Among the substantial research efforts devoted to the
application of NF, there are very few investigations into the
neural changes accompanying NF interventions (Bluschke
et al. 2016; Papo 2019). Neural plasticity is a broad term and
is often applied to a wide range of processes, by means of
which neurons (but also glia or blood vessels) change in
form (structure) and/or function in response to experience,
including changes in the environment or damage to the
brain itself (Kaas 2001, p. 10,542). Thus far, based on the
allostasis four-stage model of NFT, we have argued that,
when training the brain during NFT sessions to adapt to
new set-points, these adaptations might lead to different
types of structural plasticity. Moreover, we argue that the
functional plasticity may develop during NFT when the
brain perceives and predicts changes to the internal organs
and the environment by applying its previous knowledge
to more efficiently determine a new set-point.

Structural plasticity

Adaptive changes in brain structure in response to internal
(e.g., learning) and/or external (e.g., changes in the envi-
ronment) challenges, which is assumed as a result of
physiological regulation, can be observed in the activity of
the synapses, the activity of neuromodulators (neuro-
transmitters), and in microstructural changes of the neu-
rons and their sheaths (Cohen et al. 2017). In the case of
NFT, structural plasticity would be supported by findings
of neural change following intervention: For example, NFT
may prompt alteration of the neuron firing rate.
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Synaptic modification

Neuronal activity is itself a key physiological factor
which is subject to both homeostatic and allostatic regu-
lation. In order to attain a state in which they can form and
maintain constant activity patterns throughout an organ-
ism’s life, billions of neurons wire themselves into intricate
networks during brain network development. These cir-
cuits are not static, but rather constantly adapt to enable
organisms to store information and modify their behavior
in a changing environment (Turrigiano 2012). One major
mechanismmediating these adaptive network dynamics is
represented by the synaptic currents transferred between
neurons (Sanei and Chambers 2007). Importantly, these
currents as an excitatory or inhibitory postsynaptic
potential strengthen or weaken over time in response to
changes in the temporal rate and changes in spatial and
temporal patterns of engagement. Together, many pro-
cesses prompting changes in synaptic processing are
broadly referred to as synaptic plasticity, which has been
extensively discussed as a potential basis for learning
(Gerstner 2011). Most contemporary conceptions of syn-
aptic changes and learning build upon the principles first
proposed by Hebb (1949), which stated “neurons that fire
together wire together” (Markram et al. 2011).

The literature on associative learning (of which clas-
sical and operant conditioning are two major types) holds
that, in associative synaptic plasticity, concurrent or rapid
consecutive activation of two synaptically joined neurons
result in a modification in the strength of the synapses
binding them. Synaptic plasticity has been suggested as
a foundation for acquiring knowledge and memory
(Feldman 2012). Long-term potentiation (LTP) is a candi-
date mechanism for explaining the processes underlying
associative learning (Sitaram et al. 2017). Recent studies
have focused on a form of LTP called spike timing-
dependent plasticity (STDP). In essence, STDP is an
asymmetric function that relies on the progression of firing
times of presynaptic and postsynaptic neurons (Sitaram
et al. 2017).

NFT could also be framed within Hebbian forms of
plasticity, such as firing rate and synchronization
(Ossadtchi et al. 2017). Using intracranial recordings—not
susceptible to some of the problems associated with
measuring neural mass activity through scalp, skull, and
cerebrospinal fluid, as is the case in EEG—animal studies
have shed insights on the neuronal basis of learning as a
result of NFT. For example, in a study with rats, Arduin
et al. (2013) recorded the activities of neurons in the motor
cortical area. The aim was to monitor and control the
neuronal activity in the motor cortical area by using a

linear actuator connected to a water bottle. To obtain the
reward (i.e., water), the rats had to maintain the firing rate
of a neuron above a certain level. The firing rates of
conditioned neurons immediately rose after a trial had
begun and, in a very short time, a bottle entered the
drinking zone. Moreover, the conditioned neurons fired
almost simultaneously, more often, and stronger than the
adjacent neurons that were recorded at the same time close
to the conditioned neurons. The authors determined that
only the neurons that were rewarded (operant-condi-
tioned) showed a significant rise in firing rate, and they
also prompted pronounced modulations of firing in
neighboring neurons, forming a local neural network
(Arduin et al. 2013). In studies using human participants,
Ossadtchi et al. (2017), for the first time, investigated
discrete structural characteristics of EEG patterns and
showed that NFT leads to an increase in the incidence rate
of spindles at the trained frequency.

To conclude, first, it is now widely accepted that
cortical plasticity (either in short-, medium-, or long-term)
enables the brain to flexibly adapt to changes, optimizing
its ability to meet environmental and behavioral demands.
Such modifications could be framed within the allostatic
framework where the brain (acting as the system’s regu-
lator) is highlighted as a dynamically adapting interface
between the changing environment and physiological
regulation and adaptation. Second, by considering the
allostasis four-stage model of NFT (due to frequent adap-
tive response to new set-points), we have argued that NFT
affects neuronal activity (through parameters such as LTP
and STDP) in the short-term but is also thought to change
the strength of synaptic connections (referred to as “syn-
aptic weight”), a form of neuroplasticity which has been
linked to associative learning. The following section
addresses the roles of neurotransmitters in reinforcement
learning (operant conditioning) and, more specifically, in
NFT.

Neurotransmitters: interaction and modification

One conclusion frequently drawn from the research on
STDP is that, if a synapse active just prior to a spike event
increases in efficacy, then a synapse that is only active after
the spike therefore decreases efficacy. A question arises
whether the mere association of presynaptic input and
postsynaptic spiking activity is sufficient to induce syn-
aptic efficacy. One possible answer to this question has
been proposed in the context of reward-mediated learning
(Miller 1981; Wickens 1990). Beyond pre- and postsynaptic
activity, some theoretical studies have suggested that a
“third factor” might be involved in the network that
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enabled both the temporal and the spatial selection of
specific inputs (Pawlak et al. 2010).

Theoretical and computational studies have proposed
that neuromodulators represent such a third factor for
selecting particular active inputs to a neuron in an active
network. One of the most important neuromodulators that
has been investigated is dopamine, which appears to
impact timing-dependent plasticity within a number of
areas of the brain (Bissiere et al. 2003; Pawlak et al. 2010).

Dopamine links STDP to behavioral modifications by
inducing plasticity at corticostriatal and cortical synapses
(Gallistel and Matzel 2013; Sitaram et al. 2017). Behavioral
research on animals and humans in which dopamine
transmissionwas experimentally restricted has specifically
linked motivational effects to dopaminergic projections
from the nucleus accumbens to the frontal cortex. This
network appears to be crucially involved in the use of
reward information for learning, maintaining, and
consummatory behavior (Schultz 2002). In classical and
operant conditioning tasks, when visual and auditory
stimuli are conditioned, between 55 and 70% of dopamine
neurons are activated (Miller et al. 1981; Schultz 2002). For
more on dopaminergic effects on operant behavior, see
Kringelbach and Berridge (2016).

As discussed earlier, NFT rewards neural fluctuations
in a desired direction and, consequently, positively re-
inforces these fluctuations. Conversely, the fluctuations in
an undesired direction are punished. Thus, dopaminergic
signaling may play an important role in associative
learning during NFT.

Evidence fromanimal studies suggests that NFT effects
spike the activity of brainstem dopaminergic neurons. For
example, Kulichenko et al. (2009) reported that the EEG
alpha/theta ratio changed during NFT in cats due to an
increase in the alpha-band (8–13 Hz) and a decrease in the
theta-band (4–8Hz) of spectral power density in feline EEG
recordings. The authors also observed an augmentation of
the spike activity of dopaminergic neurons (Kulichenko
et al. 2009). In human studies, the effect of NFT on sub-
stantia nigra/ventral tegmental area activation was tested
directly by Sulzer et al. (2013). The authors reported that
only participants with veridical feedback (compared to a
group with sham feedback) improved their ability to
upregulate dopaminergic signaling in the substantia
nigra/ventral tegmental area complex. Feedback also
prompted coactivation of other dopaminergic regions and
augmented connectivity along the nigrostriatal pathway
when compared to the control condition (Sulzer et al. 2013).
In the same vein, Ros et al. (2020b) investigated the
capacity of biofeedback training and NFT to release
dopamine, as revealed by positron emission tomography,

and reported a significant effect of both interventions in
dopamine release. In this experiment, healthy participants
were randomly assigned to either an NFT or electromyog-
raphy biofeedback training group and were trained to
downregulate cortical alpha power or facial muscle tone,
respectively. Task-induced effects led to significant
endogenous dopamine release in the frontal cortex and
anterior cingulate cortex (ACC), but not in the thalamus
(Ros et al. 2020b).

In addition to establishing the role of dopamine in
neuroplasticity, research has highlighted an essential role
for glutamatergic signals. Glutamate has been recognized as
the major excitatory neurotransmitter in the CNS of mam-
mals and is, therefore, essential for all mammalian behav-
iors, particularly with regard to learning and memory
(McEntee and Crook 1993). Recent studies show that post-
synaptic glutamate receptors can be regulated dynamically
by excitatory synapses, displaying time-varying changes in
synaptic efficacy as seen, for example, in LTP and long-term
depression (Purves et al. 2001). Experimental evidence has
shown location-specific increases in glutamate and gluta-
mine concentration when transcranial Direct Current Stim-
ulation (tDCS) was applied during a challenging visual
search task (Clark and Parasuraman 2014). This is indirect
proof for other kinds of neural stimulation techniques, such
as NFT, which have changed behavior.

In summary, due to contingent feedback, dopami-
nergic projections to the striatum might enable a behavior
to be modified in reaction to relevant stimuli and contin-
gent feedback. In addition, an increase in glutamatergic
transmission, a major excitatory transmission of the brain,
has been reported to be a consequence of neural stimula-
tion. Overall, this evidence provides direct insights into
reinforcement- and NF-learning mechanisms, meaning
that synaptic changes are involved in the learning process.
The section below examines the changes in gray and white
matter due to NFT, another element of structural plasticity.

Gray and white matter modification

For a long time, it was widely believed that the brain,
having reached adulthood, was an anatomically and
physiologically static organ (van Boxtel and Gruzelier
2014). However, evidence became available that the brain
possesses self-organizing principles, which means that
neural systems are modifiable networks, and training in
adults can lead to changes in neural structure (Hölzel et al.
2011). These structural changes are evident in the case of
self-regulation (Hölzel et al. 2011; Tang et al. 2012), as well
as in the acquisition of abstract information (Draganski
et al. 2006), motor skills (Draganski et al. 2004), cognitive
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skills (Ilg et al. 2008), and physical training, such as aer-
obics, over a period of time (Colcombe et al. 2006).
Regarding the nature of adaptive structural plastic changes
in the neuronal circuits of the brain caused by self-
regulation, neuroimaging studies showing changes in
white and gray matter are driving factors of self-regulation
(e.g., here mindfulness training was applied to demon-
strate the structural changes in the brain, Hölzel et al. 2011;
Tang et al. 2012). In NF studies, increases were also re-
ported in fractional anisotropy in white matter pathways
and gray matter volume. For example, in a study byMarins
et al. (2019), participants were trained to brain patterns
related to motor execution while performing a motor im-
agery task,with no overtmovement. Although (rtfMRI) NFT
lasted less than 1 h, results showed an increase in fractional
anisotropy in the sensorimotor segment of the corpus
callosum and increased functional connectivity of the
sensorimotor resting state network. The authors, however,
did not observe these results in the control group, which
was trainedwith sham feedback (Marins et al. 2019; Ghaziri
et al. 2013). It has now been established that there is an
inseparable connection between the components of neural
regulation, that is, brain function and structure (Ros et al.
2014). Thus, a successful NFT which causes functional
changes in the brain is expected to positively induce some
structural changes in the brain. To date, however, there has
been relatively little evidence supporting the notion that
changes in brain activity after NFT are accompanied by
microstructural changes in the white matter pathways and
gray matter volume (Ghaziri et al. 2013; Hohenfeld et al.
2017; Munivenkatappa et al. 2014; Papoutsi et al. 2018).
This point has also been made in a recent special issue on
NF, “despite the mounting evidence of the impact of NF on
brain function and behavior, the impact of NF on brain
structure remains to be fully explored” (Hampson et al.
2020).

This section has examined another level of neural
plasticity—structural adaptive neuroplasticity—which
could be caused by NFT. These changes seem to be
necessary for at least a functional rewiring. It has been
argued that NFT involves multiple aspects of mental
functions that use multiple complex interactive networks
in the brain (Gaume et al. 2016; Sitaram et al. 2017), which
will be discussed in the following.

Functional plasticity

Adaptive plasticity in brain function in response to internal
(e.g., brain damage) and/or external (e.g., changes in
the environment) demands can be observed through

strengthening, weakening, adding, or pruning in the con-
nectivity of different brain regions (Cohen et al. 2017).

With reference to our model, and based on other
studies that synthesize anatomical and functional brain
studies and provide evidence that a large-scale brain sys-
tem supports allostasis (see e.g., Kleckner et al. 2017), we
argue that a better self-regulation induced by NFT can be
explained by its reliance on modifying the required struc-
tural and functional plasticity. In the case of NFT, func-
tional plasticity would be supported by findings of
modification in the connectivity between different regions
following intervention. For example, NFT may result in an
altered network configuration.

Neural underpinnings of self-regulation

Recent developments in the field of neuroscience have
helped to expand our understanding of the neural under-
pinnings of self-regulation. Early examples of research on
this topic addressed the possibility that the functions
assumed for the supervisory attentional system (controlled
processing) correspond to the prefrontal areas describedby
Luria 1966 as responsible for the execution and regulation
of behavior (Banfield et al. 2004). We will explore two key
functions involved in NFT: executive functions and mem-
ory. Executive functions include high-order cognitive
abilities such as working memory, inhibitory control, and
the flexible volitional shifting of the focus of attention, all
of which provide a foundation for reflection on experience,
reasoning, and the purposeful regulation of behavior
(Blair 2016). We have examined data that help to determine
which brain areas are involved in these functions, how
these areas are implicated in the self-regulation process,
and how these areas interact during NFT.

Executive function

All cognitive processes related to self-regulation, moni-
toring, initiation of activity, use of feedback, andmore, are
thought to be an enveloping process of the executive
functions (Cannon et al. 2007; Sohlberg and Mateer 1989).
It has long been known that various sectors of the pre-
frontal cortex (PFC) circuits are implicated in executive
functions: the dorsolateral PFC (DLPFC), the ventromedial
PFC (VMPFC), and the ACC (Banfield et al. 2004). Thus, the
mapping of anatomical connectivity patterns underlying
regions of the PFC is crucial to comprehend how these
regions work together to make self-regulation feasible.

The DLPFC has been shown to play an important role
in addressing the issue of cognitive processes, for example,
actively retaining information inworkingmemory (Duncan
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and Owen 2000), changing behavior according to task
demands (MacDonald et al. 2000), or representing past
events, current goals, and future predictions (Miller 2000).
Given these issues, research suggests that activation in
DLPFC is linked with behavioral self-regulation, for
example, the selection and initiation of actions (Banfield
et al. 2004; Spence and Frith 1999). This idea is supported
by evidence that shows elevated activation in DLPFC when
participants successfully engage in self-control (Hare et al.
2009).

The VMPFC demarcation in neuroimaging studies
shows its strong interconnection with the limbic structures
involved in emotional processing, and the orbitofrontal
cortex (OFC), which is a part of VPFC, has been suggested
as one contributor to emotional processing (Pandya and
Barnes 2019), reward and inhibition processes, real-life
decision making (Hernandez et al. 2009; Rolls 2000), self-
awareness (Stuss 1991; Stuss and Levine 2002), and stra-
tegic regulation (Levine et al. 1998;Miller and Cohen 2001).
The ACC is a specialized medial prefrontal region that
consistently interacts with the PFC in monitoring and
guiding behavior (Gehring andKnight 2000) and is thought
to be part of a circuit that regulates both cognitive and
emotional processing.

The ACC is functionally split into ventral (affective)
and dorsal (cognitive) regions, which have distinct
cytoarchitectures, connectivities, and functions (Vogt et al.
2005). Located between the neocortex and the limbic sys-
tem, the ACC is well-positioned to serve as an interface
between cognition and emotion. This region contains
spindle-shaped neurons allowing for widespread connec-
tions to other brain areas. The ACC areas have extensive
connections with the insula, PFC, amygdala, hypothala-
mus, and brainstem. Via these projections, the ACC con-
trols sympathetic and parasympathetic functions (Hurley
et al. 1991; Ter Horst et al. 1996; Terreberry and Neafsey
1987; Verberne and Owens 1998). Accordingly, the ACC is
strongly involved in issues of self-regulation (Awh and
Gehring 1999; Botvinick et al. 1999; Carter et al. 2000;
Posner and Rothbart 1998). Research has established a role
for the ACC in decision making and behavior monitoring
(Bush et al. 2002; Elliott andDolan 1998; Liddle et al. 2001),
reward-punishment assessment (Knutson et al. 2000), and
initiating the selection of an appropriate novel response
among several alternatives (Raichle et al. 1994), perfor-
mance monitoring (MacDonald et al. 2000), action moni-
toring (Gehring and Knight 2000; Paus 2001), detecting or
processing response conflict (Gehring and Fencsik 2001),
detecting and processing errors (Carter et al. 1998; Kiehl
et al. 2000; Menon et al. 2001), error outcome and pre-
dictability (Paulus et al. 2002), and internal cognitive

control (Wyland et al. 2003). Clearly, dysfunction within
the ACC can disrupt self-regulatory processes on several
levels.

This section has focused on three different sectors of
the PFC and their role in self-regulation. First, the DLPFC
has been shown to play a crucial role in key aspects of
executive function essential for planning behavior and
maintaining regulatory goals. Second, the VMPFC shows
a strong interconnection with the limbic structures
involved in emotion, receiving rewards, the inhibition
process, and strategic regulation. Third, the ACChas been
shown to be involved in monitoring signals that are
required for control systems to regulate behavior. The
function of memory in self-regulation will be investigated
in the following.

Memory function

One further factor that must be considered when investi-
gating brain function and self-regulation is the role of
memory as key to predictive regulation (i.e., regulation
based on the concept of allostasis). For instance, it has
been argued that the hypothalamus, as “mission control”
for allostasis, receives not only its information frommyriad
sensors of the external and internal states, but also infor-
mation from memory (Sterling 2020, p. 75). With respect to
reinforcement learning, research has also suggested that
the ubiquitous and diverse roles of memory may function
as a part of an integrated learning system (Gershman and
Daw 2017).

As pointed out earlier, working memory operations,
such as maintenance and updating of relevant informa-
tion, are an essential element for executive functions. Data
from several studies suggest that successful self-regulation
entails the representation of goals and goal-relevant
information (Kane et al. 2001; Miller and Cohen 2001).
Working memory directly serves the active mental repre-
sentation of an individual’s self-regulatory goals (retrieved
from long-term memory) and the means by which these
goals can be attained (Hofmann et al. 2012; Miller and
Cohen 2001). Researchers have argued that, without an
active representation of such goal-related information,
self-regulation is directionless and bound to fail (Bau-
meister and Heatherton 1996), unless individuals have
fully habitualized and have automatic self-regulatory
routines at their disposal (Fishbach and Shah 2006; Goll-
witzer and Brandstätter 1997).

In the following, the empirical evidence on how these
regions are activated and modified during and after NFT
will be reviewed.
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Empirical evidence for functional plasticity due to NFT

Turning now to the experimental evidence on the regula-
tion of brain functioning through NFT, preliminary evi-
dence suggests that learning self-regulation of brain
activity through NFT can lead to changes in functional
connectivity. This view is supported by the hemodynamic
response in different brain regions, such as the dorsal ACC,
the thalamus, and the lateral PFC, which have been asso-
ciated with implementing (trying to voluntarily control
feedback from various brain signals) and/or learning NF
(see Emmert et al. 2016 for review). By way of illustration,
Paret et al. (2018) investigated the neural signatures of
feedback monitoring and controlling when participants
were provided with continuous rtfMRI NFT from the
amygdala. During feedback monitoring, the researchers
reported activation in the thalamus, VMPFC, ventral
striatum, and rostral PFC. Feedback controlling, on the
other hand, engaged the ACC, lateral PFC, and insula.
Moreover, Paret et al. (2018) observed an overlap in the
thalamus and ventral striatum activations, meaning they
are also involved in feedback controlling. Similarly, Zotev
et al. (2011) showed how the functional connectivity
between a single region of interest and regions that were
interacting changed significantly across the rtfMRI NFT.
Participants in the intervention group were provided with
ongoing information about blood oxygen level dependent
(BOLD) activity in the left amygdala and were instructed to
raise the BOLD rtfMRI signal by contemplating positive
memories. A control group was given the identical activity.
However, participants received sham feedback based on
the activity of the left horizontal segment of the intra-
parietal sulcus, a region not thought to play a role in
emotion regulation. A significant increase in the BOLD
signal due to rtfMRI NFT at the left amygdala was reported
only for the experimental group. This effect persisted
during the transfer run without NF. A functional connec-
tivity analysis of the amygdala network also revealed sig-
nificant widespread correlations in a fronto-temporo-
limbic network. Additionally, the authors detected six
regions—the right medial frontal polar cortex, bilateral
dorsomedial PFC, left ACC, and bilateral superior frontal
gyrus—where the functional connectivity with the left
amygdala rose substantially during the rtfMRI NFT runs
and the transfer run. These activation patterns have also
been observed with slow cortical potential NFT. Raised
BOLD responses have been found in the dorsal anterior
cingulate gyrus, the anterior insula, middle frontal gyrus,
and the supplementary motor area when participants
experience NFT in the form of surface-negative slow
cortical potentials (increased cortical excitation), whereas

positivity (decreased cortical excitation) was associated
with widespread deactivations (Hinterberger et al. 2003).
These responses have also been reported in the case of
sham NFT. In a recent fMRI study by Ninaus et al. 2013,
participants thought that they were receiving a valid feed-
back but, unbeknownst to them, were instead watching a
realistic video of an NFT session inside the fMRI scanner. In
a passive viewing condition, participants were ordered to
only watch the barmovements but not to attempt to control
them. Participants in the active condition were expressly
requested to control their brain activation so that the
moving bar remained as high as possible—a normal task in
NFB studies. When differentiating between the passive and
active task conditions, the ACC, the anterior insula, the
middle frontal gyrus, and the supplementary motor area
were strongly activated in a bilateralmanner,which reveals
the areas of the brain involved in supervisory control.
Regarding the function of memory, some have argued that,
when participants explore different cognitive strategies in
an attempt to control the NF signal, they must remember a
history of behaviors over time and determine which
behavior was responsible for influencing the feedback
signal (Oblak et al. 2017). The hippocampus is apparently
involved in recalling information, particularly for episodic
memories (Shirvalkar 2009). The consolidation of the long-
term memory, stored in cortical networks, results from the
reactivationof the assembly due to operant conditioning. In
this phase, the VMPFC and the hippocampus may work
together to form schema and possibly represent semi-
consolidated schemata (van Kesteren et al. 2010). Finally, a
recent meta-analysis literature review (including 12 exper-
iments that investigated 9 different target regions for a total
of 175 participants and899NFT sessions) suggested that the
anterior insula and the basal ganglia, in particular, the
striatum, were constantly active throughout the regulation
of brain activation across the experiments. Moreover, this
study showed additional activations in the ACC, the
dorsolateral and ventrolateral PFC, the temporo-parietal
area, and the visual association areas, including the
temporo-occipital junction (Emmert et al. 2016).

Surprisingly, these kinds of activation do not seem to
be limited to methods of NFT; for example, a newly
emerging NF protocol for ADHD utilizes functional near-
infrared spectroscopy (fNIRS) based on oxygenated
hemoglobin (O2Hb) activity in the PFC, an area tradi-
tionally implicated in the disorder. O2Hb activity also
reflects activation of the underlying brain regions where
chromophores are most strongly correlated with the
BOLD response synonymous with fMRI studies (Hudak
et al. 2018). In accordance with these findings, recent
consensus about NFT has indicated that, regardless of

618 A. Mirifar et al.: Neurofeedback and neural self-regulation



which signal is used for feedback (e.g., blood flow, oxy-
gen consumption, or electrical activity), mechanisms
other than NF-specific factors account for the effects of
NFT (Ros et al. 2020a).

As mentioned above, the aim of this section was to
track the effects of NFT on the regions crucial for self-
regulation. These effects could be considered as being
functional plasticity in interaction with the change in the
level of self-regulation. As expected, the brain regions,
such as VMPFC and ACC, which are identified as playing a
role in executive and memory functions, regardless of
trained frequency and location, showed activation during
and after NFT termination. The evidence suggests that NFT
enables the manipulation of neural activity in circum-
scribed regions in the form of trained regions and,
accordingly, might drive some functional connection
activities in other brain regions. The ability to enhance
neural dynamics at a network level with NFT may be a
bettermethod for neural regulation thanNFT involving one
area. This widespread activation by NFT appears to be
required for brain and behavioral regulation (Gaume et al.
2016; Ros et al. 2014; Sitaram et al. 2017).

Intermediate summary—neural mechanisms
underlying NFT

We have proposed that NFT should be framed within the
theoretical framework of allostasis: NFTmay alter the state
(set-point) of brain activity. The alterations in brain oscil-
latory activity and connectivity induced by NFT may be
produced by structural and functional plasticity at
different levels of analysis, ranging from molecular- to
system-level changes: NFT-based plastic changes may
include synaptic modification, alterations in gray and
white matter, and may also promote measurable changes
taken to indicate functional plasticity. This assumption is
in line with the recent publications suggesting that
behavioral changes induced by rtfMRI NFT can be
explained through two plasticity models: One refers to the
targeted neural plasticity model, which postulates plas-
ticity at the neuronal level within a target area for rtfMRI
NFT. The other refers to the learned modulation model,
which proposes modulation of the target area by other
nontarget areas learned through rtfMRI NFT (Shibata 2021;
Watanabe et al. 2017). Quantifying such changes is needed
in order to rigorously investigate the neural mechanisms
and, ultimately, the effectiveness of NFT. Such an objective
and quantitative approach may also address some con-
cerns regarding the external and internal validity of NFT
(Papo 2019; Schabus 2017; Thibault and Raz 2017).

In the neuropsychophysiological literature, the asso-
ciation between self-regulation and the activation of
different brain regions is discussed, and the activations
andmodifications of these regions are also examined in the
NFT literature. Interestingly, the brain regions discussed
earlier in the section on neural mechanisms underlying NF
involved in neurophysiological regulation are similar to
those that other researchers (such as Stephan et al. 2016)
have suggested to be involved in homeostasis and allo-
stasis regulation. For example, in their analysis of neuro-
anatomical circuits, Stephan et al. (2016) proposed that the
anterior insular cortex, ACC, subgenual cortex, and OFC
play an important role in homeostasis, allostasis, and
interoception. The authors argued that these regions,
which they call “visceromotor areas”, are situated at the
top of this circuit, embodying a generative model of
(potentially different types of) viscerosensory inputs
enabling a biological agent to infer current bodily states
and predict future states. These visceromotor areas form
the basis for allostatic predictions.

However, the research in this field is generally limited
to specifying whether changes in the structures and func-
tions of the brain lead to self-regulation and, if so, to what
extent the concept of self-regulation can be attained, or
whether participants have no control over alterations of the
brain after NFT.We should bear inmind that structural and
functional alterations of the brain may also happen
through techniques that externally stimulate neurons
(vs. NFT that internally stimulates the neurons), such as
rTMS and tDCS, without volitional control on up- or
downregulation of neural activity as a consequence of
learning self-regulation. Historically, the term “self-regu-
lation” has been used to describe volitional control of one’s
own thoughts, feelings, and behaviors to reach certain
goals. Thus, it is assumed that the alterations in the brain
oscillatory activity induced by NFT should be under the
volitional control of the participants after the termination
of training. In the field of NFT, it has thus far been shown
(by Joe Kamiya) that participants were, after the termina-
tion ofNFT, able to voluntarily increase the incidence of the
trained frequency (i.e., alpha waves) based on demands
(e.g., a researcher’s request). However, the participants
were not able to say how they produced that mental state
(Thompson 2004). Similarly, in a magnetoencephalogra-
phy (MEG) NF study, Bagherzadeh et al. (2020) sought to
shed light on the causal role of alpha synchrony in atten-
tion and showed a decrease in alpha corresponding to the
enhanced sensory processing; the participants were
trained to manipulate the ratio of alpha power over the left
versus right parietal cortex and found that a comparable
alpha asymmetry developed over the visual cortex, such
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that a persistent bias in attention in the expected directions
was observed after termination of the training. Volitional
control of up- and downregulation, however, was not
reported if it was tested.

Regarding the neural mechanisms of NFT, we have
provided examples and evidence from studies applying
EEG and fMRI-NFT aswell as from studies applying the less
used MEG and fNIRS-NFT. We showed that NFT is able to
trigger synaptic modifications that lead to a firming of
neural circuitry (Davelaar et al. 2018; Niv 2013; Ros et al.
2014). These modifications (contraction and/or expansion)
are required for functional changes at the neural network
level, for example, the default mode network (Mayeli et al.
2020; Russell-Chapin et al. 2013), and/or regions that are
involved in the executive function, such as DLPFC, the
region that is involved with changing behavior through
incorporating past events, current goals, and future pre-
dictions. Based on ourmodel, we argue that changes on the
structural and functional levels are due to an adaptation to
new set-points. Such changes are generally required for
predictive regulation (based on the concept of allostasis)
and efficient self-regulation.

From mechanisms to outcomes—
effects of NFT

The aim of this article is to introduce a new framework for
NFT. In an allostasis four-stage model, NFT involves
(a) learning relations between external demands (first, the
feedback stimulus; later, the internal and external cues) and
set-points (desired brain states), (b) learning to apply
learned patterns (experience), (c) determining efficient set-
points, and (d) adapting brain activity to the desired (“set”)
state. As reviewed above, successful NFT appears to
improve perception of internal states, as well as their pre-
diction, and ultimately, adaptation through structural and
functional plasticity. When the brain, as an effector, adapts
to new set-points, this leads to structural plasticity such as
synaptic modification and alterations in gray and white
matter. In addition, once the brain (as a regulator) applies
prior knowledge (experience) for perception, anticipation,
and adaptation, this promotesmeasurable changes taken to
indicate functional plasticity. This theoretical framework of
NFT has not previously been described, and its main goal is
to provide novel hypotheses in the pursuit of issues
currently debated in NFT research. The most obvious
conclusion emerging from this review is that NFT enables
the system to implement appropriate set-points. This ability
can form on the basis of more precise perception and

prediction. In addition, NFT enables the system to deal and
adapt more efficiently to a new set-point by mechanisms of
learning, that is, by applying the experience gained and
developed during the training.

In the following section, we discuss how framing NFT
within the allostasis four-stage model can further our un-
derstanding of NFT and how the model can address
currently debated issues. We will also present predictions
derived from the model that may be used to test the model.

Changes in baseline (sustained changes) or
adaptive changes?

Traditionally, the effectiveness of NFT has been expected
to be shown through sustained changes in the power of the
trained frequency across intervention sessions, even in
resting baseline measurements. That is, when a trained
frequency is upregulated, the increase in the power of that
frequency remains stable; conversely a reduction in the
power remains stable when a trained frequency is down-
regulated. Byway of illustration, Zoefel et al. (2011) applied
NFT to reinforce an individually determined upper alpha
frequency, ultimately to improve cognitive performance. In
the course of the training sessions, they recorded a sub-
stantial linear increase in the upper alpha amplitude
(Figure 5). In the final training session in both pre- and
postintervention, the alpha amplitudewas higher than that
in the very first pre- and postintervention, respectively.
Doubt has recently been cast on the validity of this
continuous progression or increase as a valid marker for
the effects of NFT (Witte et al. 2018). The authors argued
that the nature of NFT is reflected in participants having
attained the ability to (self-) regulate instantaneously.
Thus, a trainee in an EEG-NFT intervention may learn to
quickly regulate brain activations with less conscious
cognitive effort (Witte et al. 2018), but not to constantly
regulate these activations.

The four-stage model of NFT can now more precisely
explain these changes in the rest condition. One key
assumption of allostasis is that a set-point changes as a
result of demands. However, in the rest condition, which is
an inherently stable condition with few variations in the
environment, there are no such changing demands. Why
should the set-point then change?

To answer this question, two different conditions for
NFT should be considered. We assume that the aims and
outcomes of NFT differ between allostatic (over)load
states (e.g., clinical applications) and allostasis states
(e.g., nonclinical applications). In this regard, in an allo-
static (over)load state, such as in ADHD or a major
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depressive disorder, the brain activity appears to be dys-
regulated. By contrast, in an allostasis state (e.g., a
performance-enhancing application), the brain activity is
generally well-regulated. Accordingly, when NFT is
applied, the researchers should consider the condition of
the participants and the purpose of the intervention.
Skouras and Scharnowski (2019) have also recently high-
lighted whether self-regulating brain oscillations and
function would be identical between individuals with a
history of psychiatric pathology and healthy participants.
These conditions will be explained in more detail below.

NFT to modify allostatic (over)load states (improving
clinical conditions)

When NFT is applied to treat a patient, the aim is to
ameliorate the symptoms and to modify brain functioning
toward a healthy condition. Framed within the allostasis
model, the person’s brain activity is in a condition of
allostatic (over)load in which brain activity is not adap-
tively changing according to demands (McEwen and
Wingfield 2003). Whereas, in a healthy system, changes to
the set-point occur adaptively; maladaptive functioning
leads to health problems. For example, it has been argued
that perceptions of (chronic) stress lead to “allostatic load”
such that the set-point or allostatic state is not reset or
turned off after some time. This can be illustrated briefly by
continued elevated blood pressure in response to
continued or repeated perceptions of stress which can lead
to maladaptive changes like hypertension and subsequent
atherosclerosis. Allostatic load can occur as a result of
continuous demands or repeated “hits”, a failure to reset,
or a failure to respond to demands at all (Sterling 2012). The
dysregulated brain activity in persons with ADHD can be

seen as an allostatic (over)load. Although the elevated
theta/beta ratio may be adaptive to demands in an inat-
tentive, unfocused state, the prolonged or permanently
elevated pattern is maladaptive. In such a state, for
example, Monastra (2008) has argued that theta waves
predominate over the prefrontal and frontal cortex, as well
as at certain midline locations, such as the vertex. Thus, in
a clinical application, NFT is supposed to restore the flex-
ibility of a system’s regulator (i.e., the brain) to vary
parameters of its internal milieu and match them to envi-
ronmental demands by breaking down the allostatic (over)
load that has caused an unhealthy condition. The breaking
down of an allostatic (over)load should be considered an
extra step, or a prerequisite for an unhealthy system to
become healthy, as compared to what exists in nonclinical
(or optimizing) applications of NFT. In clinical applica-
tions, the focus of NFTwithin the four-stagemodel thus lies
on enhancing the perception of current internal and
external states, the prediction of output patterns, future
internal and external states, and the determination of an
efficient trade-off or set-point.

NFT to increase allostasis competence (improving
performance)

In nonclinical applications, for example, to enhance the
performance of athletes or artists, the system is not
generally dysregulated and has flexibility to react to
demands. The principal aim is, therefore, to enhance the
capacity for adapting the system’s state to task demands
and do so as accurately and quickly as possible. Thus,
based on the allostasis model, the changes in the brain
oscillatory activity in this scenario should be specific to the
training sessions and time on task. In the rest condition, the

Figure 5: Progress within and across sessions.
Taken from Zoefel et al. (2011).
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brain functioning of the participant, as a nonpatient,
should not be far outside the norm. These alterations in
brain oscillatory activity, for example, during the execu-
tion time, are responses to changes in condition and, as a
consequence, new demands.

Therefore, when NFT is employed to optimize perfor-
mance, the aim is to change the brain’s oscillatory activity
only during NFT sessions and while a specific task is being
executed, but not apart from these conditions. For a
healthy participant (with an intact brain and without any
mental disorder) who can handle daily affairs without any
problems, a long-term change in brain activity and func-
tion could lead to unwanted outcomes. A protocol applied
to healthy participants is generally driven by brain activ-
ity linked to an optimal performance of a desired task. For
example, changes have been reported in event-related
synchronization/desynchronization studies regarding
optimal and nonoptimal performance of a specific task
(Landers et al. 1991; Ring et al. 2015). Thus, there is no need
for any changes in brain oscillatory activity in other con-
ditions, like in the resting condition. Researchers (Mirifar
et al. 2019) instead theorize that participants initially learn
(consciously or not) tomodify their brain activity according
to the aim of the intervention during training sessions, and
then transfer this ability of flexible regulation to the
execution time. The assumption that participants can learn
to modify brain activity can probably be explained by a
flexible and precise regulation function that can be
induced by NFT and which accords with the allostasis
framework. Thus, the focus of NFT within the four-stage
model in nonclinical applications lies on enhancing effi-
cient adaptation.

In clinical applications, by contrast, researchers can
expect to observe sustained changes in a trained frequency
across time. That is, gradual changes in the trained fre-
quency occur within sessions but are also sustained be-
tween sessions even under rest conditions. In nonclinical
applications, however, changes in the trained frequency
should only be observed during the time of training (within
sessions) and at the time of task execution—when specific
demands (of a task) are high. In principle, prolonged and
sustained changes of trained frequencies in the resting
state (between sessions) are not expected. However, there
is one exception to this rule: due to the neural efficiency
induced by NFT, prolonged changes in brain activity after
NFT to enhance alpha activity (7–13 Hz) should be
expected. Alpha activity is indicative of the inhibition and
suppression of unnecessary or irrelevant information pro-
cessing, especially during the resting state. After NFT,
inhibition should generally be more evident in resting
conditions. Therefore, the key outcome of nonclinical

applications is instead the flexibility of the system to
respond to demands and the accuracy and the rate of
change—efficient adaptation.

The four-stage model of NFT predicts that NFT induces
a more flexible ability to self-regulate. Thus, it would be
useful if researchers were to demonstrate how flexible self-
regulation by means of NFT can be with regard to voli-
tionally alternating between up- and downregulation of a
trained frequency. In light of the expectations for an NFT
outcome, the other issue that probably should be
addressed is the relation between neurophysiological and
behavioral changes that might occur due to NFT.

An explanation of the relation between the
neurophysiological and behavioral changes
induced by NFT

Another issue that remains controversial in the field of
NFT is the interaction of neurophysiological and behav-
ioral changes and whether neurophysiological changes
are behind behavioral changes. In addition, how much
do these changes depend on each other? After scrutinizing
the evidence in the field of NFT, researchers (Micoulaud-
Franchi and Fovet 2018; Thibault and Raz 2018) have
argued that there is an ambiguous relationship between the
mechanisms underlying NFT, which are (a) psychosocial,
(b) cognitive, and (c) neurophysiological. A broader
perspective on the discrepancy between neurophysiological
and behavioral changeshas recently been revealed by Tinga
et al. (2019), who showed that the effect sizes of neuro-
physiological outcomes are smaller than those of behavioral
outcomes.With reference to ourmodel, wewill now explain
the interaction between the neurophysiological and
behavioral outcomes.

Regarding brain and behavioral plasticity, researchers
have argued that, if behavior changes, “theremust be some
change in organization or properties of the neural circuitry
that produces the behavior” (Kolb et al. 2003). Our model
incorporates a bidirectional relation between neurophysi-
ological and behavioral changes in an NFT session, which
is fundamental in operant conditioning. Our model in-
dicates that these changes will occur simultaneously.
However, they might not be proportionate over a given
period of time. During an NFT session, structural and
functional changes (due to plasticity) occur in the brain
that are influenced by perceptions, predictions, a set-point
determination, and adaptation to the set-point (demands).
Simultaneously, in an NFT session, a behavior could be
modified as a result of positive feedback (or reinforcement)
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and/or negative feedback (punishment). Studies have
shown changes at microlevels (e.g., by looking at the pa-
rameters such as LTP and STDP) in the short-term, even
within a single session. Significant changes at macrolevels
(or the functional level), however, may only occur after
multiple training sessions. In this respect, Davelaar (2020)
has argued that “[a change in the functional level] operates
on a timescale that covers multiple training sessions and is
sensitive to consolidation processes that unfold during
sleep. This stage involves updating striatal-thalamic and
thalamo-cortical connections.”

Commenting on the current debate, Thibault and Raz
(2018) and Micoulaud-Franchi and Fovet (2018) suggested
that the effects of NFT should be interpreted through three
distinct mechanisms: (a) psychosocial, (b) cognitive, and
(c) neurophysiological. Psychosocial refers to “the ele-
ments involved in the motivation for and expectation
associated with participating in a clinical procedure,
interacting with a practitioner, and interfacing with neu-
rotechnology”; cognition refers to “the process of actively
engaging in a form of mental or behavioral training,
regardless of the type or contingency of the feedback pro-
vided” (Thibault and Raz 2018).

With respect to our model, we argue that the immedi-
ate effects of NFT on the micro- and behavioral levels can
be observed, although functional changes will only be
observed after multiple training sessions. However,
researchers should bear in mind that the initial behavioral
changes are not stable and would partially be due to psy-
chosocial and cognitive factors.

In conclusion, in an NFT intervention, the functional
changes that researchers expect to observe as the specific
effects of a trained protocol require time to become estab-
lished in the brain. Some recent studies even suggest that
effects of NFT, at neurophysiological levels, might be
delayed (Linhartova et al. 2019; Rance et al. 2018). This
means that the initial changes in the neural circuitry which
generate a behavior are not yet well-established. The
behavioral outcomes in the initial stage thus encompass
unspecific and/or lesswell-established neurophysiological
changes, as well as psychosocial and cognitive factors.
Tinga et al. (2019) have recently shown that, in general,
neurophysiological outcomes have smaller effect sizes
than those of behavioral outcomes. This discrepancy be-
tween neurophysiological and behavioral evidence has
been reported in the field of NFT. Now, with respect to the
prediction that our model makes about NFT mechanisms,
the brain, as a regulator, develops patterns to meet de-
mands placed on it. Therefore, we predict that a longer

intervention not only leads to specific structural changes
but also to the functional changes required to (develop
patterns to) modify a particular behavior. Longer in-
terventions then enable researchers to observe changes at
the neurophysiological level that are comparable to the
behavioral changes.

Third conclusion—expectations about NFT
process and outcomes

The third aim of this article was to discuss outstanding
issues regarding expected outcomes of NFT and the rea-
sons that might differentiate the consequences of NFT be-
tween the medical treatments (or clinical application) and
optimized performance applications, and to provide ideas
on how our framework may aid in solving these issues.
Froma theoretical perspective,we can conclude that,when
NFT is applied to optimize performance, there is no reason
to assume any changes in brain activity in a rest condition
in the first place. Moreover, such changes would most
likely even cause probable negative side effects. This may,
for example, be observed in a situation in which, following
NFT and in a resting condition, a healthy participant shows
a consistently high level in the power/amplitude of a fast
frequency band such as beta (15–30 Hz) compared to their
baseline. However, we have also explained that, when NFT
is applied to optimize performance, there is one exception
to this rule: due to the neural efficiency induced by NFT,
one can expect to observe prolonged changes in brain
activity after NFT is applied to enhance alpha activity
(7–13 Hz). Alpha activity is indicative of the inhibition and
suppression of unnecessary or irrelevant information pro-
cessing, especially during the resting state. We also argued
that, after learning to modify their brain activity, a person
should be able to up- and downregulate the trained fre-
quency more freely based on physiological demands.
Furthermore, with respect to our model, we comment on
the current debate regarding the interaction between
neurophysiological and behavioral changes that can be
induced by NFT. We argued that the immediate (and
nonstable) effects of NFT on behavior can be observed after
a few sessions, even though functional changes might not
be well-established. However, longer interventions are
required to stabilize behavioral changes and enable
researchers to observe changes at the neurophysiological
level, which are comparable to the behavioral level. These
theoretical concerns could provide insights for future
research.
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Conclusions and outlook

NFT is continuing to gain widespread interest both in
clinical and performance-related disciplines. It has,
therefore, become necessary to define a theoretical
framework and the neural mechanisms associated with
NFT, along with potential outcomes. This article has
identified the importance of self-regulation and the role of
operant conditioning for inducing physiological self-
regulation and, consequently, optimizing a behavior or
function of interest. In addition, we discussed relations
among control system theory, hemostasis, and allostasis
and NFT to develop a new theoretical model of the neural
mechanisms underlying NFT.

The most important contribution that this article
makes is based on the framework of allostasis, and that
NFT may optimize adaptation to new demands in four
stages, which we have named as the allostasis four-stage
model of NFT: (A) by more accurately perceiving internal
and external demands; (B) by predicting the internal and
external state of the body and its future output; (C) bymore
appropriately determining new set-points (which is an
efficient trade-off between new demands and the current
internal state); and (D) by more efficiently responding to
new set-points (when the brain assumes the role of an
effector). This perspective review also supports the idea
that the greatest benefit of NFT is that changes resulting
from interventions occur under physiologically normal
conditions, which are clearly required for clinical appli-
cations. However, this perspective review proposes that
neurophysiological changes resulting from NFT in-
terventions occurring under physiologically abnormal
conditions may differ for nonclinical applications.
Compared to pharmacotherapy and noninvasive brain
stimulation (such as rTMS and tDCS), NFT is purely an
endogenous technique, whereby physiological regulation
is invoked by the mechanism of action itself, that is, from
the “inside out” rather than from the “outside in” (Ros et al.
2014). It is, therefore, assumed (as evident in the seminal
study by Joe Kamiya) that the alteration induced by NFT is
under volitional control when the process of learning is
complete. More evidence on volitional control on brain
oscillatory activity following the termination of NFT would
help us to establish a greater degree of accuracy on this
matter. In general, the theoretical implications of these
findings offer promise for NFT as a means of influencing
learning and self-regulation across a variety of normative
and clinical groups.

Author contributions: AM conceived and developed the
idea and frame of the manuscript. AM and FE developed
the model and AK provided feedback on it. AM wrote the
first draft of the manuscript and FE and AK commented on
it and revised it. All authors have accepted responsibility
for the entire content of this submitted manuscript and
approved submission.
Research funding: AM and FE received no financial
support for the research, authorship, and/or publication
of this article. AKwas supported by grant R01MH112558, by
the National Institute of Mental Health.
Conflict of interest statement: None.

References

Arduin, P.J., Fregnac, Y., Shulz, D.E., and Ego-Stengel, V. (2013).
“Master” neurons induced by operant conditioning in rat motor
cortex during a brain-machine interface task. J. Neurosci. 33:
8308–8320.

Arns, M., de Ridder, S., Strehl, U., Breteler, M., and Coenen, A. (2009).
Efficacy of neurofeedback treatment in ADHD: the effects on
inattention, impulsivity and hyperactivity: a meta-analysis. Clin.
EEG Neurosci. 40: 180–189.

Awh, E. and Gehring, W.J. (1999). The anterior cingulate cortex lends a
hand in response selection. Nat. Neurosci. 2: 853.

Bagherzadeh, Y., Baldauf, D., Pantazis, D., and Desimone, R. (2020).
Alpha synchrony and the neurofeedback control of spatial
attention. Neuron 105: 577–587 e575.

Banfield, J.F., Wyland, C.L., Macrae, C.N., Münte, T.F., and
Heatherton, T.F. (2004). The cognitive neuroscience of self-
regulation. In: Handbook of self-regulation: research, theory, and
applications. The Guilford Press, New York, NY, US, pp. 62–83.

Barrett, L.F., Quigley, K.S., andHamilton, P. (2016). An active inference
theory of allostasis and interoception in depression. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 371: 20160011.

Baumeister, R.F. and Heatherton, T.F. (1996). Self-regulation failure:
an overview. Psychol. Inq. 7: 1–15.

Bissiere, S., Humeau, Y., and Luthi, A. (2003). Dopamine gates LTP
induction in lateral amygdala by suppressing feedforward
inhibition. Nat. Neurosci. 6: 587–592.

Blair, C. (2016). Developmental science and executive function. Curr.
Dir. Psychol. Sci. 25: 3–7.

Bluschke, A., Broschwitz, F., Kohl, S., Roessner, V., and Beste, C.
(2016). The neuronal mechanisms underlying improvement of
impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6:
31178.

Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S., and Cohen, J.D.
(1999). Conflictmonitoring versus selection-for-action in anterior
cingulate cortex. Nature 402: 179–181.

Bush,G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike,M.A., and
Rosen, B.R. (2002). Dorsal anterior cingulate cortex: a role in
reward-based decision making. Proc. Natl. Acad. Sci. U. S. A. 99:
523–528.

624 A. Mirifar et al.: Neurofeedback and neural self-regulation



Cannon, R., Lubar, J., Congedo, M., Thornton, K., Towler, K., and
Hutchens, T. (2007). The effects of neurofeedback training in the
cognitive division of the anterior cingulate gyrus. Int. J. Neurosci.
117: 337–357.

Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., and
Cohen, J.D. (1998). Anterior cingulate cortex, error detection, and
the online monitoring of performance. Science 280: 747–749.

Carter, C.S., Macdonald, A.M., Botvinick, M., Ross, L.L., Stenger, V.A.,
Noll, D., and Cohen, J.D. (2000). Parsing executive processes:
strategic versus evaluative functions of the anterior cingulate
cortex. Proc. Natl. Acad. Sci. U. S. A. 97: 1944–1948.

Clark, V.P. and Parasuraman, R. (2014). Neuroenhancement:
enhancing brain and mind in health and in disease. Neuroimage
85: 889–894.

Coben, R., Linden, M., and Myers, T.E. (2010). Neurofeedback for
autistic spectrum disorder: a review of the literature. Appl.
Psychophysiol. Biofeedback 35: 83–105.

Cohen, E.J., Quarta, E., Bravi, R., Granato, A., and Minciacchi, D.
(2017). Neural plasticity and network remodeling: from concepts
to pathology. Neuroscience 344: 326–345.

Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R.,
McAuley, E., Elavsky, S., Marquez, D.X., Hu, L., and Kramer, A.F.
(2006). Aerobic exercise training increases brain volume in aging
humans. J. Gerontol. Biol. Med. Sci. 61: 1166–1170.

Collura, T.F. (2014). Technical foundations of neurofeedback. Taylor &
Francis, New York, US.

Cooper, S.J. (2008). From Claude Bernard to Walter Cannon.
Emergence of the concept of homeostasis. Appetite 51: 419–427.

Davelaar, E.J. (2020). A multi-stage theory of neurofeedback learning.
In: Schmorrow, D.D. and Fidopiastis, C.M. (Eds.), Augmented
cognition. Theoretical and technological approaches. Springer
International Publishing, Cham, pp. 118–128.

Davelaar, E.J., Barnby, J.M., Almasi, S., and Eatough, V. (2018).
Differential subjective experiences in learners and non-learners
in frontal alpha neurofeedback: piloting a mixed-method
approach. Front. Hum. Neurosci. 12: 402.

de Ridder, D.T.D. and de Wit, J.B.F. (2006). Self-regulation in health
behavior: concepts, theories, and central issues. In: Self-regulation
in health behavior. Wiley, Chichester, West Sussex, UK, pp. 1–23.

Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., and
May, A. (2004). Neuroplasticity: changes in grey matter induced
by training. Nature 427: 311–312.

Draganski, B., Gaser, C., Kempermann, G., Kuhn, H.G., Winkler, J.,
Buchel, C., andMay, A. (2006). Temporal and spatial dynamics of
brain structure changes during extensive learning. J. Neurosci.
26: 6314–6317.

Duncan, J. and Owen, A.M. (2000). Common regions of the human
frontal lobe recruited by diverse cognitive demands. Trends
Neurosci. 23: 475–483.

Dworkin, B.R. (1986). Learning and long-term physiological
regulation. In: Davidson, R.J., Schwartz, G.E., and Shapiro, D.
(Eds.), Consciousness and self-regulation: Advances in research
and theory. Springer US, Boston, MA, pp. 163–182.

Elliott, R. and Dolan, R.J. (1998). Neural response during preference
and memory judgments for subliminally presented stimuli: a
functional neuroimaging study. J. Neurosci. 18: 4697–4704.

Emmert, K., Kopel, R., Sulzer, J., Bruhl, A.B., Berman, B.D., Linden,
D.E.J., Horovitz, S.G., Breimhorst, M., Caria, A., Frank, S., et al.
(2016). Meta-analysis of real-time fMRI neurofeedback studies

using individual participant data: how is brain regulation
mediated? Neuroimage 124: 806–812.

Feldman, D.E. (2012). The spike-timing dependence of plasticity.
Neuron 75: 556–571.

Fishbach, A. and Shah, J.Y. (2006). Self-control in action: implicit
dispositions toward goals and away from temptations. J. Pers.
Soc. Psychol. 90: 820–832.

Friston, K. and Kiebel, S. (2009). Predictive coding under the free-
energy principle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:
1211–1221.

Gallistel, C.R. and Matzel, L.D. (2013). The neuroscience of learning:
beyond the Hebbian synapse. Annu. Rev. Psychol. 64: 169–200.

Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., and Vialatte,
F.B. (2016). A psychoengineering paradigm for the
neurocognitive mechanisms of biofeedback and neurofeedback.
Neurosci. Biobehav. Rev. 68: 891–910.

Gehring, W.J. and Fencsik, D.E. (2001). Functions of the medial frontal
cortex in the processing of conflict and errors. J. Neurosci. 21:
9430–9437.

Gehring, W.J. and Knight, R.T. (2000). Prefrontal-cingulate
interactions in action monitoring. Nat. Neurosci. 3: 516–520.

Gerdes, L., Gerdes, P., Lee, S.W., and Tegeler, C.H. (2013). HIRREM: a
noninvasive, allostatic methodology for relaxation and auto-
calibration of neural oscillations. Brain Behav. 3: 193–205.

Gershman, S.J. and Daw, N.D. (2017). Reinforcement learning and
episodic memory in humans and animals: an integrative
framework. Annu. Rev. Psychol. 68: 101–128.

Gerstner, W. (2011). Hebbian learning and plasticity. In: Arbib, M.A. and
Bonaiuto, J.J. (Eds.), From neuron to cognition via computational
neuroscience. MIT Press Cambridge, London, pp. 0–25.

Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn,
G., Gilbert, G., Levesque, J., and Beauregard, M. (2013).
Neurofeedback training induces changes in white and gray
matter. Clin. EEG Neurosci. 44: 265–272.

Gollwitzer, P.M. and Brandstätter, V. (1997). Implementation
intentions and effective goal pursuit. J. Pers. Soc. Psychol. 73:
186.

Gopal, M. (2002). Control systems: principles and design. McGraw-
Hill Education (India) Pvt Limited, New Delhi.

Gruzelier, J. and Egner, T. (2005). Critical validation studies of
neurofeedback. Child Adolesc. Psychiatr. Clin. North Am. 14:
83–104.

Gruzelier, J.H. and Egner, T. (2004). Physiological self-regulation:
biofeedback and neurofeedback. In: Musical excellence. Oxford
University Press, London, UK, pp. 197–219.

Gruzelier, J.H. (2014a). EEG-neurofeedback for optimising
performance. I: a review of cognitive and affective outcome in
healthy participants. Neurosci. Biobehav. Rev. 44: 124–141.

Gruzelier, J.H. (2014b). EEG-neurofeedback for optimising
performance. II: creativity, the performing arts and ecological
validity. Neurosci. Biobehav. Rev. 44: 142–158.

Gruzelier, J.H. (2014c). EEG-neurofeedback for optimising
performance. III: a review of methodological and theoretical
considerations. Neurosci. Biobehav. Rev. 44: 159–182.

Hampson, M., Ruiz, S., and Ushiba, J. (2020). Neurofeedback.
Neuroimage 218: 116473.

Hare, T.A., Camerer, C.F., and Rangel, A. (2009). Self-control in
decision-making involves modulation of the vmPFC valuation
system. Science 324: 646–648.

A. Mirifar et al.: Neurofeedback and neural self-regulation 625



Hebb, D.O. (1949). The organization of behavior, Vol. 65. Wiley, New
York.

Hensel, H. (1981). Thermoreception and temperature regulation.
Monogr. Physiol. Soc. 38: 1–321.

Hernandez, M., Denburg, N.L., and Tranel, D. (2009). A
neuropsychological perspective on the role of the prefrontal
cortex in reward processing and decision-making. In:
Dreher, J.-C. and Tremblay, L. (Eds.), Handbook of reward and
decision making. Academic Press, New York, pp. 291–306.

Hinterberger, T., Veit, R., Strehl, U., Trevorrow, T., Erb, M.,
Kotchoubey, B., Flor, H., and Birbaumer, N. (2003). Brain areas
activated in fMRI during self-regulation of slow cortical
potentials (SCPs). Exp. Brain Res. 152: 113–122.

Hofmann, W., Schmeichel, B.J., and Baddeley, A.D. (2012).
Executive functions and self-regulation. Trends Cognit. Sci.
16: 174–180.

Hohenfeld, C., Nellessen, N., Dogan, I., Kuhn, H., Muller, C., Papa, F.,
Ketteler, S., Goebel, R., Heinecke, A., Shah, N.J., et al. (2017).
Cognitive improvement and brain changes after real-time
functional MRI neurofeedback training in healthy elderly and
prodromal Alzheimer’s disease. Front. Neurol. 8: 384.

Hölzel, B.K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S.M.,
Gard, T., and Lazar, S.W. (2011). Mindfulness practice leads to
increases in regional brain gray matter density. Psychiatr. Res.
191: 36–43.

Hudak, J., Rosenbaum, D., Barth, B., Fallgatter, A.J., and Ehlis, A.C.
(2018). Functionally disconnected: a look at how study design
influences neurofeedback data and mechanisms in attention-
deficit/hyperactivity disorder. PLoS One 13: e0200931.

Hurley, K.M., Herbert, H., Moga, M.M., and Saper, C.B. (1991). Efferent
projections of the infralimbic cortex of the rat. J. Comp. Neurol.
308: 249–276.

Ilg, R., Wohlschlager, A.M., Gaser, C., Liebau, Y., Dauner, R., Woller,
A., Zimmer, C., Zihl, J., and Muhlau, M. (2008). Gray matter
increase induced by practice correlates with task-specific
activation: a combined functional and morphometric magnetic
resonance imaging study. J. Neurosci. 28: 4210–4215.

Kaas, J.H. (2001). Neural plasticity. In: Smelser, N.J. and Baltes, P.B.
(Eds.), International encyclopedia of the social & behavioral
sciences. Pergamon, Oxford, pp. 10542–10546.

Kamiya, J. (1962). Conditioned discrimination of the EEG alpha rhythm
in humans. In: The western psychological. The Western
Psychological, San Francisco, California.

Kane, M.J., Bleckley, M.K., Conway, A.R., and Engle, R.W. (2001).
A controlled-attention view of working-memory capacity. J. Exp.
Psychol. Gen. 130: 169–183.

Kanosue, K., Crawshaw, L.I., Nagashima, K., and Yoda, T. (2010).
Concepts to utilize in describing thermoregulation and
neurophysiological evidence for how the system works. Eur.
J. Appl. Physiol. 109: 5–11.

Kiehl, K.A., Liddle, P.F., and Hopfinger, J.B. (2000). Error processing
and the rostral anterior cingulate: an event-related fMRI study.
Psychophysiology 37: 216–223.

Kleckner, I.R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons,
W.K., Quigley, K.S., Dickerson, B.C., and Barrett, L.F. (2017).
Evidence for a large-scale brain system supporting allostasis and
interoception in humans. Nat. Hum. Behav. 1: 0069.

Knutson, B., Westdorp, A., Kaiser, E., and Hommer, D. (2000). FMRI
visualization of brain activity during a monetary incentive delay
task. Neuroimage 12: 20–27.

Kober, S.E., Witte, M., Stangl, M., Väljamäe, A., Neuper, C., andWood,
G. (2015). Shutting down sensorimotor interference unblocks the
networks for stimulus processing: an SMR neurofeedback
training study. Clin. Neurophysiol. 126: 82–95.

Kolb, B., Gibb, R., and Robinson, T.E. (2003). Brain plasticity and
behavior. Curr. Dir. Psychol. Sci. 12: 1–5.

Kringelbach, M.L. and Berridge, K.C. (2016). Neuroscience of reward,
motivation, and drive. In: Recent developments in neuroscience
research on human motivation. Emerald Group Publishing
Limited, Bingley, UK, pp. 23–35.

Kulichenko, A.M., Fokina, Y.O., and Pavlenko, V.B. (2009). Changes in
EEG rhythms and spike activity of brainstem dopaminergic
neurons induced by neurofeedback sessions in cats.
Neurophysiology 41: 196.

Landers, D.M., Petruzzello, S.J., Salazar, W., Crews, D.J., Kubitz, K.A.,
Gannon, T.L., and Han, M. (1991). The influence of electrocortical
biofeedback on performance in pre-elite archers. Med. Sci.
Sports Exerc. 23: 123–129.

LeBlanc, S.E. and Coughanowr, D. (2009). Process systems analysis
and control. McGraw-Hill Education, New York.

Levine, B., Stuss, D.T., Milberg, W.P., Alexander, M.P., Schwartz, M.,
and Macdonald, R. (1998). The effects of focal and diffuse brain
damage on strategy application: evidence from focal lesions,
traumatic brain injury and normal aging. J. Int. Neuropsychol.
Soc. 4: 247–264.

Liddle, P.F., Kiehl, K.A., and Smith, A.M. (2001). Event-related fMRI
study of response inhibition. Hum. Brain Mapp. 12: 100–109.

Linhartova, P., Latalova, A., Kosa, B., Kasparek, T., Schmahl, C., and
Paret, C. (2019). fMRI neurofeedback in emotion regulation: a
literature review. Neuroimage 193: 75–92.

Luria, A.R. (1966). Higher cortical functions in man. Basic, New York.
MacDonald, A.W., Cohen, J.D., Stenger, V.A., and Carter, C.S. (2000).

Dissociating the role of the dorsolateral prefrontal and
anterior cingulate cortex in cognitive control. Science 288:
1835–1838.

Marins, T., Rodrigues, E.C., Bortolini, T., Melo, B., Moll, J., and Tovar-
Moll, F. (2019). Structural and functional connectivity changes in
response to short-term neurofeedback training with motor
imagery. Neuroimage 194: 283–290.

Markram, H., Gerstner, W., and Sjöström, P.J. (2011). A history
of spike-timing-dependent plasticity. Front. Synaptic
Neurosci. 3: 4.

Mayeli, A., Misaki, M., Zotev, V., Tsuchiyagaito, A., Al Zoubi, O.,
Phillips, R., Smith, J., Stewart, J.L., Refai, H., Paulus, M.P., et al.
(2020). Self-regulation of ventromedial prefrontal cortex
activation using real-time fMRI neurofeedback-Influence of
default mode network. Hum. Brain Mapp. 41: 342–352.

McEntee, W.J. and Crook, T.H. (1993). Glutamate: its role in learning,
memory, and the aging brain. Psychopharmacology 111:
391–401.

McEwen, B.S. (2016). Chapter 5 – central role of the brain in stress
and adaptation: allostasis, biological embedding, and
cumulative change. In: Fink, G. (Ed.), Stress: concepts,
cognition, emotion, and behavior. Academic Press, San Diego,
pp. 39–55.

McEwen, B.S. and Wingfield, J.C. (2003). The concept of allostasis in
biology and biomedicine. Horm. Behav. 43: 2–15.

Menon, V., Adleman, N.E., White, C.D., Glover, G.H., and Reiss, A.L.
(2001). Error-related brain activation during aGo/NoGo response
inhibition task. Hum. Brain Mapp. 12: 131–143.

626 A. Mirifar et al.: Neurofeedback and neural self-regulation



Micoulaud-Franchi, J.A. and Fovet, T. (2018). A framework for
disentangling the hyperbolic truth of neurofeedback: comment
on Thibault and Raz (2017). Am. Psychol. 73: 933–935.

Micoulaud Franchi, J.A., Jeunet, C., and Lotte, F. (2020).
Neurofeedback: a challenge for integrative clinical
neurophysiological studies. Neurophysiol. Clin. 50: 1–3.

Miller, E.K. (2000). The prefontral cortex and cognitive control. Nat.
Rev. Neurosci. 1: 59–65.

Miller, E.K. and Cohen, J.D. (2001). An integrative theory of prefrontal
cortex function. Annu. Rev. Neurosci. 24: 167–202.

Miller, J.D., Sanghera, M.K., and German, D.C. (1981). Mesencephalic
dopaminergic unit activity in the behaviorally conditioned rat.
Life Sci. 29: 1255–1263.

Miller, N.E. (1978). Biofeedback and visceral learning. Annu. Rev.
Psychol. 29: 373–404.

Miller, R. (1981). Meaning and purpose in the intact brain: a
philosophical, psychological, and biological account of
conscious processes. Oxford University Press, New York City, US.

Mirifar, A., Keil, A., Beckmann, J., and Ehrlenspiel, F. (2019). No effects
of neurofeedback of beta band components on reaction time
performance. J. Cognit. Enhanc. 3: 251–260.

Monastra, V.J. (2008). Quantitative electroencephalography and
attention-deficit/hyperactivity disorder: implications for clinical
practice. Curr. Psychiatr. Rep. 10: 432–438.

Moore, N.C. (2000). A review of EEG biofeedback treatment of anxiety
disorders. Clin. Electroencephalogr. 31: 1–6.

Mulholland, T.B. (1984). Concepts of control in biofeedback. In:
Elbert, T., Rockstroh, B., Lutzenberger, W., and Birbaumer, N.
(Eds.), Self-regulation of the brain and behavior. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 277–295.

Munivenkatappa, A., Rajeswaran, J., Indira Devi, B., Bennet, N., and
Upadhyay, N. (2014). EEG neurofeedback therapy: can it attenuate
brain changes in TBI? NeuroRehabilitation 35: 481–484.

Ninaus, M., Kober, S.E., Witte, M., Koschutnig, K., Stangl, M., Neuper,
C., and Wood, G. (2013). Neural substrates of cognitive control
under the belief of getting neurofeedback training. Front. Hum.
Neurosci. 7: 914.

Niv, S. (2013). Clinical efficacy and potential mechanisms of
neurofeedback. Pers. Indiv. Differ. 54: 676–686.

Oblak, E.F., Lewis-Peacock, J.A., and Sulzer, J.S. (2017). Self-
regulation strategy, feedback timing and hemodynamic
properties modulate learning in a simulated fMRI
neurofeedback environment. PLoS Comput. Biol. 13:
e1005681.

Ossadtchi, A., Shamaeva, T., Okorokova, E., Moiseeva, V., and
Lebedev, M.A. (2017). Neurofeedback learning modifies the
incidence rate of alpha spindles, but not their duration and
amplitude. Sci. Rep. 7: 3772.

Pandria, N., Kovatsi, L., Vivas, A.B., and Bamidis, P.D. (2018). Resting-
state abnormalities in heroin-dependent individuals.
Neuroscience 378: 113–145.

Pandya, D.Ν. and Barnes, C.L. (2019). Architecture and connections of
the frontal lobe. In: The frontal lobes revisited. Psychology Press,
New York, US, pp. 41–72.

Papo, D. (2019). Neurofeedback: principles, appraisal, and
outstanding issues. Eur. J. Neurosci. 49: 1454–1469.

Papoutsi, M., Weiskopf, N., Langbehn, D., Reilmann, R., Rees, G., and
Tabrizi, S.J. (2018). Stimulating neural plasticity with real-time
fMRI neurofeedback in Huntington’s disease: a proof of concept
study. Hum. Brain Mapp. 39: 1339–1353.

Paret, C., Zahringer, J., Ruf, M., Gerchen, M.F., Mall, S., Hendler, T.,
Schmahl, C., and Ende, G. (2018). Monitoring and control of
amygdala neurofeedback involves distributed information
processing in the human brain. Hum. Brain Mapp. 39:
3018–3031.

Paulus, M.P., Hozack, N., Frank, L., and Brown, G.G. (2002). Error rate
and outcome predictability affect neural activation in prefrontal
cortex and anterior cingulate during decision-making.
Neuroimage 15: 836–846.

Paus, T. (2001). Primate anterior cingulate cortex: where motor
control, drive and cognition interface. Nat. Rev. Neurosci. 2:
417–424.

Pawlak, V., Wickens, J., Kirkwood, A., and Kerr, J. (2010). Timing is not
everything: neuromodulation opens the STDP gate. Front.
Synaptic Neurosci. 2: 146.

Posner, M.I. and Rothbart, M.K. (1998). Attention, self-regulation and
consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353:
1915–1927.

Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.S.,
McNamara, J.O., and Williams, S.M. (2001). Chapter 24 -
Neurotransmitters. In: Neuroscience, 3rd ed. Sinauer Associates,
Sunderland, Massachusetts, US, pp. 275–610.

Raichle, M.E., Fiez, J.A., Videen, T.O., MacLeod, A.M., Pardo, J.V., Fox,
P.T., and Petersen, S.E. (1994). Practice-related changes in
human brain functional anatomy during nonmotor learning.
Cerebr. Cortex 4: 8–26.

Ramsay, D.S. and Woods, S.C. (2014). Clarifying the roles of
homeostasis and allostasis in physiological regulation. Psychol.
Rev. 121: 225–247.

Rance, M., Walsh, C., Sukhodolsky, D.G., Pittman, B., Qiu, M., Kichuk,
S.A., Wasylink, S., Koller, W.N., Bloch, M., Gruner, P., et al.
(2018). Time course of clinical change following neurofeedback.
Neuroimage 181: 807–813.

Reiner,M., Gruzelier, J., Bamidis, P.D., andAuer, T. (2018). The science
of neurofeedback: learnability and effects. Neuroscience 378:
1–10.

Ring, C., Cooke, A., Kavussanu, M., McIntyre, D., and Masters, R.
(2015). Investigating the efficacy of neurofeedback training for
expediting expertise and excellence in sport. Psychol. Sport
Exerc. 16: 118–127.

Rolls, E.T. (2000). The orbitofrontal cortex and reward. Cerebr. Cortex
10: 284–294.

Ros, T., Baars, B.J., Lanius, R.A., and Vuilleumier, P. (2014).
Tuning pathological brain oscillations with neurofeedback:
a systems neuroscience framework. Front. Hum. Neurosci. 8:
1008.

Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K.D., Wood, G.,
Whitfield-Gabrieli, S., Wan, F., Vuilleumier, P., Vialatte, F.,
Van De Ville, D., et al. (2020a). Consensus on the reporting and
experimental design of clinical and cognitive-behavioural
neurofeedback studies (CRED-nf checklist). Brain 143:
1674–1685.

Ros, T., Kwiek, J., Andriot, T., Michela, A., Vuilleumier, P., Garibotto,
V., and Ginovart, N. (2020b). PET imaging of dopamine
neurotransmission during EEG neurofeedback. Front. Physiol. 11:
590503.

Russell-Chapin, L., Kemmerly, T., Liu, W.-C., Zagardo,M.T., Chapin, T.,
Dailey, D., and Dinh, D. (2013). The effects of neurofeedback in
the default mode network: pilot study results of medicated
children with ADHD. J. Neurother. 17: 35–42.

A. Mirifar et al.: Neurofeedback and neural self-regulation 627



Sanei, S. andChambers, J.A. (2007). EEG signal processing. JohnWiley
& Sons, Chichester, West Sussex, UK.

Saxbe, D.E., Beckes, L., Stoycos, S.A., and Coan, J.A. (2020). Social
allostasis and social allostatic load: a new model for research in
social dynamics, stress, and health. Perspect. Psychol. Sci. 15:
469–482.

Schabus, M. (2017). Reply: on assessing neurofeedback effects:
should double-blind replace neurophysiological mechanisms?
Brain 140: e64.

Schabus, M. (2018). Reply: noisy but not placebo: definingmetrics for
effects of neurofeedback. Brain 141: e41.

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron
36: 241–263.

Shibata, K. (2021). Mechanisms of fMRI neurofeedback. In:
Hampson, M. (Ed.), fMRI neurofeedback. Academic Press,
London, UK, pp. 287–313.

Shinners, S.M. (1998). Modern control system theory and design.
Wiley, New York, US.

Shirvalkar, P.R. (2009). Hippocampal neural assemblies and
conscious remembering. J. Neurophysiol. 101: 2197–2200.

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-
Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E., et al.
(2017). Closed-loop brain training: the science of neurofeedback.
Nat. Rev. Neurosci. 18: 86–100.

Skouras, S. and Scharnowski, F. (2019). The effects of psychiatric
history and age on self-regulation of the default mode network.
Neuroimage 198: 150–159.

Sohlberg, M.M. and Mateer, C.A. (1989). Introduction to cognitive
rehabilitation: theory and practice. Guilford Press, New York, NY,
US.

Somjen, G.G. (1992). The missing error signal—regulation beyond
negative feedback. Physiology 7: 184–185.

Sorger, B., Kamp, T., Weiskopf, N., Peters, J.C., and Goebel, R. (2018).
When the brain takes ‘BOLD’ steps: real-time fMRI
neurofeedback can further enhance the ability to gradually self-
regulate regional brain activation. Neuroscience 378: 71–88.

Spence, S.A. and Frith, C.D. (1999). Towards a functional anatomy of
volition. J. Conscious. Stud. 6: 11–29.

Stephan, K.E., Manjaly, Z.M., Mathys, C.D., Weber, L.A., Paliwal, S.,
Gard, T., Tittgemeyer, M., Fleming, S.M., Haker, H., Seth, A.K.,
et al. (2016). Allostatic self-efficacy: a metacognitive theory of
dyshomeostasis-induced fatigue and depression. Front. Hum.
Neurosci. 10: 550.

Sterling, P. (2012). Allostasis: a model of predictive regulation.
Physiol. Behav. 106: 5–15.

Sterling, P. (2018). Predictive regulation and human design. eLife 7:
e36133.

Sterling, P. (2020). What is health?: Allostasis and the evolution of
human design. MIT Press, Cambridge, Massachusetts, US.

Sterling, P., Eyer, J., Fisher, S., and Reason, J. (1988). Handbook of life
stress, cognition and health. Allostasis; a new paradigm to
explain arousal pathology. Wiley, New York, pp. 629–649.

Sterling, P. and Laughlin, S. (2015). Principles of neural design. MIT
Press.

Stuss, D.T. (1991). Self, awareness, and the frontal lobes: a
neuropsychological perspective. In: Strauss, J. and
Goethals, G.R. (Eds.), The self: interdisciplinary approaches.
Springer New York, New York, NY, pp. 255–278.

Stuss, D.T. and Levine, B. (2002). Adult clinical neuropsychology:
lessons from studies of the frontal lobes. Annu. Rev. Psychol. 53:
401–433.

Sulzer, J., Sitaram, R., Blefari, M.L., Kollias, S., Birbaumer, N.,
Stephan, K.E., Luft, A., and Gassert, R. (2013). Neurofeedback-
mediated self-regulation of the dopaminergic midbrain.
Neuroimage 83: 817–825.

Tang, Y.Y., Lu, Q., Fan, M., Yang, Y., and Posner, M.I. (2012).
Mechanisms of white matter changes induced by meditation.
Proc. Natl. Acad. Sci. U. S. A. 109: 10570–10574.

Ter Horst, G.J., Hautvast, R.W., De Jongste, M.J., and Korf, J. (1996).
Neuroanatomy of cardiac activity-regulating circuitry: a
transneuronal retrograde viral labelling study in the rat. Eur.
J. Neurosci. 8: 2029–2041.

Terreberry, R.R. and Neafsey, E.J. (1987). The rat medial frontal cortex
projects directly to autonomic regions of the brainstem. Brain
Res. Bull. 19: 639–649.

Thibault, R.T., Lifshitz,M., and Raz, A. (2016). The self-regulating brain
and neurofeedback: experimental science and clinical promise.
Cortex 74: 247–261.

Thibault, R.T. and Raz, A. (2017). The psychology of neurofeedback:
clinical intervention even if applied placebo. Am. Psychol. 72:
679–688.

Thibault, R.T. and Raz, A. (2018). A consensus framework for
neurofeedback research (and the perils of unfounded
neuroreductionism): reply to Micoulaud-Franchi and Fovet
(2018). Am. Psychol. 73: 936–937.

Thompson, L. (2004). Electroencephalographic applications. AAPB,
Wheat Ridge Colorado.

Tinga, A.M., de Back, T.T., and Louwerse, M.M. (2019). Non-invasive
neurophysiological measures of learning: a meta-analysis.
Neurosci. Biobehav. Rev. 99: 59–89.

Trambaiolli, L.R., Kohl, S.H., Linden, D.E.J., andMehler, D.M.A. (2021).
Neurofeedback training in major depressive disorder: a
systematic review of clinical efficacy, study quality and reporting
practices. Neurosci. Biobehav. Rev. 125: 33–56.

Turrigiano, G. (2012). Homeostatic synaptic plasticity: local and global
mechanisms for stabilizing neuronal function. Cold Spring
Harbor Perspect. Biol. 4: a005736.

van Boxtel, G.J. and Gruzelier, J.H. (2014). Neurofeedback:
introduction to the special issue. Biol. Psychol. 95: 1–3.

van Kesteren, M.T., Fernandez, G., Norris, D.G., and Hermans, E.J.
(2010). Persistent schema-dependent hippocampal-neocortical
connectivity during memory encoding and postencoding rest in
humans. Proc. Natl. Acad. Sci. U. S. A. 107: 7550–7555.

Verberne, A.J.M. and Owens, N.C. (1998). Cortical modulation of the
cardiovascular system. Prog. Neurobiol. 54: 149–168.

Vogt, B.A., Vogt, L., Farber, N.B., andBush, G. (2005). Architecture and
neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485:
218–239.

Watanabe, T., Sasaki, Y., Shibata, K., andKawato,M. (2017). Advances in
fMRI real-time neurofeedback. Trends Cognit. Sci. 21: 997–1010.

Wickens, J. (1990). Striatal dopamine in motor activation and reward-
mediated learning: steps towards a unifying model. J. Neural
Transm. Gen. Sect. 80: 9–31.

Wiener, N. (2019). Cybernetics or control and communication in the
animal and the machine. MIT Press, Cambridge, Massachusetts,
US.

628 A. Mirifar et al.: Neurofeedback and neural self-regulation



Witte, M., Kober, S.E., and Wood, G. (2018). Noisy but not placebo:
defining metrics for effects of neurofeedback. Brain 141: e40.

Wyland, C.L., Kelley, W.M., Macrae, C.N., Gordon, H.L., and
Heatherton, T.F. (2003). Neural correlates of thought
suppression. Neuropsychologia 41: 1863–1867.

Wyrwicka, W. and Sterman, M.B. (1968). Instrumental conditioning of
sensorimotor cortex EEG spindles in the waking cat. Physiol.
Behav. 3: 703–707.

Yeh, W.H., Hsueh, J.J., and Shaw, F.Z. (2020). Neurofeedback of alpha
activity on memory in healthy participants: a systematic review
and meta-analysis. Front. Hum. Neurosci. 14: 562360.

Zoefel, B., Huster, R.J., and Herrmann, C.S. (2011). Neurofeedback
training of the upper alpha frequency band in EEG improves
cognitive performance. Neuroimage 54: 1427–1431.

Zotev, V., Krueger, F., Phillips, R., Alvarez, R.P., Simmons, W.K.,
Bellgowan, P., Drevets, W.C., and Bodurka, J. (2011). Self-
regulation of amygdala activation using real-time FMRI
neurofeedback. PLoS One 6: e24522.

Zsoldos, E. and Ebmeier, K.P. (2016). Chapter 38 – aging and
psychological stress. In: Fink, G. (Ed.), Stress: concepts,
cognition, emotion, and behavior. Academic Press, San Diego,
pp. 311–323.

A. Mirifar et al.: Neurofeedback and neural self-regulation 629


	Neurofeedback and neural self-regulation: a new perspective based on allostasis
	Introduction
	A psychophysiological framework of NF
	Homeostasis and the negative feedback loop
	Learning from reward and punishment
	Self-regulation through biofeedback
	Psychophysiological regulation—from homeostasis to allostasis
	A new allostasis-based framework for understanding NFT

	Neural mechanisms underlying NF
	Structural plasticity
	Synaptic modification
	Neurotransmitters: interaction and modification
	Gray and white matter modification

	Functional plasticity
	Neural underpinnings of self-regulation
	Executive function
	Memory function
	Empirical evidence for functional plasticity due to NFT

	Intermediate summary—neural mechanisms underlying NFT

	From mechanisms to outcomes—effects of NFT
	Changes in baseline (sustained changes) or adaptive changes?
	NFT to modify allostatic (over)load states (improving clinical conditions)
	NFT to increase allostasis competence (improving performance)

	An explanation of the relation between the neurophysiological and behavioral changes induced by NFT
	Third conclusion—expectations about NFT process and outcomes

	Conclusions and outlook
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


