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ABSTRACT
◥

We hypothesize that the study of acute protein perturbation in
signal transduction by targeted anticancer drugs can predict drug
sensitivity of these agents used as single agents and rational com-
bination therapy. We assayed dynamic changes in 52 phosphopro-
teins caused by an acute exposure (1 hour) to clinically relevant
concentrations of seven targeted anticancer drugs in 35 non–small
cell lung cancer (NSCLC) cell lines and 16 samples of NSCLC cells
isolated from pleural effusions. We studied drug sensitivities across
35 cell lines and synergy of combinations of all drugs in six cell lines
(252 combinations). We developed orthogonal machine-learning
approaches to predict drug response and rational combination
therapy. Our methods predicted the most and least sensitive
quartiles of drug sensitivity with an AUC of 0.79 and 0.78, respec-
tively, whereas predictions based on mutations in three genes

commonly known to predict response to the drug studied, for
example, EGFR, PIK3CA, and KRAS, did not predict sensitivity
(AUC of 0.5 across all quartiles). The machine-learning predictions
of combinations that were compared with experimentally generated
data showed a bias to the highest quartile of Bliss synergy scores
(P ¼ 0.0243). We confirmed feasibility of running such assays
on 16 patient samples of freshly isolated NSCLC cells from
pleural effusions. We have provided proof of concept for
novel methods of using acute ex vivo exposure of cancer cells
to targeted anticancer drugs to predict response as single agents
or combinations. These approaches could complement current
approaches using gene mutations/amplifications/rearrangements
as biomarkers and demonstrate the utility of proteomics data to
inform treatment selection in the clinic.

Introduction
Non–small cell lung cancer (NSCLC) is the leading cause of cancer-

related mortality (1) and is an example of a tumor type that benefits
from molecularly targeted treatments (2). Genomic biomarkers of
sensitivity to molecularly targeted drugs used to treat NSCLC include
mutations or rearrangements in EGFR (3), ALK (4), MET (5), ROS (6)

and RET (7), and KRAS (8). However, more than 50% of patients with
NSCLC lack gene mutations or rearrangements that can be treated
with licensed anticancer drugs targeting the specific genomic aberra-
tion (2). Finding new approaches for using existing novel anticancer
drugs is thus an urgent unmet need.

Preclinical discovery of biomarkers of sensitivity of cancers to
targeted anticancer drugs have relied heavily on concerted efforts to
link drug sensitivity to mutations in large cell line panels (9). This has
been transformative in enabling precision medicine paradigms to be
used in the clinic, but has limitations and needs improvement (10).
Interestingly, only approximately 40 drugs currently have FDA-
approved or cleared companion diagnostics across all targeted
drugs (11) with NSCLC as a leading example of a disease type with
biomarkers of response such as EGFR, ALK, MET, KRAS, ROS, and
RET mutation/rearrangements. Gene-silencing technologies such as
siRNA andCRISPR are the focus in finding determinants of resistance.
For example, siRNA and CRISPR screens have identified NF1 loss or
RIC8A as being related to EGFR inhibitor resistance (12, 13). Prote-
omic profiling is another approach used to discover new biomarkers of
sensitivity to targeted therapy in NSCLC: This approach has revealed
novel phosphorylation sites of EGFRY1197 and other proteins such as
MAPK7 andDAP1 (14); however, this has not yet resulted in change of
clinical practice. Use of historical samples or patient derived model
systems to profile signaling pathways to suggest sensitivity of NSCLC
to drugs such as PI3K inhibitors have been published, but these have
not been used to make decisions on individual patients (15, 16).

Synergistic combination therapy is critical to overcome primary and
secondary drug resistance to targeted anticancer drugs (17). Large-
scale, preclinical drug combination experiments across large cell line
panels (including NSCLC cell lines) have been published and been
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helpful in understanding biology of drug resistance (18–20). Gene
silencing technologies have suggested a few testable combinations of
targeted therapy in NSCLC, for example, SHP2 and ALK inhibi-
tors (21), FGFR and m-TOR inhibitors (22), or FGFR and EGFR
inhibitors (23). However, the majority of such screens identify genes
related to resistance that do not have drugs that can effectively target
them, and thus cannot currently be tested in the clinical setting. Other
approaches focusing on signal transduction have resulted in testable
combinations in NSCLC, such as EGFR and BCL6 (24) inhibitors, or
MEK and AKT inhibitors (25, 26). These predictions are made on
observations in cell line models and not samples of tumors obtained
contemporaneously from patients, and thus have not been used to
predict combination therapy in individual patients. In addition,
network biology-based approaches have been used to model multi-
omics networks to describe synthetic lethal target interactions in lung
cancer, yet this approach does not use real drug response data in
building and refining models (27). Despite these wide ranging efforts
only two combination of targeted agents, that is, dabrafenib in
combination with trametinib (28), and erlotinib in combination with
ramucirumab (29) have been licensed for the treatment with NSCLC,
whereasmultiple combinations of chemotherapy and immunotherapy
are used as standard of care.

Experimental approaches of drug screening, gene silencing or
proteomic studies to discover biomarkers of sensitivity or rational
combination therapies have provided useful research insights. How-
ever, their utility for clinical decisionmaking is hampered because they
use technology for use in cell lines that either require experimental
techniques like long-term cell culture and drug treatment (drug
screens), cell transfections (siRNA/CRISPR) or large quantities of
protein and extended analysis (mass spectroscopy). These limitations
preclude use rapid testing of tumor samples from an individual patient
against multiple drugs to enable decision making at any point in their
treatment.

Here, we quantify dynamic signaling responses within cancer
cells to predict drug sensitivity and rational combinations in
NSCLC. The approach is applicable both to cancer cell lines and
ex vivo to patient cells. The clinically relevant concentrations
and the short exposure of drugs used in these experiments are key
to clinical translation of these assays. We establish proof of concept
that such an approach is feasible and, in the future, may result in
the establishment of platforms that will inform clinical decision
making and personalized treatment within 24–48 hours of a biopsy
of individual tumors.

Materials and Methods
Cell lines and media

Thirty-five NSCLC cell lines were obtained from the ATCC or from
collaborators and STR typed (details in Supplementary Table S1).

All cell lines were grown in RPMI-1640 (11835–063, Gibco) except
for SK-LU-1 that was grown in DMEM (D5671, Sigma-Aldrich). In
addition, all media were supplemented with 10% FBS (10270–106,
Gibco), 1 mmol/L L-glutamine (25030–024, Gibco) and 1xMEM non-
essential amino acid solution (M7145, Sigma-Aldrich). Cells were
incubated at 37oCwith 5%CO2. All cell lines used in experiments were
between 4 and 28 passages. Cell lines were tested forMycoplasma using
MycoAlert (LT-07–218, Lonza) within 2 weeks before use.

Drugs
Were obtained from Selleck chemicals. Drug concentrations used

for our Luminex assays were based off the clinical maximum plasma

concentration (Cmax) normalized to the protein binding effect in 20%
FBS media: Details are provided in the Supplementary Methods.

Luminex suspension bead assay
Cells were grown in 25 cm2 tissue culture flasks (Corning Inc.) at

20% FBS until approximately 80% confluent then dosed with one of
seven drugs (plus 3 DMSO controls) for 1 hour. Lysate was stored at
�80�C until required.

MILLIPLEX MAP Akt/mTOR phosphoprotein kit, MILLIPLEX
MAPK/SAPK signaling kit, MILLIPLEXMAP RTK phosphoprotein
kit (48–611MAG, 48–660MAG, HPRTKMAG-01K, respectively,
Merck-Millipore) were combined with the following single-plex
magnetic bead sets to produce three multiplex Luminex assays:
phospho-NFkB, phospho-SRC, phospho-STAT3, phospho-
STAT5 A/B, total HSP27 and GAPDH (46–702MAG, 46–710MAG,
46–623MAG, 46–641MAG, 46–608MAG, 46–667MAG, MerckMil-
lipore). Bio-Plex Pro phospho-PDGFRa, phospho-PDGFRb and
Akt (Thr308; 171-V50017M, 171-V50018M, 171-V50002, Bio-Rad)
were combined into a triplex assay. Manufacturer’s protocols were
followed throughout.

Cytotoxicity assays
Growth inhibition was assessed using 72-hour Sulforhodamine B

(SRB) assay (details in Supplementary Methods).

Isolation of cancer cells from patient effusions
Up to 1,000mL of ascites or pleural fluidwas collected by the patient

and immunomagentically separated using previously published
methods (30).

Ethics and consent
All patients who had pleural effusions drained for palliative pur-

poses. Pleural fluid was used in the study after investigators has
obtained written informed consent. The tissue collection protocols
were approved by the Institutional Review Boards and conducted in
accordance with the Decleration of Helsinki.

Bioinformatic/statistical analysis
To standardize the phosphoproteomic measurements, the control

GAPDH measurements were normalized and median-centered, all
other data normalized accordingly (see Supplementary Methods).

For predictions and feature selection, we created and assessed the
performance of a suite of AI-based predictors. First, we used Random
Forest recursive feature selection to define the phosphoprotein
changes that most contributed to prediction, then trained and vali-
dated Random Forest classifiers and regressor functions (details of
implementation in Supplementary Methods). Moreover, we in addi-
tion used elastic net predictors to predict responses to drugs. Similar
models were constructed using notable clinical genomic features of
NSCLC to allow comparisons of model performance using the dif-
ferent feature types in predicting drug response.

The environmental perturbation score (EPS) is an integrative
function across the protein–protein interaction network neighbors.
The protein networks were constructed using the highly curated
interactome from canSAR (31). The absolute values of change were
then integrated for the environment of each node, and then used to
predict which drug target to select to produce a beneficial drug
combination response. Details are in Supplementary Methods.

Combinations of drugs were assessed using Bliss independence
analysis to study synergy. Details in SupplementaryData. The different
distribution of the EPS rankings in the highest and lowest quartiles of
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the combinations ranked by the Bliss independent analysis was tested
by a Mann–Whitney U test. Details in Supplementary Methods.

Data availability
Data generated in this study are available upon request from the

corresponding author.

Results
Prediction of sensitivity to targeted therapy using focused
phosphoproteomic screen

We experimentally profiled 35 NSCLC cell lines (Supplementary
Table S1) and 16 samples of immunomagnetically separated cancer
cells from patients with NSCLC with pleural effusions. Cells were
exposed to a single concentration (Cmax adjusted for protein binding in
culture medium) of 7 anticancer drugs: Gefitinib (EGFRi), trametinib
(MEKi), pictilisib (PI3Ki), capivasertib (AKTi), everolimus (m-TORi),
vemurafenib (BRAFi), and luminespib (HSP90i) for 1 hour to reca-
pitulate a clinical setting and eventual translational relevance of our
experiments. We chose a limited panel of drugs with well-
understood mechanisms of action that had been either licensed or
evaluated in clinical trials. We used a panel of 52 relevant phos-
phoproteins based on the known action of our drug panel and
previously validated signal transduction pathways. Using highly
curated protein–protein interaction data (31, 32), we constructed a

protein–protein interaction network to act as a framework to map
and interpret our experimental data (Supplementary Fig. S1). We
chose to use an early time point and this antibody-based plat-
form (33, 34) because it would serve as a prototype of an assay in a
clinical setting with a possibility of generating results to inform
treatment within 24–48 hours. The experimental design and
analysis are illustrated in Fig. 1 and expanded in the on-line
methods. Quantified changes in protein phosphorylation in
response to 1 hour of drug incubation are shown in Fig. 2A.
On average, cell lines show downregulation of 11.88 phosphopro-
teins (22.4% of the panel) and upregulation of 11.95 phosphopro-
teins (22.5% of the panel) per experimental condition, whereas
patient-derived samples have on average 8.94 phosphoproteins
downregulated and 13.25 phosphoproteins upregulated per
experimental condition, corresponding to 16.9% and 25% of the
panel, respectively. This demonstrates that in terms of number of
phosphoproteins perturbed in response to drug treatment, patient-
derived samples and cell lines are comparable. A dendrogram shows
the clustering of the phosphoproteins based on the phosphorylation
profile across the entire dataset (Fig. 2B).

We chose to compare our findings with the recently published
CPPA database (35, 36) that describes similar drug perturbation using
an RPPA platform on a variety of drugs and cancer cell lines. Of the
seven drugs used in this study, four have also been used in the CPPA
dataset (trametinib, gefitinib, vemurafenib, and pictisilib). Only one

Figure 1.

Experimental design. Single-drug evaluation: A library of 7 targeted anticancer drugswas used. First, GI50 concentrationswere determined in a panel of 35NSCLC cell
lineswith diverse genetic backgrounds (44). Second, phosphoproteomic changes of 52 selected proteinsweremeasured after 1 hour of drug exposure of the drugs at
clinically relevant concentrations adjusted for protein binding and DMSO controls were measured. The phosphoproteomic protein changes were used to train
machine learning predictors of sensitivity, and validated using 100-fold cross validation with a rotating set of 15% leave out for validation and 85% for training (see
Materials and Methods). The same phosphoproteomic measurements were also carried out in 16 patient samples obtained from pleural effusions producing profiles
that can be fed into the predictive model to predict likely response to each drug of the individual patient samples. Two-drug combination: A novel machine learning
method (environmental perturbation score) using dynamic phosphoprotein data 35 cell lines exposed to the 7 drugs was used to predict combinations. All pair wise
two-drug combinations (7 individual drugs) were tested in 6 representative NSCLC cell lines and Bliss synergy was calculated for all combinations. The predicted
results from the environmental perturbation score was compared with the experimentally validated results.
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cell line was common between the CPPA database and our experi-
ments (A549) and this cell was not exposed to any of the drugs used in
our experiments. For the four common drugs in both databases,
changes in 26 proteins are measured in both studies. Despite different
concentrations and lengths of drug exposure, the RPPA values for
these drug treatments produce similar results: Supplementary Fig. S2A
shows hierarchical clustering of the data, demonstrating that the RPPA
profiles do not separate by source and that many CPPA profiles are
more similar to profiles generated in this study, and vice versa. Equally,
Supplementary Fig. S2B shows that for the first two components of
principal component analysis (PCA) analysis, the source of the data is
not a major driver of variance. This indicates, in part, that the
phosphoproteomic data generated in this study are broadly aligned
with those currently in the public domain.

We then trained a suite of orthogonal machine learning algorithms
with appropriate training and validation sets (random forest regres-
sors, classifiers and elastic net, see Supplementary Methods) to define
the key phosphoprotein changes that predict drug sensitivity in
individual cell lines. For comparison, we applied the same algorithms
to test the power of known genomic features to predict drug sensitivity.
Wedivided the response data into four quartiles where thefirst quartile
and fourth quartile contain the least andmost drug sensitive outcomes,
respectively (Fig. 3A). Feature importance of phosphoproteins used in
the elastic net analysis was described previously as significant if the
absolute weight is greater than 0.1 (Fig. 3B). We find that dynamic

phosphoproteomic changes can strongly predict high and low drug
response (Supplementary Fig. S3) with an AUC of 0.78–0.79 for Q1
and Q4 (Fig. 3C; Supplementary Fig. S3A, S3C, and S3E). In com-
parison, genomic features such as mutations in EGFR, KRAS, and
PIK3CA failed to predict sensitivity in the same samples (Fig. 3D;
Supplementary Fig. S3B, S3D, and S3F). This demonstrates that
dynamic proteomic profiles enable more accurate single-agent drug
response prediction than the mutational statuses of EGFR, KRAS, and
PIK3CA—the three genomic markers currently used in the clinic to
predict drug response.

In addition, we calculated the predictive performance of each of
the three mutated genes when targeted with drugs against their
specific protein. Despite EGFR (3) and PIK3CA (37) mutations
being used in the clinic to select patients most likely to respond to
EGFR and PI3K inhibitors, we identified that EGFR-mutated cell
lines did not show an enrichment for sensitivities to the EGFR
inhibitor gefitinib in Quartiles 1 and 2 relative to the EGFR wild-
type cell lines (c2 test with Yates correction, P ¼ 0.67) (Supple-
mentary Table S2). Equally, PIK3CA-mutated cell lines did not
show an enrichment for sensitivities to the PI3K inhibitor pictisilib
in Quartiles 1 and 2 (x2 test with Yates correction, P ¼ 0.23).
Although this may be due to the relatively small sample sizes of
numbers of cell lines, these results highlight the limitations of using
genotype alone to predict sensitivity to targeted drugs, even those
that target a protein that can drive a cancer cell. These experiments

Figure 2.

Acute dynamic phosphoproteomic perturbation. A, Hierarchically clustered heatmap showing 52 phosphoproteomic changes measures across all 35 cell lines
exposed to all seven drugs, overlaid with quartiled drug sensitivity annotation, generated using Morpheus. Blue denotes a decreased phosphoprotein, and red
denotes an increased phosphoprotein. Drug sensitivity quartiles are as illustrated and discussed in Fig. 3A. Clusters are highlighted with yellow boxes. B, Unrooted
dendrogram representing clustering of phosphorylated proteins measured across entire dataset, showing that receptor tyrosine kinases cluster together. Colors
represent distinct clusters of the dendrogram, as per slicing at the level annotated by the turquoise line.
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were performed before KRAS G12C inhibitors becoming available;
however, proteomic analysis outperformed KRAS mutations to
predict sensitivity/resistance to all drugs studied. Thus, the predic-
tive power of phosphoproteomic changes in the models studied
shows that they could be used to augment current predictive
biomarker paradigms based on genotype.

Prediction of synergistic and antagonistic combinations using
focused phosphoproteomic screening results

We applied our method of calculating dynamic EPS of each
individual phosphoprotein when exposed a drug to predict synergistic
combination (see Supplementary Methods for details). The list of EPS
values for each node per cell line per drug is presented in the
Supplementary Table S3 and an example of proteomic changes caused
by capivasertib and trametinib in the HCC827 cell line and the
associated EPS score are shown in (Fig. 4A–D), respectively. Note
that using this measure, a node can be a signaling junction, even if its
own perturbation is low.

To test and validate the power of the EPS in predicting synergistic
combinations, we conducted blind unbiased pairwise combination
screening in vitro of the 7 drugs in 6 cell lines (2EGFRmutated, 2KRAS
mutated, and 2 wt for EGFR and KRAS), resulting in 252 experimen-

tally derived Bliss independence scores. The Bliss independence scores
of all the combinations in the 6 cell lines are represented in Fig. 5A,
Supplementary Table S4. We show that of the 128 cell line-
combination pairs with a Bliss score >0.1 (i.e., synergy), EPS correctly
identified the combination to be in the top 5 ranked combinations
in 73 (57%) cases and the top 10 ranked combinations in 106
(83%) cases. EPS correctly identified previously reported synergistic
combinations of MEK or EGFR inhibitors with PI3K pathway inhi-
bitors (25, 26, 38)—examples of true positive synergistic combinations.
For example, EPS identified combinations of trametinib and capiva-
sertib in HCC827 cells (Bliss 0.6, EPS ranking for AKT_308 of 3,
AKT_473 of 2) and gefitinib and everolimus in PC9 cells (Bliss 0.3,
EPS ranking for mTOR of 2). Moreover, EPS was able to correctly
predict previously unreported combinations such as vemurafenib and
capivasertib in H522 cells (Bliss 0.32, EPS ranking for AKT_308 of 4,
AKT473 of 2), Supplementary Table S4.

We find that although EPS is a strong predictor of clear synergy or
clear lack of synergy, it was unable to distinguish marginal signals.
Thus, when counting all data, we do not observe clear correlation
between the Bliss independence score and the EPS (R2 ¼ 0.0132;
Supplementary Fig. S4). However, we observed enrichment of correct
predictions in the highest and lowest Bliss data quartiles: Predictions
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Figure 3.

Predictionof drug sensitivity usingphosphoproteomic analysis.A,Classification of cell line–drug single-agent sensitivities into four quartiles,withQ1¼most sensitive
andQ4¼ least sensitive.B, Feature importance of phosphoproteins based on elastic net analysis shown. Features are described previously as significant if theweight
is greater than þ0.1 or lesser than �0.1. C, Performance of predictions of sensitivity quartile based on phosphoproteomic changes using elastic net analysis.
D, Performance of prediction of sensitivity quartile based on three clinically relevant mutations (EGFR, PIK3CA, and KRAS) using elastic net analysis.
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for these quartiles showed significantly skewed distributions (Mann–
Whitney U test P value of 0.003887). To test the statistical significance
of this enrichment, we compared the concordance of our EPS ranking
with synergy based on the experimental input data versus 10,000
equivalent rankings based on randomly simulated data (see Supple-
mentary Methods). We found a clear difference between EPS con-
cordance with the experimental data of P values of <0.1 with that of the
random rankings (Fig. 5A–C). This is remarkable as we used a 52
phosphoprotein panel and only generated experimental data studying
growth inhibition of combinations using 7 drugs. Thus, the EPS
method so far is unable to predict marginal synergistic signals, but
it is very successful at predicting clear events such as clear synergy or
clear lack of synergy.

The route to clinical translation
In keeping with our desire to translate our proof-of-concept

findings to a clinically relevant platform, in addition to exposing
established NSCLC cell lines clinical relevant concentrations (Cmax

adjusted for protein binding) for 1 hour, we exposed immunomag-
netically separated cancer cells isolate from fresh pleural effusion
aspirates to the 7 drugs under identical conditions. The phospho-
protein analysis was conducted and PCA of phosphoprotein
changes due to 7 drugs in established NSCLC cell lines (n ¼ 35)
and samples from patients (n ¼ 16) were broadly similar (Fig. 6A);
similar results were found when plotting the probability density
functions of the two sample types, despite a statistically significant

difference in their distributions (Fig. 6B). It is important to note
that the collection of the sample from the patient, ex vivo treatment
for 1 hour, cell lysis, protein quantification, quantification of
phosphoproteins on the antibody-based proteomic platform and
machine learning analysis could technically be carried out within a
48-hour window, thus demonstrating the feasibility of this tech-
nique for use in the clinic to deliver rapid and accurate predictions
of patient response, and thus inform drug selection. Significant
further validation will be required before use in patients.

Discussion
To our knowledge, we have showed for the first time that simul-

taneously quantifying multiple phosphoproteins responses to clini-
cally relevant concentrations of targeted anticancer drugs for a short
period of time (1 hour) can be used to predict drug sensitivity: These
data were able to outperformed known genetic biomarkers as pre-
dictors of sensitivity in the cell line panels and drugs studied. The
tailoring of experiments to use clinically relevant concentrations
adjusted to protein binding and an acute 1 hour exposure to be used
clinically on biopsy specimens in the future, make our proteomic
dataset and analysis different from other important recently published
work on effects of drugs on proteomic perturbation (36). However,
these previously published resources are helpful to benchmark some of
the changes seen in our analysis (35, 36). Although our study acts as a
proof of concept, the length of time used for drug incubation could be

Figure 4.

Dynamic changes in phosphoproteins and EPS. Exemplar of results in a cell line HCC827.A and B, Network diagrams showing phosphoproteomic changes and drug
targets with color gradient blue (�1.7) and red (þ1.7). Nodes that are drug targets but where phosphorylation has not been measured are denoted in gray, that is,
HSP90, PI3K, and BRAF. A, Phosphoproteomic changes related to exposure to the AKT inhibitor capivasertib. B, Phosphoproteomic changes related to exposure
to the MEK inhibitor trametinib. C and D, EPS calculated for nodes that are tractable on CanSAR. C, EPS scores upon exposure to the AKT inhibition capivasertib.
D, EPS scores upon exposure the MEK inhibitor trametinib.
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further optimized to identify the optimal time point at which to obtain
the highest predictive power of proteomic responses.

Multiple factors contribute to the need for not relying solely on
genetic biomarkers such as tissue context specificity. For example,
G12C KRAS inhibitors cause clinical benefit in KRAS G12C-driven
NSCLC but not colorectal cancer and this is related to feedback loops
involving EGFR signaling (39). Furthermore, we have previously
shown context-specific signaling differences in signaling between
NSCLC, colorectal cancer, and PDAC cell lines (34). Other factors
could include transcriptional silencing of genetic aberrations (40).
Finally, the challenge posed by spatial and tumor temporal heteroge-
neity cannot be underestimated (41).

We have also for the first time described the use of EPS in predicting
synergistic combinations. We validated the model by running all
possible combinations of the 7 drugs described previously in the
article in six cell lines. The proteomics-based EPS model predicted
synergy significantly better than over 10,000 random permutations of
EPS rankings. Interestingly, some of the combinations suggested by
our methodology such as the synergy of the combination of MEK and
PI3K pathway inhibitors have previously been reported following
specific hypothesis testing experiments (25, 26, 42), which partially
confirms our findings with true positives. However, the EPS model is
particularly exciting as it can discover novel combinations in an
unbiased way. There have been no unbiased, systematic drug

Figure 5.

Experimental and predicted combina-
tions. A, Clustered heatmap of Bliss syn-
ergy scores was experimentally mea-
sured for six cell lines treated with 21
two-drug combinations. B, Histogram
representing the EPS rankings of nodes
of targets of drugs in the top 25% highest
Bliss synergy scores, that is, “most syn-
ergistic” (left), or the EPS rankings of
nodes of targets of drugs in the 25%
lowest Bliss synergy scores, that is, “least
synergistic” (right). There is a significant
bias toward higher EPS rankings for the
most synergistic drug targets, with a
significant Mann–Whitney U test P value
of 0.0038875, indicating a biased distri-
bution of rankings. C, Simulation of the
Mann–Whitney U test P values obtained
from 10,000-fold random permutations
of EPS ranking, demonstrating the
robustness of this P value.
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combination therapy screens reported in NSCLC to date; however,
NSCLC cell lines have been included in large drug screens (18–20).
Outside NSCLC, multiple approaches using gene silencing techniques
such as siRNA/CRISPR have been attempted and are out of the scope
of this article, but such experimental systems would need long-term
cultures of patient-derived tissue tomake predictions of drug response
for individual patients in the clinic. In contrast, our approach uses
acute incubation of patient-derived cells to make accurate and infor-
mative predictions of drug response.

In this article, a set of unbiased combination experiments, done to
validate the EPS have statistically shown high concordance in the
highest and lowest quartiles predictions of synergy. Predictions of top
and bottom quartiles of responses represent a stepping stone from
binary classifications of sensitive/insensitive and toward an ultimate
goal of predictions of precise, continuous synergy. In addition, pre-

diction of ranked sensitivities as opposed to absolute values may be of
benefit when considering the well-known challenges of translating
in vitro cell line observations into in vivo studies or patients (43).
Although we have established early proof of concept, iterative
improvements, that is, incorporating the use of larger proteomic
datasets, new drugs, and newer understanding signal transduction
pathways will further improve this approach.

There are biological complexities such as the role of stroma or the
immune system that cannot be captured in themodel systemdescribed
previously in this article. However, we do believe that the current
approach is a functional assay that can be delivered in the clinic, which
intellectually lies in between genomics (finding mutations/amplifica-
tions/deletions or siRNA/CRISPR experiments) and truly phenotypic
assays (cell culture/organoid and patient derived xenografts), with the
added advantage of being able to near contemporaneously predict
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Figure 6.

Comparison phosphoprotein changes
in patient samples and cell lines.
A, 3D plot showing that for the first
three principal components of the
phosphoproteomic data, patient sam-
ples (blue diamonds) show comparable
distribution with cell line data (yellow
circles), indicating that changes in
phosphorylation in cell linepanels could
potentially reflect changes within
clinical samples. B, Probability density
functions of cell line and patient data,
showing a strong overlap in distribu-
tion and peak values between the two
sample types, despite a Welch Two
Sample t test, indicating that the
two groups have different means
(P ¼ 0.006804). Here, x-axis plots
the value of dynamic phosphoprotein
changes, and the y-axis (density) is
proportional to frequency.
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sensitivity and synergistic combination therapy. The EPS algorithm,
based on acute phosphoproteomic changes, has been validated in
in vitro experimental models. Although in vivo testing is desirable, to
meaningfully impact the model (7 drugs across 35 cell line models and
252, 2 drug combinations), xenograft experiments need be done at a
scale that is out the scope for academic groups. Showing the results of
1–2 xenograft models to show proof of concept, although conven-
tional, we felt would be against the spirit of unbiased testing and thus
we have not conducted these experiments for this article. Such
experiments will have to be considered before using the assay in the
clinical setting.

To conclude, we have demonstrated for thefirst time that the use of a
focused phosphoproteomic assay and machine learning approaches
that has used dynamic phosphorylation in signal transduction to
predict sensitivity to drugs and prioritize rational combinations tested
on cancer cell lines and patient samples in NSCLC. This is a powerful
approach that is orthogonal to genomic markers, is adaptive and
individualized, with a clinically meaningful turnaround time. This
feasibility study provides proof of concept; however, considerable
technical validation is needed before use in patients. If developed
further, that this methodology can potentially improve the outcomes
of patients with cancer treated with targeted anticancer drugs as a
single agent or as combination therapy.
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